Seguimiento de casos de feminicidio en Colombia mediante técnicas de minería de texto

dc.contributor.advisorVilla Garzón, Fernán Alonso
dc.contributor.authorGarcía Alzate, Daniel
dc.date.accessioned2022-09-16T18:44:54Z
dc.date.available2022-09-16T18:44:54Z
dc.date.issued2022
dc.descriptiondiagramasspa
dc.description.abstractEn el presente trabajo se aborda la problemática de violencia feminicida cómo la máxima expresión de violencia contra la mujer. Se presentan los antecedentes alrededor de este flagelo en Colombia y cómo ha evolucionado en los años recientes. A partir de ello, se llega a la premisa de que la primera forma de abordar una problemática de esta índole es con una adecuada visibilización. Para lograr una correcta visibilización primero se debe hacer una caracterización y dicha caracterización se nutre de un cuidadoso proceso de extracción de información. De esta manera, en este trabajo final de Maestría se propone un modelo de minería de texto que inicia con la integración de fuentes de información alrededor de la problemática de violencia feminicida en Colombia entre julio de 2017 y diciembre de 2021. Luego, se adecúa la información extraída para identificar señales clave mediante técnicas cómo bolsa de palabras, dendograma, reconocimiento de entidades y clusterización o agrupamiento. A partir de las técnicas previamente mencionadas se realiza una caracterización de los casos de violencia feminicida y se validan los resultados a la luz de la fuente principal de información y datos oficiales de la Fiscalía General de la Nación. Se encuentra que el modelo propuesto ofrece buenos resultados y puede contribuir positivamente al proceso inicial de mitigación de la problemática. Adicionalmente, se plantean algunas fortalezas replicables a otros estudios y algunos aspectos a mejorar en análisis futuros. (tomado de la fuente)spa
dc.description.abstractIn the present work the problem of femicide violence is addressed as the maximum expression of violence against women. It is presented background around this scourge in Colombia and how it has evolved in recent years. From this, is reached the premise that the first way to address a problem of this nature is with adequate visibility. To achieve correct visibility a characterization must be made first and this characterization is nourished by a careful process of information extraction. In this way, in this final Master's project, is proposed a text mining model that begins with the integration of information sources around the problem of femicide violence in Colombia between July 2017 and December 2021. Then, the extracted information is adequated to identify key signals through techniques such as bag of words, dendrogram, entity recognition and clustering or grouping. Based on the previously mentioned techniques, a characterization of the cases of femicide violence is carried out and the results are validated in light of the main source of information and official data of the General Attorney of the Nation. It is found that the proposed model offers good results and can contribute positively to the initial process of mitigating the problem. Additionally, some strengths that can be replicated in other studies and some aspects to improve in future analyzes are proposed.eng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Analíticaspa
dc.format.extent81 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82298
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.referencesAbbasi, A., & Chen, H. (2007). Affect intensity analysis of dark web forums. ISI 2007: 2007 IEEE Intelligence and Security Informatics, 282–288. https://doi.org/10.1109/isi.2007.379486spa
dc.relation.referencesAllister Simanjuntak, D., & Satriyo Nugroho, A. (2010). Text Classification Techniques used to facilitate Cyber Terrorism Investigation. IEEE Computer Society.spa
dc.relation.referencesAlsaif, H., & Alotaibi, T. (2019). Arabic Text Classification using Feature-Reduction Techniques for Detecting Violence on Social Media.spa
dc.relation.referencesAmrit, C., Paauw, T., Aly, R., & Lavric, M. (2017). Identifying child abuse through text mining and machine learning. Expert Systems with Applications, 88, 402–418. https://doi.org/10.1016/j.eswa.2017.06.035spa
dc.relation.referencesÁrevalo Mutiz, P. L. (2018, March 2). Feminicidio en Colombia: avances y retos. https://www.urosario.edu.co/Periodico-NovaEtVetera/Sociedad/Feminicidio-en-Colombia-avances-y-retos/spa
dc.relation.referencesAsik, G. A., & Nas Ozen, E. (2021). It takes a curfew: The effect of Covid-19 on female homicides. Economics Letters, 200, 109761. https://doi.org/10.1016/j.econlet.2021.109761spa
dc.relation.referencesAyuda en Acción. (2018, July 5). Tipos de violencia contra las mujeres | Violencia de género. https://ayudaenaccion.org/ong/blog/mujer/tipos-violencia-mujeres/spa
dc.relation.referencesBusso, L., Combei, C. R., & Tordini, O. (2021). Narrating Gender Violence A Corpus-Based Study on the Representation of Gender-Based Violence in Italian Media. Language, Gender and Hate Speech A Multidisciplinary Approach, 39–58. https://doi.org/10.30687/978-88-6969-478-3/002spa
dc.relation.referencesCamelot: PDF Table Extraction for Humans — Camelot 0.10.1 documentation. (n.d.). Retrieved May 12, 2022, from https://camelot-py.readthedocs.io/en/master/spa
dc.relation.referencesChoi, Y. J., Jeon, B. J., & Kim, H. W. (2020). Identification of key cyberbullies: A text mining and social network analysis approach. Telematics and Informatics, June, 101504. https://doi.org/10.1016/j.tele.2020.101504spa
dc.relation.referencesCongreso de la República, C. (2008). Ley 1257 de 2008.spa
dc.relation.referencesCrimen de líder campesino Álvaro Narváez junto a su familia en el Cauca - Otras Ciudades - Colombia - ELTIEMPO.COM. (n.d.). Retrieved May 29, 2022, from https://www.eltiempo.com/colombia/otras-ciudades/crimen-de-lider-campesino-alvaro-narvaez-junto-a-su-familia-en-el-cauca-490528spa
dc.relation.referencesCronología de las masacres en Colombia durante el año 2020 (Enero a Agosto) DIPAZ. (n.d.). Retrieved May 29, 2022, from https://dipazcolombia.org/masacres-colombia-2020-enero-agosto/spa
dc.relation.referencesE. Perron, B., G. Victor, B., Bushman, G., Moore, A., P. Ryan, J., Jiahong Lu, A., & K. Piellusch, E. (2019). Detecting substance-related problems in narrative investigation summaries of child abuse and neglect using text mining and machine learning. Child Abuse & Neglect.spa
dc.relation.referencesEl Ansari, O., Jihad, Z., & Hajar, M. (2020). A dataset to support sexist content detection in arabic text. In Lecture Notes in Computer Science: Vol. 12119 LNCS. Springer International Publishing. https://doi.org/10.1007/978-3-030-51935-3_14spa
dc.relation.referencesEl Tiempo. (2020, July 7). CreanSistema de Prevención Temprana de violencias contra las mujeres - Gobierno - Política - ELTIEMPO.COM. https://www.eltiempo.com/politica/gobierno/gobierno-anuncia-sistema-de-prevencion-de-violencia-contra-las-mujeres-515256spa
dc.relation.referencesFiscalía General de la Nación. (n.d.). Retrieved January 9, 2021, from https://www.fiscalia.gov.co/colombia/spa
dc.relation.referencesGil, V. D., Betancur, J. D., Puerta, I. C., Montoya, L. M., & Sepulveda, J. M. (2018). the Femicide in Colombia and Mexico: a Text Mining Analysis. The Turkish Online Journal of Design, Art and Communication, 2018(March), 170–177. https://doi.org/10.7456/1080mse/021spa
dc.relation.referencesGreenawald, B., Liu, Y., Wert, G., Al Boni, M., & Brown, D. E. (n.d.). A Comparison of Language-Dependent and Language-Independent Models for Violence Prediction.spa
dc.relation.referencesGupta, V., & Lehal Professor, G. S. (2009). A Survey of Text Mining Techniques and Applications. www.alerts.yahoo.comspa
dc.relation.referencesHam, E., & Jeong, S. (2021). an Analysis of Korea Newspaper Reporting on Intimate Partner Violence. 58(October 2020), 2692–2700.spa
dc.relation.referencesHearst, M. (2003). What Is Text Mining?spa
dc.relation.referencesHenshaw, A. (2020). ‘ Peace with a Woman ’ s Face ’: Women , Social Media and the Colombian Peace Process. 42(3), 515–538.spa
dc.relation.referencesHernández, J., Jiménez, D., Zagal, R., Mata, F., & Borges, J. A. L. (2021). Analysis of the Level of Geographic Criminal Risk Oriented to Women. In Communications in Computer and Information Science: Vol. 1430 CCIS. Springer International Publishing. https://doi.org/10.1007/978-3-030-89586-0_19spa
dc.relation.referencesHome Page - Portal OCM. (n.d.). Retrieved January 9, 2021, from http://www.observatoriomujeres.gov.co/spa
dc.relation.referencesHumberto, F., Murillo, S., Chica, J., Rodríguez, A., & Cortázar, G. De. (2018). The spatial heterogeneity of factors of feminicide : The case of Antioquia- Colombia. Applied Geography, 92(November 2016), 63–73. https://doi.org/10.1016/j.apgeog.2018.01.006spa
dc.relation.referencesIezzi, D. (2013). Italian Women In The New Millennium: Emancipated Or Violated? An Analysis Of Webmining On Fatal Domestic Violence. Rivista Italiana Di Economia Demografia e Statistica, LXVII(1992). http://www.sieds.it/listing/RePEc/journl/2013LXVII_N2_09_IEZZI.pdfspa
dc.relation.referencesInicio - Instituto Nacional de Medicina Legal y Ciencias Forenses. (n.d.). Retrieved January 9, 2021, from https://www.medicinalegal.gov.co/spa
dc.relation.referencesjaro-winkler · PyPI. (n.d.). Retrieved May 20, 2022, from https://pypi.org/project/jaro-winkler/spa
dc.relation.referencesKADIC, N. (2019). TWITTER RESISTANCE AND DIGITAL TESTIMONIO(S) IN 140 CHARACTERS: RESTORING THE COMPLEXITY OF MEXICO’S HASHTAG FEMINISM. In Copyright by NEIRA KADIC 2019 (Vol. 3). UNIVERSITY OF OKLAHOMA.spa
dc.relation.referencesKarami, A., White, C. N., Ford, K., Swan, S., & Spinel, M. Y. (2020). Unwanted advances in higher education:Uncovering sexual harassment experiences in academia with text mining. Elsevier.spa
dc.relation.referencesKarystianis, G., Adily, A., Schofield, P., Knight, L., Galdon, C., Greenberg, D., Jorm, L., Nenadic, G., & Butler, T. (2019). Automatic Extraction of Mental Health Disorders From Domestic Violence Police Narratives : Text Mining Study. Journal of Medical Internet Research, 20(9), 1–16. https://doi.org/10.2196/11548spa
dc.relation.referencesKarystianis, G., Adily, A., Schofield, P. W., Greenberg, D., Jorm, L., Nenadic, G., & Butler, T. (2019). Automated Analysis of Domestic Violence Police Reports to Explore Abuse Types and Victim Injuries : Text Mining Study. Journal of Medical Internet Research, 21, 1–12. https://doi.org/10.2196/13067spa
dc.relation.referencesKarystianis, G., Simpson, A., Adily, A., Schofield, P., Greenberg, D., Wand, H., Nenadic, G., & Butler, T. (2020). Prevalence of Mental Illnesses in Domestic Violence Police Records : Text Mining Study. Journal of Medical Internet Research, 22. https://doi.org/10.2196/23725spa
dc.relation.referencesKhandokar, I. A., Mamun, I., Chadni, T. I. A., Anas, Z. A., & Shatabda, S. (2020). Event Detection and Knowledge Mining from Unlabelled Bengali News Articles. ETCCE 2020 - International Conference on Emerging Technology in Computing, Communication and Electronics. https://doi.org/10.1109/ETCCE51779.2020.9350891spa
dc.relation.referencesLi, J., & Dong, D. (2019). Keyword Analysis and Topic Extraction of Hospital Violence News. Computer Science & Education.spa
dc.relation.referencesMohan, V. (n.d.). Preprocessing Techniques for Text Mining-An Overview Privacy Preserving Data Mining View project. Retrieved November 29, 2020, from https://www.researchgate.net/publication/339529230spa
dc.relation.referencesMouhssine, E., & Khalid, C. (2019). Social Big Data Mining Framework for Extremist Content Detection in Social Networks. International Symposium on Advanced Electrical and Communication Technologies, ISAECT 2018 - Proceedings. https://doi.org/10.1109/ISAECT.2018.8618726spa
dc.relation.referencesNaciones Unidas. (1993). Declaración sobre la Eliminación de la Violencia contra la Mujer.spa
dc.relation.referencesNiklander, S., & Niklander, G. (2017). Combining sentimental and content analysis for recognizing and interpreting human affects. Communications in Computer and Information Science, 713, 465–468. https://doi.org/10.1007/978-3-319-58750-9_64spa
dc.relation.referencesO’halloran, K. L., Tan, S., Wignell, P., Bateman, J. A., Pham, D. S., Grossman, M., & Vande Moere, A. (2016). Interpreting text and image relations in violent extremist discourse: A mixed methods approach for big data analytics. Terrorism and Political Violence, 31(3), 454–474. https://doi.org/10.1080/09546553.2016.1233871spa
dc.relation.referencesObservatorio Feminicidios Colombia. (n.d.). Retrieved January 9, 2021, from https://observatoriofeminicidioscolombia.org/spa
dc.relation.referencesONU. (n.d.-a). Cómo trabajamos: Eliminación de la violencia contra las mujeres | ONU Mujeres – Colombia. Retrieved November 14, 2020, from https://colombia.unwomen.org/es/como-trabajamos/violencia-contra-las-mujeresspa
dc.relation.referencesONU. (n.d.-b). Feminicidio | ONU Mujeres – Colombia. Retrieved October 25, 2020, from https://colombia.unwomen.org/es/como-trabajamos/violencia-contra-las-mujeres/feminicidiospa
dc.relation.referencesONU. (2017). Colombia se unió para decir basta al feminicidio: Ni Una Menos | ONU Mujeres – Colombia. https://colombia.unwomen.org/es/noticias-y-eventos/articulos/2017/11/exposicionfemspa
dc.relation.referencesÖztürk, N., & Ayvaz, S. (2018). Sentimental analysis on Twitter: A text mining approach to the Syrian refugee crisis. Telematics and Informatics, 136–147.spa
dc.relation.referencesPaulino da Costa, J., Barbosa dos Santos, T. A. M., Carvalho da Mata, E., Silva da Silva, M., & Lisboa Francês, C. R. (2019). DEEP LEARNING : APPLICATION OF THE LSTM MODEL IN THE CATEGORIZATION OF TWEETS ON VIOLENCE IN THE CITY OF BELÉM. ResearchGate, July 2020. https://doi.org/10.33965/bigdaci2019spa
dc.relation.referencespdfminer.six. (n.d.). Converting a PDF file to text. Retrieved April 23, 2022, from https://pdfminersix.readthedocs.io/en/latest/topic/converting_pdf_to_text.htmlspa
dc.relation.referencesPedraza, G., & María Rodríguez, A. (2016). EL CORTO RECORRIDO DEL FEMINICIDIO EN COLOMBIA. In UNA Revista de Derecho (Vol. 1).spa
dc.relation.referencesPoelmans, J., Elzinga, P., Viaene, S., & Dedene, G. (2011). Formally analysing the concepts of domestic violence. Expert Systems With Applications, 38(4), 3116–3130. https://doi.org/10.1016/j.eswa.2010.08.103spa
dc.relation.referencesPoelmans, J., M. Van Hulle, M., Viaene, S., Elzinga, P., & Dedene, G. (2011). Text mining with emergent self organizing maps and multi-dimensional scaling: A comparative study on domestic violence. Applied Soft Computing.spa
dc.relation.referencesPolicía Nacional de Colombia. (n.d.). Retrieved January 9, 2021, from https://www.policia.gov.co/spa
dc.relation.referencesPyPDF2 · PyPI. (n.d.). Retrieved May 12, 2022, from https://pypi.org/project/PyPDF2/spa
dc.relation.referencesSabbah, T., Selamat, A., Ibrahim, R., & Fujita, H. (2016). Neurocomputing Hybridized term-weighting method for Dark Web classification. 173, 1908–1926. https://doi.org/10.1016/j.neucom.2015.09.063spa
dc.relation.referencesscikit-learn: machine learning in Python — scikit-learn 1.1.1 documentation. (n.d.). Retrieved May 21, 2022, from https://scikit-learn.org/stable/spa
dc.relation.referencesSecretaría Distrital de la Mujer. (n.d.). Tres años de la Ley de Feminicidio. | Secretaría Distrital de la Mujer. Retrieved October 25, 2020, from http://www.sdmujer.gov.co/noticias/tres-años-la-ley-feminicidiospa
dc.relation.referencesSistema Integrado de Información de Violencias de Género. (n.d.). Retrieved January 9, 2021, from http://onviolenciasgenero.minsalud.gov.co/Paginas/sivige.aspxspa
dc.relation.referencesspaCy · Industrial-strength Natural Language Processing in Python. (n.d.). Retrieved May 21, 2022, from https://spacy.io/spa
dc.relation.referencesSukanya, M., & Biruntha, S. (2012). Techniques on text mining. Proceedings of 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies, ICACCCT 2012, 978, 269–271. https://doi.org/10.1109/ICACCCT.2012.6320784spa
dc.relation.referencestabula-py · PyPI. (n.d.). Retrieved May 12, 2022, from https://pypi.org/project/tabula-py/spa
dc.relation.referencesUl Rehman, Z., Abbas, S., Khan, M. A., Mustafa, G., Fayyaz, H., Hanif, M., & Saeed, M. A. (2020). Understanding the language of ISIS: An empirical approach to detect radical content on twitter using machine learning. Computers, Materials and Continua, 66(2), 1075–1090. https://doi.org/10.32604/cmc.2020.012770spa
dc.relation.referencesVanguardia. (2020, June 27). Ocho medidas del Estado para proteger a las mujeres | Vanguardia.com. https://www.vanguardia.com/colombia/ocho-medidas-del-estado-para-proteger-a-las-mujeres-YE2547634spa
dc.relation.referencesVarela, N., Gálvez Valega, J. A., & Pineda Lezama, O. B. (2020). Analysis of behavior of automatic learning algorithms to identify criminal messages. Procedia Computer Science, 175, 114–119. https://doi.org/10.1016/j.procs.2020.07.019spa
dc.relation.referencesViceColombia. (2020, June 26). Gobierno arrecia medidas para frenar violencia contra las mujeres. https://mlr.vicepresidencia.gov.co/Paginas/prensa/2020/Gobierno-arrecia-medidas-para-frenar-violencia-contra-las-mujeres.aspxspa
dc.relation.referencesWang, S. H., Ding, Y., Zhao, W., Huang, Y. H., Perkins, R., Zou, W., & Chen, J. J. (2016). Text mining for identifying topics in the literatures about adolescent substance use and depression. BMC Public Health, 16(1), 4–11. https://doi.org/10.1186/s12889-016-2932-1spa
dc.relation.referencesWatts, C., & Zimmerman, C. (2002). Violence against women: Global scope and magnitude. In Lancet (Vol. 359, Issue 9313, pp. 1232–1237). https://doi.org/10.1016/S0140-6736(02)08221-1spa
dc.relation.referencesWilson, M., Spike, E., Karystianis, G., & Butler, T. (2021). Nonfatal Strangulation During Domestic Violence Events in New South Wales: Prevalence and Characteristics Using Text Mining Study of Police Narratives. Violence Against Women. https://doi.org/10.1177/10778012211025993spa
dc.relation.referenceswordcloud · PyPI. (n.d.). Retrieved May 21, 2022, from https://pypi.org/project/wordcloud/spa
dc.relation.referencesXuan Koh, J., & Ming Liew, T. (2020). How loneliness is talked about in social media during COVID-19 pandemic: Text mining of 4,492 Twitter feeds. Journal of Psychiatric Research.spa
dc.relation.referencesXue, J., Chen, J., & Gelles, R. (2019). Using Data Mining Techniques to Examine Domestic Violence Topics on Twitter. Violence and Gender, 6(2), 105–114. https://doi.org/10.1089/vio.2017.0066spa
dc.relation.referencesYe In Hwang, J., Zheng, L., Karystiansis, G., Gibbs, V., Sharp, K., & Butler, T. (2020). Domestic violence events involving autism: a text mining study of police records in New South Wales, 2005-2016. Research in Autism Spectrum Disorders.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembViolencia contra la mujer
dc.subject.otherMinería de texto y de datos
dc.subject.proposalViolencia feminicidaspa
dc.subject.proposalFemicide violenceeng
dc.subject.proposalMinería de textospa
dc.subject.proposalViolencia contra la mujerspa
dc.subject.proposalExtracción de informaciónspa
dc.subject.proposalCaracterización de violencia feminicida en Colombiaspa
dc.subject.proposalText miningeng
dc.subject.proposalViolence against womeneng
dc.subject.proposalInformation extractioneng
dc.subject.proposalCharacterization of femicide violence in Colombiaeng
dc.titleSeguimiento de casos de feminicidio en Colombia mediante técnicas de minería de textospa
dc.title.translatedMonitoring of femicide cases in Colombia using text mining techniqueseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036955423.2022.pdf
Tamaño:
1.46 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: