A machine learning framework to support multi-channel time series classification in BCI systems with preserved interpretability
dc.contributor.advisor | Alvarez Meza, Andres Marino | |
dc.contributor.advisor | Castellanos Dominguez, Cesar German | |
dc.contributor.author | Tobón Henao, Mateo | |
dc.contributor.orcid | Tobón Henao, Mateo [0000-0002-8454-371X] | spa |
dc.contributor.researchgroup | Grupo de Control y Procesamiento Digital de Señales | spa |
dc.date.accessioned | 2024-05-08T18:08:36Z | |
dc.date.available | 2024-05-08T18:08:36Z | |
dc.date.issued | 2023 | |
dc.description | graficas, tablas | spa |
dc.description.abstract | Brain-Computer Interfaces (BCIs) based on Electroencephalography (EEG) have gained significant attention as a practical approach for human-technology interaction. Motor imagery (MI) paradigms, wherein users mentally simulate motor tasks without physical movement, are widely employed in BCI development. However, constructing EEG-based BCI systems faces challenges due to the low Signal-to-Noise Ratio (SNR), non-stationarity, and nonlinearity of EEG signals, as well as the inter- and intra-subject variability that hinders the extraction of discriminant features. Additionally, poor motor skills among subjects lead to difficulties in practicing MI tasks under low SNR scenarios. To address these challenges, this thesis proposes two novel methodologies for EEG-based MI classification. Firstly, a subject-dependent preprocessing approach, termed Subject-dependent Artifact Removal (SD-AR), is presented. This approach employs Surface Laplacian Filtering and Independent Component Analysis algorithms to selectively remove signal artifacts based on the subjects' MI performance. The study also investigates power- and phase-based functional connectivity measures to extract relevant and interpretable patterns and identify subjects with suboptimal performance. The SD-AR methodology significantly improves MI classification performance in subjects with poor motor skills by effectively mitigating electrooculography and volume-conduction EEG artifacts. Secondly, a deep learning methodology, named kernel-based regularized EEGNet (KREEGNet), is introduced for EEG-based MI classification. KREEGNet is built on the foundation of centered kernel alignment and Gaussian functional connectivity, addressing the challenge of intrasubject variability and lack of spatial interpretability within end-to-end frameworks. The novel architecture of KREEGNet includes an additional kernel-based layer for regularized Gaussian functional connectivity estimation using CKA. Experimental results from binary and multiclass MI classification databases demonstrate the superiority of KREEGNet over baseline EEGNet and other state-of-the-art methods. The model's interpretability is further explored at individual and group levels, utilizing classification performance measures and pruned functional connectivities. In conclusion, the proposed methodologies in this thesis contribute to enhancing the reliability, interpretability, and classification performance of EEG-based MI paradigms in BCI systems. The SD-AR approach effectively tackles artifacts and enhances the quality of EEG data, particularly for subjects with poor motor skills. On the other hand, KREEGNet demonstrates remarkable performance improvements and provides spatial interpretability, making it a promising alternative for interpretable end-to-end EEG-BCI based on deep learning. These advancements pave the way for more effective and practical BCI applications in real-world scenarios (Texto tomado de la fuente) | eng |
dc.description.abstract | Las interfaces cerebro-computadora (BCIs) basadas en señales de electroencefalografía (EEG) han ganado una atención significativa en los últimos años como un enfoque práctico para la interacción humano-computadora. Los paradigmas de imaginación motora (MI), donde los usuarios simulan mentalmente tareas motoras sin movimiento físico, son ampliamente empleados en el desarrollo de BCI. Sin embargo, la construcción de sistemas BCI basados en señales de EEG enfrentan importantes desafíos debido al bajo índice de Señal a Ruido (SNR), la no estacionariedad y la no linealidad de las señales de EEG, así como la variabilidad inter e intrasujeto que dificultan la extracción de características discriminantes. Para abordar estos desafíos, esta tesis propone dos metodologías novedosas para la clasificación de MI basada en EEG. En primer lugar, se presenta un enfoque de preprocesamiento sujeto dependiente, denominado Eliminación de Artefactos sujeto dependiente (SD-AR, por sus siglas en inglés). Este enfoque emplea el Filtrado Laplaciano de Superficie y algoritmos de Análisis de Componentes Independientes para eliminar selectivamente artefactos de las señales de EEG basados en el rendimiento que cada uno de los sujetos obtiene durante la tarea de MI. Igualmente se investiga el uso de medidas de conectividad funcional basadas en potencia y fase para extraer patrones relevantes e interpretables e identificar sujetos con rendimiento subóptimo. La metodología SD-AR mejora significativamente el rendimiento de clasificación de MI en sujetos con habilidades motoras deficientes al mitigar efectivamente los artefactos de electrooculografía y conducción de volumen en EEG. En segundo lugar, se introduce una estrategia de regularización basada en kernels y la red neuronal EEGNet (KREEGNet). KREEGNet se construye a base del método de alineamiento de kernel centralizado y la conectividad funcional gaussiana, abordando el desafío de la variabilidad intrasujeto y la falta de interpretabilidad espacial en arquitecturas de aprendizaje profundo. Esta novedosa arquitectura (KREEGNet) incrusta una capa adicional a la arquitectura EEGNet que se construye a base del kernel gaussiano y se utiliza para estimar la conectividad funcional gaussiana. Posteriormente, la salida de esta capa se utiliza como entrada al regularizador basado en CKA . Los resultados experimentales en bases de datos públicas demuestran la superioridad de KREEGNet sobre EEGNet y otros métodos de vanguardia. Además, se lleva a cabo una interpretabilidad del modelo a nivel individual y grupal, utilizando métricas de rendimiendo para tareas de clasificación y conectividades funcionales relevantes. En conclusión, las metodologías propuestas en esta tesis contribuyen a mejorar la fiabilidad, interpretabilidad y rendimiento de los sistemas BCI basados en señales de EEG para tareas de MI. El enfoque SD-AR aborda efectivamente la eliminación de artefactos y mejora la calidad de las señales EEG, particularmente para sujetos con habilidades motoras deficientes. Por otro lado, KREEGNet demuestra mejoras notables en el rendimiento y proporciona interpretabilidad espacial, convirtiéndose en una alternativa prometedora para hacer interpretables sistemas BCI basados en modelos de aprendizaje profundo. | spa |
dc.description.curriculararea | Eléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Automatización Industrial | spa |
dc.format.extent | xxiv, 111 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86048 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Automatización Industrial | spa |
dc.relation.references | [Abhang et al., 2016] Abhang, P., Gawali, B., and Mehrotra, S. (2016). Introduction to EEG-and speech-based emotion recognition. Academic Press. | spa |
dc.relation.references | Abiri et al., 2019] Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., and Zhao, X. (2019). A comprehensive review of eeg-based brain–computer interface paradigms. Journal of neural engineering, 16(1):011001. | spa |
dc.relation.references | [Achanccaray and Hayashibe, 2020] Achanccaray, D. and Hayashibe, M. (2020). Decoding hand motor imagery tasks within the same limb from eeg signals using deep learning. IEEE Transactions on Medical Robotics and Bionics, 2(4):692–699 | spa |
dc.relation.references | [Altaheri et al., 2021] Altaheri, H., Muhammad, G., Alsulaiman, M., Amin, S. U., Altuwaijri, G. A., Abdul, W., Bencherif, M. A., and Faisal, M. (2021). Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review. Neural Computing and Applications, pages 1–42. | spa |
dc.relation.references | [Álvarez-Meza et al., 2017] Álvarez-Meza, A. M., Lee, J. A., Verleysen, M., and Castellanos-Dominguez, G. (2017). Kernel-based dimensionality reduction using renyi’s -entropy measures of similarity. Neurocomputing, 222:36–46. | spa |
dc.relation.references | [Ang et al., 2008] Ang, K., Chin, Z., Zhang, H., and Guan, C. (2008). Filter bank common spatial pattern (FBCSP) in brain-computer interface. In 2008 IEEE international joint conference on neural networks, pages 2390–2397. IEEE. | spa |
dc.relation.references | [Artoni et al., 2018] Artoni, F., Delorme, A., and Makeig, S. (2018). Applying dimension reduction to eeg data by principal component analysis reduces the quality of its subsequent independent component decomposition. NeuroImage, 175:176–187. | spa |
dc.relation.references | [Baig et al., 2017] Baig, M. Z., Aslam, N., Shum, H. P., and Zhang, L. (2017). Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery eeg. Expert Systems with Applications, 90:184–195. | spa |
dc.relation.references | [Bang and Lee, 2022] Bang, J.-S. and Lee, S.-W. (2022). Interpretable convolutional neural networks for subject-independent motor imagery classification. In 2022 10th International Winter Conference on Brain-Computer Interface (BCI), pages 1–5. IEEE. | spa |
dc.relation.references | [Bashashati et al., 2007] Bashashati, A., Fatourechi, M., Ward, R. K., and Birch, G. E. (2007). A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. Journal of Neural engineering, 4(2):R32. | spa |
dc.relation.references | [Benzy et al., 2020] Benzy, V., Vinod, A., Subasree, R., Alladi, S., and Raghavendra, K. (2020). Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(12):3051–3062. | spa |
dc.relation.references | [Berger and Zhou, 2014] Berger, V. W. and Zhou, Y. (2014). Kolmogorov–smirnov test: Overview. Wiley statsref: Statistics reference online | spa |
dc.relation.references | [Berton et al., 2015] Berton, L., Valverde-Rebaza, J., and de Andrade Lopes, A. (2015). Link prediction in graph construction for supervised and semi-supervised learning. In 2015 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE. | spa |
dc.relation.references | [Billinger et al., 2013] Billinger, M., Brunner, C., and Müller-Putz, G. R. (2013). Singletrial connectivity estimation for classification of motor imagery data. Journal of neural engineering, 10(4):046006. | spa |
dc.relation.references | [Brunner et al., 2008] Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G., and Competition, B. (2008). Graz data set a, provided by the institute for knowledge discovery (laboratory of brain–computer interfaces). Graz University of Technology. | spa |
dc.relation.references | [Cai et al., 2010] Cai, D., He, X., Han, J., and Huang, T. S. (2010). Graph regularized nonnegative matrix factorization for data representation. IEEE transactions on pattern analysis and machine intelligence, 33(8):1548–1560. | spa |
dc.relation.references | [Caicedo-Acosta et al., 2021] Caicedo-Acosta, J., Castaño, G. A., Acosta-Medina, C., Alvarez-Meza, A., and Castellanos-Dominguez, G. (2021). Deep neural regression prediction of motor imagery skills using eeg functional connectivity indicators. Sensors, 21(6):1932. | spa |
dc.relation.references | [Carvalhaes and De Barros, 2015] Carvalhaes, C. and De Barros, J. (2015). The surface laplacian technique in EEG: Theory and methods. International Journal of Psychophysiology, 97(3):174–188. | spa |
dc.relation.references | [Cho et al., 2017] Cho, H., Ahn, M., Ahn, S., et al. (2017). Supporting data for “eeg datasets for motor imagery brain computer interface.”. GigaScience Database. | spa |
dc.relation.references | [Cohen, 2014] Cohen, M. (2014). Analyzing neural time series data: theory and practice. MIT press. | spa |
dc.relation.references | [Cohen, 2015] Cohen, M. (2015). Effects of time lag and frequency matching on phase-based connectivity. Journal of neuroscience methods, 250:137–146. | spa |
dc.relation.references | [Collazos-Huertas et al., 2020] Collazos-Huertas, D., Caicedo-Acosta, J., Castaño- Duque, G. A., and Acosta-Medina, C. D. (2020). Enhanced multiple instance representation using time-frequency atoms in motor imagery classification. Frontiers in Neuroscience, 14:155. | spa |
dc.relation.references | [Collazos-Huertas et al., 2023] Collazos-Huertas, D. F., Álvarez-Meza, A. M., Cárdenas-Peña, D. A., Castaño-Duque, G. A., and Castellanos-Domínguez, C. G. (2023). Posthoc interpretability of neural responses by grouping subject motor imagery skills using cnn-based connectivity. Sensors, 23(5):2750. | spa |
dc.relation.references | [Collazos-Huertas et al., 2021a] Collazos-Huertas, D. F., Álvarez-Meza, A. M., and Castellanos-Dominguez, G. (2021a). Spatial interpretability of time-frequency relevance optimized in motor imagery discrimination using deep&wide networks. Biomedical Signal Processing and Control, 68:102626. | spa |
dc.relation.references | [Collazos-Huertas et al., 2021b] Collazos-Huertas, D. F., Velasquez-Martinez, L. F., Perez-Nastar, H. D., Alvarez-Meza, A. M., and Castellanos-Dominguez, G. (2021b). Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires. Sensors, 21(15):5105. | spa |
dc.relation.references | [Cona et al., 2009] Cona, F., Zavaglia, M., Astolfi, L., Babiloni, F., and Ursino, M. (2009). Changes in eeg power spectral density and cortical connectivity in healthy and tetraplegic patients during a motor imagery task. Computational intelligence and neuroscience, 2009. | spa |
dc.relation.references | [Cortes et al., 2012] Cortes, C., Mohri, M., and Rostamizadeh, A. (2012). Algorithms for learning kernels based on centered alignment. The Journal of Machine Learning Research, 13(1):795–828. | spa |
dc.relation.references | [Dagdevir and Tokmakci, 2021] Dagdevir, E. and Tokmakci, M. (2021). Optimization of preprocessing stage in EEG based BCI systems in terms of accuracy and timing cost. Biomedical Signal Processing and Control, 67:102548. | spa |
dc.relation.references | [Dai et al., 2020] Dai, G., Zhou, J., Huang, J., and Wang, N. (2020). Hs-cnn: a cnn with hybrid convolution scale for eeg motor imagery classification. Journal of neural engineering, 17(1):016025. | spa |
dc.relation.references | [Deng et al., 2021] Deng, X., Zhang, B., Yu, N., Liu, K., and Sun, K. (2021). Advanced tsgl-eegnet for motor imagery eeg-based brain-computer interfaces. IEEE Access, 9:25118–25130. | spa |
dc.relation.references | [dos Santos et al., 2020] dos Santos, E. M., Cassani, R., Falk, T. H., and Fraga, F. J. (2020). Improved motor imagery brain-computer interface performance via adaptive modulation filtering and two-stage classification. Biomedical Signal Processing and Control, 57:101812. | spa |
dc.relation.references | [Engmann and Cousineau, 2011] Engmann, S. and Cousineau, D. (2011). Comparing distributions: the two-sample anderson-darling test as an alternative to the kolmogorov-smirnoff test. Journal of applied quantitative methods, 6(3). | spa |
dc.relation.references | [Ganin et al., 2016] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., and Lempitsky, V. (2016). Domain-adversarial training of neural networks. The journal of machine learning research, 17(1):2096–2030. | spa |
dc.relation.references | [García-Murillo et al., 2021] García-Murillo, D., Alvarez-Meza, A., and Castellanos- Dominguez, G. (2021). Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks. Sensors, 21(8):2750. | spa |
dc.relation.references | [García-Murillo et al., 2023] García-Murillo, D. G., Álvarez-Meza, A. M., and Castellanos-Dominguez, C. G. (2023). Kcs-fcnet: Kernel cross-spectral functional connectivity network for eeg-based motor imagery classification. Diagnostics, 13(6):1122. | spa |
dc.relation.references | [Gaur et al., 2021] Gaur, P., McCreadie, K., Pachori, R. B., Wang, H., and Prasad, G. (2021). An automatic subject specific channel selection method for enhancing motor imagery classification in eeg-bci using correlation. Biomedical Signal Processing and Control, 68:102574. | spa |
dc.relation.references | [Géron, 2019] Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. ” O’Reilly Media, Inc.”. | spa |
dc.relation.references | [Géron, 2022] Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. ” O’Reilly Media, Inc.”. | spa |
dc.relation.references | [Ghosh et al., 2015] Ghosh, P., Mazumder, A., Bhattacharyya, S., Tibarewala, D. N., and Hayashibe, M. (2015). Functional connectivity analysis of motor imagery eeg signal for brain-computer interfacing application. In 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), pages 210–213. IEEE. | spa |
dc.relation.references | [Giraldo et al., 2014] Giraldo, L. G. S., Rao, M., and Principe, J. C. (2014). Measures of entropy from data using infinitely divisible kernels. IEEE Transactions on Information Theory, 61(1):535–548. | spa |
dc.relation.references | [Halme and Parkkonen, 2018] Halme, H.-L. and Parkkonen, L. (2018). Acrosssubject offline decoding of motor imagery from meg and eeg. Scientific reports, 8(1):10087. | spa |
dc.relation.references | [Hamedi et al., 2016] Hamedi, M., Salleh, S.-H., and Noor, A. M. (2016). Electroencephalographic motor imagery brain connectivity analysis for bci: a review. Neural computation, 28(6):999–1041. | spa |
dc.relation.references | [Han et al., 2019] Han, C.-H., Kim, Y.-W., Kim, D. Y., Kim, S. H., Nenadic, Z., and Im, C.-H. (2019). Electroencephalography-based endogenous brain–computer interface for online communication with a completely locked-in patient. Journal of neuroengineering and rehabilitation, 16:1–13. | spa |
dc.relation.references | [Hashem et al., 2023] Hashem, H. A., Abdulazeem, Y., Labib, L. M., Elhosseini, M. A., and Shehata, M. (2023). An integrated machine learning-based brain computer interface to classify diverse limb motor tasks: Explainable model. Sensors, 23(6):3171. | spa |
dc.relation.references | [He et al., 2022] He, Y., Lu, Z., Wang, J., and Shi, J. (2022). A channel attention based mlp-mixer network for motor imagery decoding with eeg. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1291–1295. IEEE. | spa |
dc.relation.references | [Hooi et al., 2015] Hooi, L. S., Nisar, H., and Voon, Y. V. (2015). Tracking of eeg activity using topographic maps. In 2015 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pages 287–291. IEEE. | spa |
dc.relation.references | [Hsu, 2013] Hsu, W. (2013). Wavelet-coherence features for motor imagery EEG analysis posterior to EOG noise elimination. Int J Innov Comput Inform Control, 9:465–475. | spa |
dc.relation.references | [Hsu, 2014] Hsu, W.-Y. (2014). Improving classification accuracy of motor imagery eeg using genetic feature selection. Clinical EEG and neuroscience, 45(3):163–168. | spa |
dc.relation.references | [Hu et al., 2023] Hu, H., Yue, K., Guo, M., Lu, K., and Liu, Y. (2023). Subject separation network for reducing calibration time of mi-based bci. Brain Sciences, 13(2):221. | spa |
dc.relation.references | [Huang et al., 2019] Huang, Y.-C., Chang, J.-R., Chen, L.-F., and Chen, Y.-S. (2019). Deep neural network with attention mechanism for classification of motor imagery eeg. In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pages 1130–1133. IEEE. | spa |
dc.relation.references | [Hyvärinen and Oja, 2000] Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks, 13(4-5):411–430. | spa |
dc.relation.references | [Ince et al., 2007] Ince, N. F., Tewfik, A. H., and Arica, S. (2007). Extraction subjectspecific motor imagery time–frequency patterns for single trial eeg classification. Computers in biology and medicine, 37(4):499–508. | spa |
dc.relation.references | [Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pages 448–456. pmlr. | spa |
dc.relation.references | [Jafarifarmand and Badamchizadeh, 2020] Jafarifarmand, A. and Badamchizadeh, M. (2020). Real-time multiclass motor imagery brain-computer interface by modified common spatial patterns and adaptive neuro-fuzzy classifier. Biomedical Signal Processing and Control, 57:101749. | spa |
dc.relation.references | [Jafarifarmand et al., 2017] Jafarifarmand, A., Badamchizadeh, M., Khanmohammadi, S., Nazari, M., and Tazehkand, B. (2017). A new selfregulated neuro-fuzzy framework for classification of EEG signals in motor imagery BCI. IEEE transactions on fuzzy systems, 26(3):1485–1497. | spa |
dc.relation.references | [Jeong et al., 2021] Jeong, J., Choi, J., Kim, K., Lee, S., Kim, D., and Kim, H. (2021). Multi-domain convolutional neural networks for lower-limb motor imagery using dry vs. wet electrodes. Sensors, 21(19):6672. | spa |
dc.relation.references | [Kanna and Vasuki, 2021] Kanna, R. K. and Vasuki, R. (2021). Classification of brain signals using classifiers for automated wheelchair application. International Journal of Modern Agriculture, 10(2):2426–2431. | spa |
dc.relation.references | [Kaur and Kaur, 2015] Kaur, J. and Kaur, A. (2015). A review on analysis of eeg signals. In 2015 International Conference on Advances in Computer Engineering and Applications, pages 957–960. IEEE. | spa |
dc.relation.references | [Kayser and Tenke, 2015] Kayser, J. and Tenke, C. E. (2015). Issues and considerations for using the scalp surface laplacian in eeg/erp research: A tutorial review. International Journal of Psychophysiology, 97(3):189–209. | spa |
dc.relation.references | [Kevric and Subasi, 2017] Kevric, J. and Subasi, A. (2017). Comparison of signal decomposition methods in classification of eeg signals for motor-imagery bci system. Biomedical Signal Processing and Control, 31:398–406. | spa |
dc.relation.references | [Khan et al., 2020] Khan, M. A., Das, R., Iversen, H. K., and Puthusserypady, S. (2020). Review on motor imagery based bci systems for upper limb post-stroke neurorehabilitation: From designing to application. Computers in Biology and Medicine, 123:103843. | spa |
dc.relation.references | [Ko et al., 2021] Ko, W., Jeon, E., Jeong, S., and Suk, H. (2021). Multi-scale neural network for EEG representation learning in BCI. IEEE Computational Intelligence Magazine, 16(2):31–45. | spa |
dc.relation.references | [Ko et al., 2018] Ko, W., Yoon, J., Kang, E., Jun, E., Choi, J., and Suk, H. (2018). Deep recurrent spatio-temporal neural network for motor imagery based BCI. In 2018 6th International Conference on Brain-Computer Interface (BCI), pages 1–3. IEEE. | spa |
dc.relation.references | [Kong et al., 2021] Kong, Q., Wu, Y., Yuan, C., and Wang, Y. (2021). Ct-cad: Contextaware transformers for end-to-end chest abnormality detection on x-rays. In 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 1385–1388. IEEE. | spa |
dc.relation.references | [Kotte and Dabbakuti, 2020] Kotte, S. and Dabbakuti, J. K. (2020). Methods for removal of artifacts from eeg signal: A review. In Journal of Physics: Conference Series, volume 1706, page 012093. IOP Publishing. | spa |
dc.relation.references | [Krusienski et al., 2006] Krusienski, D. J., McFarland, D. J., and Wolpaw, J. R. (2006). An evaluation of autoregressive spectral estimation model order for brain-computer interface applications. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1323–1326. IEEE. | spa |
dc.relation.references | [Kumar and Jayanthi, 2020] Kumar, M. and Jayanthi, V. (2020). Blind source separation using kurtosis, negentropy and maximum likelihood functions. International Journal of Speech Technology, 23(1):13–21. | spa |
dc.relation.references | [Kumar et al., 2017] Kumar, S., Sharma, A., and Tsunoda, T. (2017). An improved discriminative filter bank selection approach for motor imagery eeg signal classification using mutual information. BMC bioinformatics, 18:125–137. (page 3) | spa |
dc.relation.references | [Kumar et al., 2021] Kumar, S., Sharma, R., and Sharma, A. (2021). OPTICAL+: a frequency-based deep learning scheme for recognizing brain wave signals. PeerJ Computer Science, 7:e375. | spa |
dc.relation.references | [Kwon et al., 2019] Kwon, M., Han, S., Kim, K., and Jun, S. C. (2019). Superresolution for improving eeg spatial resolution using deep convolutional neural network—feasibility study. Sensors, 19(23):5317. | spa |
dc.relation.references | [Lahane et al., 2019] Lahane, P., Jagtap, J., Inamdar, A., Karne, N., and Dev, R. (2019). A review of recent trends in eeg based brain-computer interface. In 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), pages 1–6. IEEE. | spa |
dc.relation.references | [Lance et al., 2012] Lance, B. J., Kerick, S. E., Ries, A. J., Oie, K. S., and McDowell, K. (2012). Brain–computer interface technologies in the coming decades. Proceedings of the IEEE, 100(Special Centennial Issue):1585–1599. | spa |
dc.relation.references | [Lawhern et al., 2018] Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., and Lance, B. J. (2018). Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces. Journal of neural engineering, 15(5):056013. | spa |
dc.relation.references | [Li et al., 2022] Li, H., Liu, M., Yu, X., Zhu, J., Wang, C., Chen, X., Feng, C., Leng, J., Zhang, Y., and Xu, F. (2022). Coherence based graph convolution network for motor imagery-induced eeg after spinal cord injury. Frontiers in Neuroscience, 16. | spa |
dc.relation.references | [Li and Ruan, 2021] Li, M.-a. and Ruan, Z.-w. (2021). A novel decoding method for motor imagery tasks with 4d data representation and 3d convolutional neural networks. Journal of Neural Engineering, 18(4):046029. | spa |
dc.relation.references | [Liu et al., 2017] Liu, A., Chen, K., Liu, Q., Ai, Q., Xie, Y., and Chen, A. (2017). Feature selection for motor imagery eeg classification based on firefly algorithm and learning automata. Sensors, 17(11):2576. | spa |
dc.relation.references | [Liu et al., 2022] Liu, G., Tian, L., and Zhou, W. (2022). Multiscale time-frequency method for multiclass motor imagery brain computer interface. Computers in Biology and Medicine, 143:105299 | spa |
dc.relation.references | [LK Jaya Shree, 2021] LK Jaya Shree, B. (2021). Automatic detection of eeg as biomarker using deep learning: A review. Annals of the Romanian Society for Cell Biology, pages 6502–6511. | spa |
dc.relation.references | [Lotte et al., 2007] Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review of classification algorithms for eeg-based brain–computer interfaces. Journal of neural engineering, 4(2):R1. | spa |
dc.relation.references | [Ma et al., 2022] Ma, Y., Bian, D., Xu, D., Zou, W., Wang, J., and Hu, N. (2022). A spatio-temporal interactive attention network for motor imagery eeg decoding. In 2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pages 1–6. IEEE. | spa |
dc.relation.references | [Marks and Isaac, 1995] Marks, D. F. and Isaac, A. R. (1995). Topographical distribution of eeg activity accompanying visual and motor imagery in vivid and non-vivid imagers. British Journal of Psychology, 86(2):271–282. | spa |
dc.relation.references | [Marquand et al., 2014] Marquand, A. F., Brammer, M., Williams, S. C., and Doyle, O. M. (2014). Bayesian multi-task learning for decoding multi-subject neuroimaging data. NeuroImage, 92:298–311. | spa |
dc.relation.references | [McFarland et al., 2006] McFarland, D. J., Anderson, C. W., Muller, K.-R., Schlogl, A., and Krusienski, D. J. (2006). Bci meeting 2005-workshop on bci signal processing: feature extraction and translation. IEEE transactions on neural systems and rehabilitation engineering, 14(2):135–138. | spa |
dc.relation.references | [Meng et al., 2022] Meng, C., Trinh, L., Xu, N., Enouen, J., and Liu, Y. (2022). Interpretability and fairness evaluation of deep learning models on mimic-iv dataset. Scientific Reports, 12(1):7166. | spa |
dc.relation.references | [Miao et al., 2020] Miao, M., Hu, W., Yin, H., and Zhang, K. (2020). Spatial-frequency feature learning and classification of motor imagery eeg based on deep convolution neural network. Computational and mathematical methods in medicine, 2020 | spa |
dc.relation.references | [Mishuhina and Jiang, 2018] Mishuhina, V. and Jiang, X. (2018). Feature weighting and regularization of common spatial patterns in eeg-based motor imagery bci. IEEE Signal Processing Letters, 25(6):783–787. | spa |
dc.relation.references | [Mridha et al., 2021] Mridha, M., Das, S. C., Kabir, M. M., Lima, A. A., Islam, M., Watanobe, Y., et al. (2021). Brain-computer interface: Advancement and challenges. Sensors, 21(17):5746. | spa |
dc.relation.references | [Müller et al., 2004] Müller, K.-R., Krauledat, M., Dornhege, G., Curio, G., and Blankertz, B. (2004). Machine learning techniques for brain-computer interfaces. Biomed. Tech, 49(1):11–22. | spa |
dc.relation.references | [Musallam et al., 2021] Musallam, Y. K., AlFassam, N. I., Muhammad, G., Amin, S. U., Alsulaiman, M., Abdul, W., Altaheri, H., Bencherif, M. A., and Algabri, M. (2021). Electroencephalography-based motor imagery classification using temporal convolutional network fusion. Biomedical Signal Processing and Control, 69:102826. | spa |
dc.relation.references | [Naeem et al., 2006] Naeem, M., Brunner, C., Leeb, R., Graimann, B., and Pfurtscheller, G. (2006). Seperability of four-class motor imagery data using independent components analysis. Journal of neural engineering, 3(3):208. | spa |
dc.relation.references | [Oikonomou et al., 2017] Oikonomou, V. P., Georgiadis, K., Liaros, G., Nikolopoulos, S., and Kompatsiaris, I. (2017). A comparison study on eeg signal processing techniques using motor imagery eeg data. In 2017 IEEE 30th international symposium on computer-based medical systems (CBMS), pages 781–786. IEEE. | spa |
dc.relation.references | [Padfield et al., 2019] Padfield, N., Zabalza, J., Zhao, H., Masero, V., and Ren, J. (2019). Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges. Sensors, 19(6):1423. | spa |
dc.relation.references | [Park et al., 2021] Park, S., Ha, J., Kim, D.-H., and Kim, L. (2021). Improving motor imagery-based brain-computer interface performance based on sensory stimulation training: an approach focused on poorly performing users. Frontiers in Neuroscience, 15:732545. | spa |
dc.relation.references | [Pérez-Velasco et al., 2022] Pérez-Velasco, S., Santamaria-Vazquez, E., Martinez- Cagigal, V., Marcos-Martinez, D., and Hornero, R. (2022). Eegsym: Overcoming inter-subject variability in motor imagery based bcis with deep learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30:1766–1775. | spa |
dc.relation.references | [Phang and Ko, 2020] Phang, C.-R. and Ko, L.-W. (2020). Global cortical network distinguishes motor imagination of the left and right foot. IEEE Access, 8:103734–103745. | spa |
dc.relation.references | [Phunruangsakao et al., 2022] Phunruangsakao, C., Achanccaray, D., and Hayashibe, M. (2022). Deep adversarial domain adaptation with few-shot learning for motorimagery brain-computer interface. IEEE Access, 10:57255–57265. | spa |
dc.relation.references | [Poldrack, 2011] Poldrack, R. A. (2011). Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding. Neuron, 72(5):692–697. | spa |
dc.relation.references | [Rajabioun, 2020] Rajabioun, M. (2020). Motor imagery classification by active source dynamics. Biomedical Signal Processing and Control, 61:102028. | spa |
dc.relation.references | [Rashid et al., 2020] Rashid, M., Sulaiman, N., PP Abdul Majeed, A., Musa, R. M., Bari, B. S., Khatun, S., et al. (2020). Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review. Frontiers in neurorobotics, 14:25. | spa |
dc.relation.references | [Rathee et al., 2017] Rathee, D., Raza, H., Prasad, G., and Cecotti, H. (2017). Current source density estimation enhances the performance of motor-imagery-related brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(12):2461–2471. | spa |
dc.relation.references | [Repov, 2010] Repov, G. (2010). Dealing with noise in eeg recording and data analysis spoprijemanje s umom pri zajemanju in analizi eeg signala. In Informatica medica slovenica, number 15, page 18. | spa |
dc.relation.references | [Rodrigues et al., 2019] Rodrigues, P., Stefano Filho, C., Attux, R., Castellano, G., and Soriano, D. (2019). Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces. Medical & biological engineering & computing, 57(8):1709–1725. | spa |
dc.relation.references | [Rosário et al., 2015] Rosário, R., Cardoso, P., Muñoz, M., Montoya, P., and Miranda, J. (2015). Motif-synchronization: A new method for analysis of dynamic brain networks with EEG. Physica A: Statistical Mechanics and its Applications, 439:7–19. | spa |
dc.relation.references | [Roy et al., 2020] Roy, S., Chowdhury, A., McCreadie, K., and Prasad, G. (2020). Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces. Frontiers in Neuroscience, 14:918. | spa |
dc.relation.references | [Roy et al., 2019] Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., and Faubert, J. (2019). Deep learning-based electroencephalography analysis: a systematic review. Journal of neural engineering, 16(5):051001. | spa |
dc.relation.references | [Ruiz-Gómez et al., 2019] Ruiz-Gómez, S. J., Hornero, R., Poza, J., Maturana- Candelas, A., Pinto, N., and Gómez, C. (2019). Computational modeling of the effects of eeg volume conduction on functional connectivity metrics. application to alzheimer’s disease continuum. Journal of neural engineering, 16(6):066019. | spa |
dc.relation.references | [Sadiq et al., 2019] Sadiq, M. T., Yu, X., Yuan, Z., Fan, Z., Rehman, A. U., Li, G., and Xiao, G. (2019). Motor imagery eeg signals classification based on mode amplitude and frequency components using empirical wavelet transform. IEEE access, 7:127678–127692. | spa |
dc.relation.references | [Saha and Baumert, 2020] Saha, S. and Baumert, M. (2020). Intra-and inter-subject variability in eeg-based sensorimotor brain computer interface: a review. Frontiers in computational neuroscience, 13:87. | spa |
dc.relation.references | [Sahu et al., 2021] Sahu, M., Mohdiwale, S., Khoriya, N., Upadhyay, Y., Verma, A., and Singh, S. (2021). Eeg artifact removal techniques: a comparative study. In International Conference on Innovative Computing and Communications: Proceedings of ICICC 2020, Volume 2, pages 395–403. Springer | spa |
dc.relation.references | [Sakkaff and Nanayakkara, 2008] Sakkaff, Z. and Nanayakkara, A. (2008). Removal of ocular artifacts from eeg signals in brain computer interface. In Proceedings of the Technical Sessions, volume 24, pages 51–57. | spa |
dc.relation.references | [Salami et al., 2022] Salami, A., Andreu-Perez, J., and Gillmeister, H. (2022). Eegitnet: An explainable inception temporal convolutional network for motor imagery classification. IEEE Access, 10:36672–36685. | spa |
dc.relation.references | [Samek et al., 2017] Samek, W., Wiegand, T., and Müller, K.-R. (2017). Explainable artificial intelligence: Understanding, visualizing and interpreting deep learning models. arXiv preprint arXiv:1708.08296. | spa |
dc.relation.references | [Sannelli et al., 2019] Sannelli, C., Vidaurre, C., Müller, K.-R., and Blankertz, B. (2019). A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity. PLoS One, 14(1):e0207351. | spa |
dc.relation.references | [Schirrmeister et al., 2017] Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., and Ball, T. (2017). Deep learning with convolutional neural networks for eeg decoding and visualization. Human brain mapping, 38(11):5391–5420. | spa |
dc.relation.references | [Seghier and Price, 2018] Seghier, M. L. and Price, C. J. (2018). Interpreting and utilising intersubject variability in brain function. Trends in cognitive sciences, 22(6):517–530. | spa |
dc.relation.references | [Shamsi et al., 2021] Shamsi, F., Haddad, A., and Najafizadeh, L. (2021). Early classification of motor tasks using dynamic functional connectivity graphs from EEG. Journal of neural engineering, 18(1):016015 | spa |
dc.relation.references | [Shoka et al., 2019] Shoka, A., Dessouky, M., El-Sherbeny, A., and El-Sayed, A. (2019). Literature review on eeg preprocessing, feature extraction, and classifications techniques. Menoufia J. Electron. Eng. Res, 28(1):292–299. | spa |
dc.relation.references | [Singh et al., 2021] Singh, A., Hussain, A. A., Lal, S., and Guesgen, H. W. (2021). A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors, 21(6):2173. | spa |
dc.relation.references | [Somers et al., 2018] Somers, B., Francart, T., and Bertrand, A. (2018). A generic eeg artifact removal algorithm based on the multi-channel wiener filter. Journal of neural engineering, 15(3):036007. | spa |
dc.relation.references | [Song et al., 2021] Song, Y., Jia, X., Yang, L., and Xie, L. (2021). Transformer-based spatial-temporal feature learning for eeg decoding. arXiv preprint arXiv:2106.11170. | spa |
dc.relation.references | [Song et al., 2019] Song, Y., Wang, D., Yue, K., Zheng, N., and Shen, Z.-J. M. (2019). Eeg-based motor imagery classification with deep multi-task learning. In 2019 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE. | spa |
dc.relation.references | [Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958 | spa |
dc.relation.references | [Steenbergen et al., 2020] Steenbergen, B., Krajenbrink, H., Lust, J., and Wilson, P. (2020). Motor imagery and action observation for predictive control in developmental coordination disorder. Developmental Medicine & Child Neurology, 62(12):1352–1355. | spa |
dc.relation.references | [Stefano-Filho et al., 2017] Stefano-Filho, C., Attux, R., and Castellano, G. (2017). EEG sensorimotor rhythms’ variation and functional connectivity measures during motor imagery: linear relations and classification approaches. PeerJ, 5:e3983. | spa |
dc.relation.references | [Stergiadis et al., 2022] Stergiadis, C., Kostaridou, V.-D., and Klados, M. A. (2022). Which bss method separates better the eeg signals? a comparison of five different algorithms. Biomedical Signal Processing and Control, 72:103292. | spa |
dc.relation.references | [Sturm et al., 2016] Sturm, I., Lapuschkin, S., Samek, W., and Müller, K.-R. (2016). Interpretable deep neural networks for single-trial eeg classification. Journal of neuroscience methods, 274:141–145. | spa |
dc.relation.references | [Subirats et al., 2018] Subirats, L., Allali, G., Briansoulet, M., Salle, J., and Perrochon, A. (2018). Age and gender differences in motor imagery. Journal of the neurological sciences, 391:114–117. | spa |
dc.relation.references | [Sun et al., 2022] Sun, B., Liu, Z., Wu, Z., Mu, C., and Li, T. (2022). Graph convolution neural network based end-to-end channel selection and classification for motor imagery brain-computer interfaces. IEEE Transactions on Industrial Informatics. | spa |
dc.relation.references | [Sun et al., 2021] Sun, J., Xie, J., and Zhou, H. (2021). Eeg classification with transformer-based models. In 2021 ieee 3rd global conference on life sciences and technologies (lifetech), pages 92–93. IEEE. | spa |
dc.relation.references | [Tabar and Halici, 2016] Tabar, Y. R. and Halici, U. (2016). A novel deep learning approach for classification of eeg motor imagery signals. Journal of neural engineering, 14(1):016003. | spa |
dc.relation.references | [Taran and Bajaj, 2019] Taran, S. and Bajaj, V. (2019). Motor imagery tasks-based eeg signals classification using tunable-q wavelet transform. Neural Computing and Applications, 31:6925–6932. | spa |
dc.relation.references | [Tayeb et al., 2019] Tayeb, Z., Fedjaev, J., Ghaboosi, N., Richter, C., Everding, L., Qu, X., Wu, Y., Cheng, G., and Conradt, J. (2019). Validating deep neural networks for online decoding of motor imagery movements from eeg signals. Sensors, 19(1):210. | spa |
dc.relation.references | [Teng et al., 2022] Teng, Q., Liu, Z., Song, Y., Han, K., and Lu, Y. (2022). A survey on the interpretability of deep learning in medical diagnosis. Multimedia Systems, pages 1–21. | spa |
dc.relation.references | [Tobón-Henao et al., 2022] Tobón-Henao, M., Álvarez-Meza, A., and Castellanos- Domínguez, G. (2022). Subject-dependent artifact removal for enhancing motor imagery classifier performance under poor skills. Sensors, 22(15):5771. | spa |
dc.relation.references | [Uribe et al., 2019] Uribe, L. F. S., Stefano Filho, C. A., de Oliveira, V. A., da Silva Costa, T. B., Rodrigues, P. G., Soriano, D. C., Boccato, L., Castellano, G., and Attux, R. (2019). A correntropy-based classifier for motor imagery brain-computer interfaces. Biomedical Physics & Engineering Express, 5(6):065026. | spa |
dc.relation.references | [Valencia-Marin et al., 2021] Valencia-Marin, C., Pulgarin-Giraldo, J., Velasquez- Martinez, L., Alvarez-Meza, A., and Castellanos-Dominguez, G. (2021). An enhanced joint hilbert embedding-based metric to support mocap data classification with preserved interpretability. Sensors, 21(13):4443. | spa |
dc.relation.references | [Van Erp et al., 2012] Van Erp, J., Lotte, F., and Tangermann, M. (2012). Braincomputer interfaces: beyond medical applications. Computer, 45(4):26–34. | spa |
dc.relation.references | [Velasquez-Martinez et al., 2020a] Velasquez-Martinez, L., Caicedo-Acosta, J., and Castellanos-Dominguez, G. (2020a). Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns. Entropy, 22(6):703. | spa |
dc.relation.references | [Velasquez-Martinez et al., 2018] Velasquez-Martinez, L. F., Zapata-Castaño, F., Cárdenas-Peña, D., and Castellanos-Dominguez, G. (2018). Detecting eeg dynamic changes using supervised temporal patterns. In Progress in Artificial Intelligence and Pattern Recognition: 6th International Workshop, IWAIPR 2018, Havana, Cuba, September 24–26, 2018, Proceedings 6, pages 351–358. Springer. | spa |
dc.relation.references | [Velasquez-Martinez et al., 2020b] Velasquez-Martinez, L. F., Zapata-Castano, F., and Castellanos-Dominguez, G. (2020b). Dynamic modeling of common brain neural activity in motor imagery tasks. Frontiers in Neuroscience, 14:714. | spa |
dc.relation.references | [Venkatachalam et al., 2020] Venkatachalam, K., Devipriya, A., Maniraj, J., Sivaram, M., Ambikapathy, A., and Iraj, S. A. (2020). A novel method of motor imagery classification using eeg signal. Artificial intelligence in medicine, 103:101787 | spa |
dc.relation.references | [Vidaurre and Blankertz, 2010] Vidaurre, C. and Blankertz, B. (2010). Towards a cure for bci illiteracy. Brain topography, 23:194–198. | spa |
dc.relation.references | [Vrbik, 2020] Vrbik, J. (2020). Deriving cdf of kolmogorov-smirnov test statistic. Applied Mathematics, 11(3):227–246. | spa |
dc.relation.references | [Wang et al., 2015a] Wang, G., Teng, C., Li, K., Zhang, Z., and Yan, X. (2015a). The removal of eog artifacts from eeg signals using independent component analysis and multivariate empirical mode decomposition. IEEE journal of biomedical and health informatics, 20(5):1301–1308. | spa |
dc.relation.references | [Wang et al., 2017] Wang, K., Wang, Z., Guo, Y., He, F., Qi, H., Xu, M., and Ming, D. (2017). A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Journal of neuroengineering and rehabilitation, 14(1):1–10. | spa |
dc.relation.references | [Wang et al., 2015b] Wang, T., Zhao, D., and Tian, S. (2015b). An overview of kernel alignment and its applications. Artificial Intelligence Review, 43:179–192. | spa |
dc.relation.references | [Wang et al., 2014] Wang, Y., Li, X., Li, H., Shao, C., Ying, L., and Wu, S. (2014). Feature extraction of motor imagery electroencephalography based on timefrequency- space domains. Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering= Shengwu yixue gongchengxue zazhi, 31(5):955–961. | spa |
dc.relation.references | [Wei and Lin, 2020] Wei, M. and Lin, F. (2020). A novel multi-dimensional features fusion algorithm for the EEG signal recognition of brain’s sensorimotor region activated tasks. International Journal of Intelligent Computing and Cybernetics | spa |
dc.relation.references | [Wilson et al., 2019] Wilson, R., Mullinger, K. J., Francis, S. T., and Mayhew, S. D. (2019). The relationship between negative bold responses and ers and erd of alpha/beta oscillations in visual and motor cortex. Neuroimage, 199:635–650. | spa |
dc.relation.references | [Xu et al., 2018] Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., Xu, G., Li, H., and Zeng, H. (2018). Wavelet transform time-frequency image and convolutional network-based motor imagery eeg classification. IEEE Access, 7:6084–6093. | spa |
dc.relation.references | [Xu, 2021] Xu, K. (2021). Silicon electro-optic micro-modulator fabricated in standard cmos technology as components for all silicon monolithic integrated optoelectronic systems. Journal of Micromechanics and Microengineering, 31(5):054001. | spa |
dc.relation.references | [Xu et al., 2020] Xu, M., Yao, J., Zhang, Z., Li, R., Yang, B., Li, C., Li, J., and Zhang, J. (2020). Learning eeg topographical representation for classification via convolutional neural network. Pattern Recognition, 105:107390. | spa |
dc.relation.references | [Yang et al., 2016] Yang, B., Li, H., Wang, Q., and Zhang, Y. (2016). Subject-based feature extraction by using fisher wpd-csp in brain–computer interfaces. Computer methods and programs in biomedicine, 129:21–28. | spa |
dc.relation.references | [Yang et al., 2021] Yang, L., Song, Y., Ma, K., and Xie, L. (2021). Motor imagery eeg decoding method based on a discriminative feature learning strategy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29:368–379. | spa |
dc.relation.references | [Yang et al., 2022] Yang, S., Li, M., and Wang, J. (2022). Fusing semg and eeg to increase the robustness of hand motion recognition using functional connectivity and gcn. IEEE Sensors Journal, 22(24):24309–24319. | spa |
dc.relation.references | [Yu et al., 2014] Yu, X., Chum, P., and Sim, K.-B. (2014). Analysis the effect of pca for feature reduction in non-stationary eeg based motor imagery of bci system. Optik, 125(3):1498–1502. | spa |
dc.relation.references | [Zhang et al., 2021] Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021). Dive into deep learning. arXiv preprint arXiv:2106.11342 | spa |
dc.relation.references | [Zhang et al., 2020] Zhang, R., Li, F., Zhang, T., Yao, D., and Xu, P. (2020). Subject inefficiency phenomenon of motor imagery brain-computer interface: Influence factors and potential solutions. Brain Science Advances, 6(3):224–241. | spa |
dc.relation.references | [Zhang et al., 2018] Zhang, R., Xiao, X., Liu, Z., Jiang, W., Li, J., Cao, Y., Ren, J., Jiang, D., and Cui, L. (2018). A new motor imagery eeg classification method fb-trcsp+ rf based on csp and random forest. IEEE Access, 6:44944–44950. | spa |
dc.relation.references | [Zhang et al., 2017] Zhang, Y., Wang, Y., Jin, J., and Wang, X. (2017). Sparse bayesian learning for obtaining sparsity of eeg frequency bands based feature vectors in motor imagery classification. International journal of neural systems, 27(02):1650032. | spa |
dc.relation.references | [Zhang et al., 2019] Zhang, Z., Duan, F., Sole-Casals, J., Dinares-Ferran, J., Cichocki, A., Yang, Z., and Sun, Z. (2019). A novel deep learning approach with data augmentation to classify motor imagery signals. IEEE Access, 7:15945–15954. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 600 - Tecnología (Ciencias aplicadas) | spa |
dc.subject.proposal | BCI | eng |
dc.subject.proposal | MI | eng |
dc.subject.proposal | Brain-computer interfaces | eng |
dc.subject.proposal | Motor Imagery | eng |
dc.subject.proposal | EEG | eng |
dc.subject.proposal | Multi-channel time series | eng |
dc.subject.proposal | Electroencephalogram | eng |
dc.subject.proposal | FC | eng |
dc.subject.proposal | Functional connectivities | eng |
dc.subject.proposal | Deep learning | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | DL | eng |
dc.subject.proposal | ML | eng |
dc.subject.proposal | Conectividades functionales | spa |
dc.subject.proposal | Imaginación motora | spa |
dc.subject.proposal | Interfaces cerebro-computadora | spa |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Aprendizaje profundo | spa |
dc.subject.proposal | Electroencefalograma | spa |
dc.subject.unesco | Automatización | spa |
dc.subject.unesco | Automation | eng |
dc.title | A machine learning framework to support multi-channel time series classification in BCI systems with preserved interpretability | eng |
dc.title.translated | Metodología de aprendizaje automático para la clasificación interpretable de series de tiempo multicanal en sistemas BCI. | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053869498.2023.pdf
- Tamaño:
- 3.01 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Automatización Industrial
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: