Caracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistor

dc.contributor.advisorDussan Cuenca, Anderson
dc.contributor.authorTerán Ramírez, Cristian Leonardo
dc.contributor.researchgroupMateriales Nanoestructurados y Sus Aplicacionesspa
dc.date.accessioned2022-08-25T22:23:09Z
dc.date.available2022-08-25T22:23:09Z
dc.date.issued2022-08
dc.descriptionfotografías a color, ilustraciones, tablasspa
dc.description.abstractEn este trabajo se prepararon muestras de pelı́culas delgadas de óxido de zinc dopadas con cobalto (ZnO:Co) por medio del método de pulverización catódica (DC magnetron co-sputtering), variando los parámetros de sı́ntesis como la temperatura del sustrato, tiempo de depósito y potencia de los blancos. Con el objetivo de identificar los efectos sobre las propiedades estructurales, la morfologı́a y las caracterı́sticas eléctricas, se realizaron medidas de difracción de rayos X (XRD), de microscopı́a electrónica de barrido (SEM), de microscopı́a de fuerza atómica (AFM) y medidas de tensión - corriente (curvas IV). Las muestras sintetizadas se sometieron a un proceso de recocido posterior a una temperatura de 473K durante un tiempo de 2 horas. Se encontró la presencia de la fase Wurtzita a partir de las medidas de XRD, observando una correlación entre el tamaño de los cristalitos, la potencia de los blancos y la temperatura de depósito. Adicionalmente, se identificó que la forma y el tamaño de los granos dependen de la potencia de los blancos, notando granos con forma de escamas en las muestras de ZnO y conglomeraciones de granos en las muestras con cobalto. Por otra parte, se observó la curva tipo alas de mariposa en las medidas eléctricas tomadas, evidenciando el comportamiento caracterı́stico de conmutación resistiva de los memristores. Finalmente, a partir de las mediciones magnéticas complementarias, se observa que las muestras tienen un comportamiento paramagnético a pesar de la inherente caracterı́stica magnéticas de los granos de cobalto.spa
dc.description.abstractIn this work, samples of cobalt-doped zinc oxide thin films (ZnO:Co) were prepared by means of DC magnetron co-sputtering method, varying the synthesis parameters such as substrate temperature, deposition time and target power. In order to identify the effects on the structural, morphology and electrical characteristics, X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and current - voltage (IV) measurements were performed. The synthesized samples were subjected to a subsequent annealing process at a temperature of 473K for a 2 hours. The presence of the Wurtzite phase was found from the XRD measurements, observing a correlation between the size of the crystallites, the power of the targets and the deposition temperature. Additionally, it was identified that the shape and size of the grains depend on the target power, noting flake-shaped grains in the ZnO samples and grain conglomerations in the cobalt samples. On the other hand, the butterfly-wing type curve was observed in the electrical measurements taken, evidencing the characteristic behavior of resistive switching of memristors. Finally, from the complementary magnetic measurements, it was observed that the samples have a paramagnetic behavior despite the inherent magnetic characteristics of the cobalt grains.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extentxvii, 82 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82126
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesJ. S. Meena, S. M. Sze, U. Chand, and T. Y. Tseng, “Overview of emerging nonvolatile memory technologies,” Nanoscale Research Letters, vol. 9, no. 1, pp. 1–33, 2014.spa
dc.relation.referencesT. M. Coughlin, Digital Storage in Consumer Electronics. Springer, second edi ed., 2018.spa
dc.relation.referencesA. C. Samli, International ConsumerBehavior in the 21st CenturyImpact on Marketing Strategy Development. Springer, 2013.spa
dc.relation.referencesS. Hong, O. Auciello, and D. Wouters, Emerging Non-Volatile Memories, vol. 9781489975. Springer, 2014.spa
dc.relation.referencesP. Lacaze, Non-volatile memories. London New York: ISTE Ltd John Wiley and Sons, Inc, 2014.spa
dc.relation.referencesD. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, “Emerging memories: Resistive switching mechanisms and current status,” Reports on Progress in Physics, vol. 75, no. 7, 2012.spa
dc.relation.referencesA. Chen, “A review of emerging non-volatile memory (NVM) technologies and applications,” Solid-State Electronics, vol. 125, pp. 25–38, 2016.spa
dc.relation.referencesR. Tetzlaff, Memristors and memristive systems, vol. 9781461490. Springer, 2014.spa
dc.relation.referencesD. Ielmini, “Resistive switching memories based on metal oxides: Mechanisms, reliability and scaling,” Semiconductor Science and Technology, vol. 31, no. 6, 2016.spa
dc.relation.referencesL. Chua, “Memristor - The missing circuit element,” IEEE Transactions on Circuit Theory, vol. C, no. 5, pp. 507–519, 1971.spa
dc.relation.referencesL. Chua, “Memristive devices and systems,” Proceedings of the IEEE, vol. 64, no. 2, 1976.spa
dc.relation.referencesT. C. Chang, K. C. Chang, T. M. Tsai, T. J. Chu, and S. M. Sze, “Resistance random access memory,” Materials Today, vol. 19, no. 5, pp. 254–264, 2016.spa
dc.relation.referencesF. Pan, C. Chen, Z.-s. Wang, Y.-c. Yang, J. Yang, and F. Zeng, “Nonvolatile resistive switching memories-characteristics, mechanisms and challenges,” Progress in Natural Science: Materials International, vol. 20, pp. 1–15, 2010.spa
dc.relation.referencesB. Mohammad, M. A. Jaoude, V. Kumar, D. M. Al Homouz, H. A. Nahla, M. AlQutayri, and N. Christoforou, “State of the art of metal oxide memristor devices,” Nanotechnology Reviews, vol. 5, no. 3, pp. 311–329, 2016.spa
dc.relation.referencesH. P. Quiroz Gaitán, Preparación y estudio de las propiedades estructurales, opticas y morfológicas de nanotubos de TiO2 para su aplicación en sensores ópticos. PhD thesis, Universidad Nacional de Colombia, 2014.spa
dc.relation.referencesH. P. Quiroz Gaitán, Estudio de las propiedades fı́sicas del TiO 2 : Co como un semiconductor magnético diluido para aplicaciones en espintrónica. PhD thesis, Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesS. B. Torres Avila, Preparación y Evaluación de Nanoestructuras de TiO 2 Para Aplicaciones Tecnológicas en Memorias No Volátiles (NVM). PhD thesis, Universidad Nacional de Colombia, Bogotá, 2019.spa
dc.relation.referencesF. Gul and H. Efeoglu, “Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor,” Superlattices and Microstructures, vol. 101, pp. 172–179, 2017.spa
dc.relation.referencesW. Shen, P. Huang, M. Fan, R. Han, Z. Zhou, B. Gao, H. Wu, H. Qian, L. Liu, X. Liu, X. Zhang, and J. Kang, “Stateful Logic Operations in One-Transistor-One-Resistor Resistive Random Access Memory Array,” IEEE Electron Device Letters, vol. 40, no. 9, pp. 1–1, 2019.spa
dc.relation.referencesF. Gul and H. Efeoglu, “ZnO and ZnO1-x based thin film memristors: The effects of oxygen deficiency and thickness in resistive switching behavior,” Ceramics International, vol. 43, no. 14, pp. 10770–10775, 2017.spa
dc.relation.referencesS. Paul, P. G. Harris, C. Pal, A. K. Sharma, and A. K. Ray, “Low cost zinc oxide for memristors with high On-Off ratios,” Materials Letters, vol. 130, pp. 40–42, 2014.spa
dc.relation.referencesB. J. La Meres, Introduction to logic circuits and logic design with VHDL. Springer, 2016.spa
dc.relation.referencesW.-c. Huang, P.-y. Wu, Y.-f. Tan, Y.-l. Xu, and Y.-c. Zhang, “Overcoming Limited Resistance in 1T1R RRAM Caused by Pinch-Off Voltage During Reset Process,” IEEE Transactions on Electron Devices, vol. PP, pp. 1–4, 2019.spa
dc.relation.referencesE. J. Merced-Grafals, N. Dávila, N. Ge, R. S. Williams, and J. P. Strachan, “Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications,” Nanotechnology, vol. 27, no. 36, 2016.spa
dc.relation.referencesI. Vourkas and G. C. Sirakoulis, “Emerging memristor-based logic circuit design approaches: A review,” IEEE Circuits and Systems Magazine, vol. 16, no. 3, pp. 15–30, 2016.spa
dc.relation.referencesS. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, “Memristor-based material implication (IMPLY) logic: Design principles and methodologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2014.spa
dc.relation.referencesG. Papandroulidakis, I. Vourkas, N. Vasileiadis, and G. C. Sirakoulis, “Boolean logic operations and computing circuits based on memristors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 12, pp. 972–976, 2014.spa
dc.relation.referencesY. Zhang, Y. Shen, X. Wang, and L. Cao, “A novel design for memristor-based logic switch and crossbar circuits,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 5, pp. 1402–1411, 2015.spa
dc.relation.referencesP.-e. Gaillardon, L. Amar, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and G. D. Micheli, “The Programmable Logic-in-Memory ( PLiM ) Computer,” pp. 427–432, 2016.spa
dc.relation.referencesZ. R. Wang, Y. T. Su, Y. Li, Y. X. Zhou, T. J. Chu, K. C. Chang, T. C. Chang, T. M. Tsai, S. M. Sze, and X. S. Miao, “Functionally complete Boolean logic in 1T1R resistive random access memory,” IEEE Electron Device Letters, vol. 38, no. 2, pp. 179–182, 2017.spa
dc.relation.referencesK. M. Kim and R. S. Williams, “A Family of Stateful Memristor Gates for Complete Cascading Logic,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. PP, pp. 1–8, 2019.spa
dc.relation.referencesE. G. Friedman, Grids in Very Large Scale Integration Systems. PhD thesis, University of Rochester, 2019.spa
dc.relation.referencesY. Yu, F. Yang, S. Mao, S. Zhu, Y. Jia, L. Yuan, M. Salmen, and B. Sun, “Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device,” Chemical Physics Letters, vol. 706, pp. 477–482, 2018.spa
dc.relation.referencesW. K. Hsieh, K. T. Lam, and S. J. Chang, “Characteristics of tantalum-doped silicon oxide-based resistive random access memory,” Materials Science in Semiconductor Processing, vol. 27, no. 1, pp. 293–296, 2014.spa
dc.relation.referencesY. Abbas, A. S. Sokolov, Y. R. Jeon, S. Kim, B. Ku, and C. Choi, “Structural engineering of tantalum oxide based memristor and its electrical switching responses using rapid thermal annealing,” Journal of Alloys and Compounds, vol. 759, pp. 44–51, 2018.spa
dc.relation.referencesH. L. Chee, T. N. Kumar, and H. A. Almurib, “Electrical model of multi-level bipolar Ta2O5/TaOx Bi-layered ReRAM,” Microelectronics Journal, vol. 93, no. March, p. 104616, 2019.spa
dc.relation.referencesH. Abunahla, B. Mohammad, M. A. Jaoude, M. Al-qutayri, A. Mathematics, A. Dhabi, and U. A. Emirates, “Novel Hafnium Oxide Memristor Device switching behaviour and size effect,” pp. 7–10, 2017.spa
dc.relation.referencesH. Nili, S. Walia, S. Balendhran, D. B. Strukov, M. Bhaskaran, and S. Sriram, “Nanoscale resistive switching in amorphous perovskite oxide ( a- SrTiO3) memristors,” Advanced Functional Materials, vol. 24, no. 43, pp. 6741–6750, 2014.spa
dc.relation.referencesI. Banerjee, P. Harris, A. Salimian, and A. K. Ray, “Graphene oxide thin films for resistive memory switches,” IET Circuits, Devices and Systems, vol. 9, no. 6, pp. 428–433, 2015.spa
dc.relation.referencesM. Lorenz, M. S. Ramachandra Rao, T. Venkatesan, E. Fortunato, P. Barquinha, R. Branquinho, D. Salgueiro, R. Martins, E. Carlos, A. Liu, F. K. Shan, M. Grundmann, H. Boschker, J. Mukherjee, M. Priyadarshini, N. Dasgupta, D. J. Rogers, F. H. Teherani, E. V. Sandana, P. Bove, K. Rietwyk, A. Zaban, A. Veziridis, A. Weidenkaff, M. Muralidhar, M. Murakami, S. Abel, J. Fompeyrine, J. Zuniga-Perez, R. Ramesh, N. A. Spaldin, S. Ostanin, V. Borisov, I. Mertig, V. Lazenka, G. Srinivasan, W. Prellier, M. Uchida, M. Kawasaki, R. Pentcheva, P. Gegenwart, F. Miletto Granozio, J. Fontcuberta, and N. Pryds, “The 2016 oxide electronic materials and oxide interfaces roadmap,” Journal of Physics D: Applied Physics, vol. 49, no. 43, 2016.spa
dc.relation.referencesV. L. Patil, A. A. Patil, S. V. Patil, N. A. Khairnar, N. L. Tarwal, S. A. Vanalakar, R. N. Bulakhe, I. In, P. S. Patil, and T. D. Dongale, “Bipolar resistive switching, synaptic plasticity and non-volatile memory effects in the solution-processed zinc oxide thin film,” Materials Science in Semiconductor Processing, vol. 106, no. April 2019, p. 104769, 2020.spa
dc.relation.referencesK. J. Gan, P. T. Liu, S. J. Lin, D. B. Ruan, T. C. Chien, Y. C. Chiu, and S. M. Sze, “Bipolar resistive switching characteristics of tungsten-doped indium–zinc oxide conductive-bridging random access memory,” Vacuum, vol. 166, no. April, pp. 226–230, 2019.spa
dc.relation.referencesG. Hassan, J. Bae, M. U. Khan, and S. Ali, “Resistive switching device based on water and zinc oxide heterojunction for soft memory applications,” Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 246, no. April, pp. 1–6, 2019.spa
dc.relation.referencesS. Ren, W. Dong, H. Tang, L. Tang, Z. Li, Q. Sun, H. Yang, Z. Yang, and J. Zhao, “High-efficiency magnetic modulation in Ti/ZnO/Pt resistive random-access memory devices using amorphous zinc oxide film,” Applied Surface Science, vol. 488, no. March, pp. 92–97, 2019.spa
dc.relation.referencesW. Wang, R. Dong, X. Yan, B. Yang, and X. An, “Memristive behavior of ZnO/Au film investigated by a TiN CAFM Tip and its model based on the experiments,” IEEE Transactions on Nanotechnology, vol. 11, no. 6, pp. 1135–1139, 2012.spa
dc.relation.referencesT. Movlarooy, “Transition metals doped and encapsulated ZnO nanotubes: Good materials for the spintronic applications,” Journal of Magnetism and Magnetic Materials, vol. 441, pp. 139–148, 2017.spa
dc.relation.referencesS. S. Ghosh, C. Choubey, and A. Sil, “Photocatalytic response of Fe, Co, Ni doped ZnO based diluted magnetic semiconductors for spintronics applications,” Superlattices and Microstructures, vol. 125, no. July 2018, pp. 271–280, 2019.spa
dc.relation.referencesR. Siddheswaran, R. Medlı́n, C. E. Jeyanthi, S. G. Raj, and R. V. Mangalaraja, “Structural, morphological, optical and magnetic properties of RF sputtered Co doped ZnO diluted magnetic semiconductor for spintronic applications,” Applied Physics A, vol. 125, no. 9, pp. 1–9, 2019.spa
dc.relation.referencesL. Chen, S. Li, Y. Cui, Z. Xiong, H. Luo, and Y. Gao, “Manipulating the electronic and magnetic properties of ZnO monolayer by noble metal adsorption: A first-principles calculations,” Applied Surface Science, vol. 479, no. February, pp. 440–448, 2019.spa
dc.relation.referencesS. U. Awan, Z. Mehmood, S. Hussain, S. A. Shah, N. Ahmad, M. Rafique, M. Aftab, and T. A. Abbas, “Correlation between structural, electrical, dielectric and magnetic properties of semiconducting Co doped and (Co, Li) co-doped ZnO nanoparticles for spintronics applications,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 103, no. April, pp. 110–121, 2018.spa
dc.relation.referencesY. Babacan, A. Yesil, and F. Gul, “The Fabrication and MOSFET-Only Circuit Implementation of Semiconductor Memristor,” IEEE Transactions on Electron Devices, vol. 65, no. 4, pp. 1625–1632, 2018.spa
dc.relation.referencesD. Sharma and R. Jha, “Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals,” Ceramics International, vol. 43, no. 11, pp. 8488–8496, 2017.spa
dc.relation.referencesB. U. Haq, R. Ahmed, A. Shaari, A. Afaq, B. A. Tahir, and R. Khenata, “First-principles investigations of Mn doped zinc-blende ZnO based magnetic semiconductors: Materials for spintronic applications,” Materials Science in Semiconductor Processing, vol. 29, pp. 256–261, 2015.spa
dc.relation.referencesS. S. Nkosi, I. Kortidis, D. E. Motaung, G. F. Malgas, J. Keartland, E. Sideras-Haddad, A. Forbes, B. W. Mwakikunga, S. Sinha-Ray, and G. Kiriakidis, “Orientation-dependent low field magnetic anomalies and roomerature spintronic material - Mn doped ZnO films by aerosol spray pyrolysis,” Journal of Alloys and Compounds, vol. 579, pp. 484–494, 2013.spa
dc.relation.referencesH. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co. KGaA, 1st editio ed., 2009.spa
dc.relation.referencesM. A. Borysiewicz, “ZnO as a Functional Material, a Review,” Crystals, vol. 9, no. 10, p. 505, 2019.spa
dc.relation.referencesE. Flores-Garcı́a, P. González-Garcı́a, J. González-Hernández, and R. Ramı́rez-Bon, “Statistical Analysis of Sputter Parameters on the Properties of ZnO Thin Films Deposited by RF Sputtering,” Journal of Electronic Materials, vol. 47, no. 9, pp. 5537–5547, 2018.spa
dc.relation.referencesB. Angadi, R. Kumar, D. H. Park, J. W. Choi, and W. K. Choi, “Photoluminescence studies on MBE grown Co-doped ZnO thin films fabricated through ion implantation and swift heavy ion irradiation,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol. 272, pp. 305–308, 2012.spa
dc.relation.referencesF. J. Liu, Z. F. Hu, J. Sun, Z. J. Li, H. Q. Huang, J. W. Zhao, X. Q. Zhang, and Y. S. Wang, “Ultraviolet photoresistors based on ZnO thin films grown by P-MBE,” Solid-State Electronics, vol. 68, pp. 90–92, 2012.spa
dc.relation.referencesX. Yang, J. Zhang, Z. Bi, Y. He, Q. Xu, W. Hongbo, W. Zhang, and X. Hou, “Glancing-incidence X-ray analysis of ZnO thin films and ZnO/ZnMgO heterostructures grown by laser-MBE,” Journal of Crystal Growth, vol. 284, no. 1-2, pp. 123–128, 2005.spa
dc.relation.referencesS. Mourad, J. El Ghoul, A. Khettou, B. Mari, N. Abdel All, G. Khouqeer, L. El Mir, and K. Khirouni, “Effect of oxygen annealing treatment on structural, optical and electrical properties of In doped ZnO thin films prepared by PLD technique,” Physica B: Condensed Matter, vol. 626, no. November 2021, p. 413577, 2022.spa
dc.relation.referencesE. H. Hasabeldaim, O. M. Ntwaeaborwa, R. E. Kroon, E. Coetsee, and H. C. Swart, “Luminescence properties of Eu doped ZnO PLD thin films: The effect of oxygen partial pressure,” Superlattices and Microstructures, vol. 139, no. October 2019, p. 106432, 2020.spa
dc.relation.referencesC. Triolo, E. Fazio, F. Neri, A. M. Mezzasalma, S. Trusso, and S. Patanè, “Correlation between structural and electrical properties of PLD prepared ZnO thin films used as a photodetector material,” Applied Surface Science, vol. 359, pp. 266–271, 2015.spa
dc.relation.referencesJ. Mittra, G. J. Abraham, M. Kesaria, S. Bahl, A. Gupta, S. M. Shivaprasad, C. S. Viswanadham, U. D. Kulkarni, and G. K. Dey, “Role of substrate temperature in the pulsed laser deposition of zirconium oxide thin film,” Materials Science Forum, vol. 710, no. January, pp. 757–761, 2012.spa
dc.relation.referencesT. M. Onn, R. Küngas, P. Fornasiero, K. Huang, and R. J. Gorte, “Atomic layer deposition on porous materials: Problems with conventional approaches to catalyst and fuel cell electrode preparation,” Inorganics, vol. 6, no. 1, 2018.spa
dc.relation.referencesH. Zaka, B. Parditka, Z. Erdélyi, H. E. Atyia, P. Sharma, and S. S. Fouad, “Investigation of dispersion parameters, dielectric properties and opto–electrical parameters of ZnO thin film grown by ALD,” Optik, vol. 203, no. September 2019, p. 163933, 2020.spa
dc.relation.referencesS. I. Boyadjiev, V. Georgieva, R. Yordanov, Z. Raicheva, and I. M. Szilágyi, “Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors,” Applied Surface Science, vol. 387, pp. 1230–1235, 2016.spa
dc.relation.referencesM. E. Labzowskaya, I. K. Akopyan, B. V. Novikov, A. E. Serov, N. G. Filosofov, L. L. Basov, V. E. Drozd, and A. A. Lisachenko, Exciton photoluminescence of ZnO thin films grown by ALD-technique, vol. 76. Elsevier B.V., 2015.spa
dc.relation.referencesK. Seshan, Handbook of thin-film deposition processes and techniques. William Andrew Publiching, 2002.spa
dc.relation.referencesS. Bose, S. Mandal, A. K. Barua, and S. Mukhopadhyay, “Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells,” Journal of Materials Science and Technology, vol. 55, pp. 136–143, 2020.spa
dc.relation.referencesC. Abed, S. Fernández, and H. Elhouichet, “Studies of optical properties of ZnO:MgO thin films fabricated by sputtering from home-made stable oversize targets,” Optik, vol. 216, no. March, p. 164934, 2020.spa
dc.relation.referencesD. Mendil, F. Challali, T. Touam, A. Chelouche, A. H. Souici, S. Ouhenia, and D. Djouadi, “Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering,” Journal of Luminescence, vol. 215, no. May, p. 116631, 2019.spa
dc.relation.referencesS. Fareed, A. Jamil, N. Tiwari, and M. A. Rafiq, “Influence of Cr doping on Schottky barrier height and visible light detection of ZnO thin films deposited by magnetron sputtering,” Micro and Nano Engineering, vol. 2, pp. 48–52, 2019.spa
dc.relation.referencesY. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.spa
dc.relation.referencesB. D. Cullity, Elements of X-Ray Diffraction. Addison-Wesley, 1956.spa
dc.relation.referencesR. A. Young, The Rietveld Method. New York: Oxford University Press, 2002.spa
dc.relation.referencesC. C. Koch, I. A. OVID’KO, S. Seal, and S. Veprek, Structural Nanocrystalline Materials. Cambridge University Press, 2007.spa
dc.relation.referencesP. J. Goodhew, J. Humphreys, and R. Beanland, Electron Microscopy and Analysis. Taylor & Francis, third edit ed., 2001.spa
dc.relation.referencesN. Seña, Caracterizacion Electrica Y Estudio De Las Propiedades De Transporte Del Compuesto Cu2Znsnse4 Para Ser Usado Como Capa Absorbente En Celdas Solares. PhD thesis, 2013.spa
dc.relation.referencesJ. M. Albella Martı́nn, Láminas delgadas y recubrimientos: preparación, propiedades y aplicaciones. Madrid: Consejo Superior de Investigaciones Cientı́ficas, 2003. OCLC: 1097843669.spa
dc.relation.referencesJ. Tauc, Amorphous and Liquid Semiconductors. Springer Science & Business Media, Dec. 2012. Google-Books-ID: YKnfBwAAQBAJ.spa
dc.relation.referencesJ. Tauc, R. Grigorovic, and A. Vanc, “Optical Properties and Electronic Structure of Amorphous Germanium,” Physica Status Solidi, vol. 15, pp. 627–637, 1966.spa
dc.relation.referencesS. R. Bhattacharyya, R. N. Gayen, R. Paul, and A. K. Pal, “Determination of optical constants of thin films from transmittance trace,” Thin Solid Films, vol. 517, no. 18, pp. 5530–5536, 2009.spa
dc.relation.referencesS. Sadewasser and T. Glatzel, Kelvin Probe Force Microscopy. Springer, 2012.spa
dc.relation.referencesR. Ghomri, M. N. Shaikh, M. I. Ahmed, M. Bououdina, and M. Ghers, “(Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue,” Applied Physics A: Materials Science and Processing, vol. 122, no. 10, pp. 1–9, 2016.spa
dc.relation.referencesG. A. Ali, M. Emam-Ismail, M. El-Hagary, E. R. Shaaban, S. H. Moustafa, M. I. Amer, and H. Shaban, “Optical and microstructural characterization of nanocrystalline Cu doped ZnO diluted magnetic semiconductor thin film for optoelectronic applications,” Optical Materials, vol. 119, no. May, p. 111312, 2021.spa
dc.relation.referencesE. Gürbüz, R. Aydin, and B. Şahin, “A study of the influences of transition metal (Mn,Ni) co-doping on the morphological, structural and optical properties of nanostructured CdO films,” Journal of Materials Science: Materials in Electronics, vol. 29, no. 3, pp. 1823–1831, 2018.spa
dc.relation.referencesH. P. Quiroz, E. F. Galı́ndez, A. Dussan, A. Cardona-Rodriguez, and J. G. Ramirez, “Super-exchange interaction model in DMOs: Co doped TiO2 thin films,” Journal of Materials Science, vol. 56, no. 1, pp. 581–591, 2021.spa
dc.relation.referencesA. F. Mahecha Gómez, “Evaluación de la resistencia a la corrosión a altas temperaturas y desgaste adhesivo de recubrimientos nanoestructurados de la aleación Zirconia ( ZrO2 ) -Sı́lice ( SiO 2 ) depositados con la técnica Sputtering reactivo,” p. 158, 2017.spa
dc.relation.referencesW. Yang, J. Liu, Z. Guan, Z. Liu, B. Chen, L. Zhao, Y. Li, X. Cao, X. He, C. Zhang, Q. Zeng, and Y. Fu, “Morphology, electrical and optical properties of magnetron sputtered porous ZnO thin films on Si(100) and Si(111) substrates,” Ceramics International, vol. 46, no. 5, pp. 6605–6611, 2020.spa
dc.relation.referencesE. Roduner, “Metal–Support Interaction for Metal Clusters in Oxides,” pp. 520–526, 2018.spa
dc.relation.referencesH. P. Quiroz, J. E. Serrano, and A. Dussan, “Magnetic behavior and conductive wall switching in TiO2 and TiO2:Co self-organized nanotube arrays,” Journal of Alloys and Compounds, vol. 825, p. 154006, 2020.spa
dc.relation.referencesA. O. M. Alzahrani, M. S. Abdel-wahab, M. Alayash, and M. S. Aida, “Metals and ITO Contact Nature on ZnO and NiO Thin Films,” Brazilian Journal of Physics, vol. 51, no. 4, pp. 1159–1165, 2021.spa
dc.relation.referencesJ. Zhao, J. Y. Dong, X. Zhao, and W. Chen, “Role of oxygen vacancy arrangement on the formation of a conductive filament in a Zno thin film,” Chinese Physics Letters, vol. 31, no. 5, 2014.spa
dc.relation.referencesP. Makula, M. Pacia, and W. Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra,” Journal of Physical Chemistry Letters, vol. 9, no. 23, pp. 6814–6817, 2018.spa
dc.relation.referencesI. Loyola Poul Raj, S. Valanarasu, R. S. Rimal Isaac, M. Ramudu, Y. Bitla, V. Ganesh, and I. S. Yahia, “The role of silver doping in tuning the optical absorption, energy gap, photoluminescence properties of nio thin films for uv photosensor applications,” Optik, vol. 254, p. 168634, Mar 2022.spa
dc.relation.referencesA. Herklotz, S. F. Rus, and T. Z. Ward, “Continuously controlled optical band gap in oxide semiconductor thin films,” Nano Letters, vol. 16, no. 3, pp. 1782–1786, 2016. Cited By :33.spa
dc.relation.referencesR. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E: Sci. Instrum., vol. 16, 1983.spa
dc.relation.referencesK.-L. Ching, G. Li, Y.-L. Ho, and H.-S. Kwok, “The role of polarity and surface energy in the growth mechanism of ZnO from nanorods to nanotubes,” CrystEngComm, vol. 18, pp. 779–786, Jan. 2016.spa
dc.relation.referencesF. Woote, Optical properties of solids. Academic Press Inc, 1972.spa
dc.relation.referencesE. Mammadov, N. Naghavi, Z. Jehl, G. Renou, T. Tiwald, N. Mamedov, D. Lincot, and J. F. Guillemoles, “Dielectric function of zinc oxide thin films in a broad spectral range,” Thin Solid Films, vol. 571, no. P3, pp. 593–596, 2014.spa
dc.relation.referencesE. Agocs, B. Fodor, B. Pollakowski, B. Beckhoff, A. Nutsch, M. Jank, and P. Petrik, “Approaches to calculate the dielectric function of ZnO around the band gap,” Thin Solid Films, vol. 571, no. P3, pp. 684–688, 2014.spa
dc.relation.referencesJ. A. Calderón, H. P. Quiroz, and A. Dussan, “Optical and structural properties of GaSb-doped Mn based diluted magnetic semiconductor thin films grown via DC magnetron sputtering,” Advanced Materials Letters, vol. 8, pp. 650–655, May 2017.spa
dc.relation.referencesY. E. Kesim, E. Battal, and A. K. Okyay, “Plasmonic materials based on ZnO films and their potential for developing broadband middle-infrared absorbers,” AIP Advances, vol. 4, no. 7, 2014.spa
dc.relation.referencesW. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, “Valence-band ordering and magneto-optic exciton fine structure in ZnO,” Physical Review B, vol. 65, p. 075207, Jan. 2002.spa
dc.relation.referencesE. Guziewicz, M. Godlewski, L. Wachnicki, T. A. Krajewski, G. Luka, S. Gieraltowska, R. Jakiela, A. Stonert, W. Lisowski, M. Krawczyk, J. W. Sobczak, and A. Jablonski, “ALD grown zinc oxide with controllable electrical properties,” Semiconductor Science and Technology, vol. 27, p. 074011, July 2012.spa
dc.relation.referencesH. Ennaceri, A. Taleb, M. Boujnah, A. Khaldoun, J. Ebothé, A. Ennaoui, and A. Benyoussef, “Theoretical and experimental studies of Al-doped ZnO thin films: optical and structural properties,” Journal of Computational Electronics, vol. 20, no. 5, pp. 1948–1958, 2021.spa
dc.relation.referencesE. Abdeltwab and F. A. Taher, “Polar and nonpolar self-assembled Co-doped ZnO thin films: Structural and magnetic study,” Thin Solid Films, vol. 636, pp. 200–206, 2017.spa
dc.relation.referencesG. Sanon, R. Rup, and A. Mansingh, “Band-gap narrowing and band structure in degenerate tin oxide (sno2) films,” Physical Review B, vol. 44, no. 11, pp. 5672–5680, 1991. Cited By :203.spa
dc.relation.referencesK. . Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Physical Review B, vol. 24, no. 4, pp. 1971–1986, 1981.spa
dc.relation.referencesS. C. Jain, J. M. McGregor, and D. J. Roulston, “Band-gap narrowing in novel iii-v semiconductors,” Journal of Applied Physics, vol. 68, no. 7, pp. 3747–3749, 1990.spa
dc.relation.referencesJ. A. Calderón Cómbita, “Estudio de las propiedades ópticas y eléctricas del compuesto ga1-xmnxsb usado para aplicaciones en espintrónica,” Sep 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.lembPelículas delgadas
dc.subject.lembThin films
dc.subject.lembNanoestructuras
dc.subject.lembNanostructures
dc.subject.proposalMemorias no volátilesspa
dc.subject.proposalDC Magnetron Sputteringeng
dc.subject.proposalConmutación resistivaspa
dc.subject.proposalMemristorspa
dc.subject.proposalNon-volatile memorieseng
dc.subject.proposalResistive Switchingeng
dc.titleCaracterización y estudio de dispositivos basados en nanoestructuras de ZnO:Co para su aplicación en memorias no volátiles usando una configuración tipo transistorspa
dc.title.translatedCharacterization and study of devices based on ZnO:Co nanostructures for application in non-volatile memories using a transistor-type configurationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023892658.2022.pdf
Tamaño:
13.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Fïsica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: