Flujo óptimo de potencia extendido a sistemas renovables controlables y cargas controlables

dc.contributor.advisorRivera Rodriguez, Sergio Raúl
dc.contributor.authorReyes Moreno, Elkin David
dc.contributor.researchgroupEMC-UNspa
dc.date.accessioned2021-09-22T21:40:20Z
dc.date.available2021-09-22T21:40:20Z
dc.date.issued2021
dc.description.abstractEn un esfuerzo por cuantificar y dar manejo a las incetidumbres dentro de los sistemas de potencia se han definido los costos de incertidumbre y se han calculado distintas funciones de costo de incertidumbre para diferentes tipos de generadores y vehículos eléctricos. Esta tesis busca emplear la formulación de los costos de incertidumbre para solucionar el problema del flujo de potencia óptimo extendido a sistemas renovables controlables y cargas controlables. Para lo anterior, se calcularon las primeras y segundas derivadas de las funciones de costo de incertidumbre y se incluyeron en Matpower, así, se encontró una solución analítica del flujo de potencia óptimo. Para corroborar la solución analítica se resolvió el flujo de potencia óptimo por medio de métodos metaheurísticos. Finalmente se encontró que los métodos analíticos tienen un desempeño mucho más alto que los métodos metaheurísticos, especialmente a medida que crece el número de variables de decisión en un problema de optimización. (Texto tomado de la fuente)spa
dc.description.abstractIn order to quantify and handle the uncertainties present in power systems, uncertainty costs have been defined and several uncertainty cost functions have been calculated for different types of generators and electric vehicles. This thesis attempts to use the formulation of the uncertainty costs functions in order to solve the optimal power flow extended to renewable controllable systems and controllable loads. In order to do so, the first and second derivatives of uncertainty cost functions were calculated and included in Matpotuer, thus, an analytical solution was found for the optimal power flow. In order to validate the analytic solutions, optimal power flow was solved through metaheuristic methods. Finally, it was found that analytical methods have better performance than metaheuristic methods, especially when variable numbers become bigger in an optimization problem.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Eléctricaspa
dc.description.researchareaSistemas de potenciaspa
dc.format.extentxxi, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80267
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesR. Montanari, "Criteria for the economic planning of a low power hydroelectric plant,"Renewable Energy, vol. 28, no. 13, pp. 2129 - 2145, 2003.spa
dc.relation.referencesP. Cabus, "River flow prediction through rainfall-runoff modelling with a probabilitydistributed model (pdm) in flanders, belgium," Agricultural Water Management, vol. 95,no. 7, pp. 859 - 868, 2008.spa
dc.relation.referencesN. Mujere, "Flood frequency analysis using the gumbel distribution," vol. 3, pp. 2774-2778, 7 2011.spa
dc.relation.referencesN. G. Mankiw, Principios de economía (6a. ed.). Cengage Learning, 2012.spa
dc.relation.referencesA. Soroudi and T. Amraee, "Decision making under uncertainty in energy systems: State of the art," Renewable and Sustainable Energy Reviews, vol. 28, pp. 376 - 384,2013.spa
dc.relation.referencesA. R. Jordehi, "How to deal with uncertainties in electric power systems? a review,"Renewable and Sustainable Energy Reviews, vol. 96, pp. 145 - 155, 2018.spa
dc.relation.referencesM. Alam, "Particle swarm optimization: Algorithm and its codes in matlab," 03 2016.spa
dc.relation.referencesY. Song, D. Hill, and T. Liu, "Small-disturbance angle stability analysis of microgrids: A graph theory viewpoint," 09 2015.spa
dc.relation.referencesC. Zhai, H. Zhang, G. Xiao, and T. Pan, "A model predictive approach to protect power systems against cascading blackouts," International Journal of Electrical Power AND Energy Systems, 05 2019.spa
dc.relation.referencesJ. Arevalo, F. Santos, and S. Rivera, "Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: mathematical expected value and verification by monte carlo simulation," International Journal of Power and Energy Conversion, vol. 10, no. 2, pp. 171-207, 2019.spa
dc.relation.referencesF. Molina, S. Perez, and S. Rivera, "Formulación de funciones de costo de incertidumbre en pequeñas centrales hidroeléctricas dentro de una microgrid," Revista Ingenierias USBMed, vol. 8, no. 1, pp. 29-36, 2017.spa
dc.relation.referencesJ. Arévalo, F. Santos, and S. Rivera, "Application of analytical uncertainty costs of solar, wind and electric vehicles in optimal power dispatch," Ingenieria, vol. 22, pp. 324- 346, Sep. 2017.spa
dc.relation.referencesUPME, "Solicitudes de conexión de proyectos de generación,"spa
dc.relation.referencesJ. Hetzer, D. C. Yu, and K. Bhattarai, "An economic dispatch model incorporating wind power," IEEE Transactions on Energy Conversion, vol. 23, pp. 603-611, June 2008.spa
dc.relation.referencesJ. Bernal, J. Neira, and S. Rivera, "Mathematical uncertainty cost functions for controllable photo-voltaic generators considering uniform distributions," WSEAS Transactions on Mathematics, vol. 18, pp. 137 - 142, 2019.spa
dc.relation.referencesS. Vargas, D. Rodriguez, and S. Rivera, "Mathematical formulation and numerical validation of uncertainty costs for controllable loads," Revista Internacional de Métodos Numéricos para Calculo y Diseño en Ingeniería, vol. 35, 2019.spa
dc.relation.referencesC. Martinez and S. Rivera, "Modelación cuadrática de costos de incertidumbre para generación renovable y su aplicación en el despacho económico," Matua, Revista de Matemática de la Universidad del Atlántico, vol. 5, no. 1, 2018.spa
dc.relation.referencesP. Li, Z. Zhou, and R. Shi, "Probabilistic optimal operation management of microgrid using point estimate method and improved bat algorithm," in 2014 IEEE PES General Meeting | Conference Exposition, pp. 1-5, July 2014.spa
dc.relation.referencesJ. Zhao, F. Wen, Z. Y. Dong, Y. Xue, and K. P. Wong, "Optimal dispatch of electric vehicles and wind power using enhanced particle swarm optimization," IEEE Transactions on Industrial Informatics, vol. 8, pp. 889-899, Nov 2012.spa
dc.relation.referencesS. Rivera and J. Torres, "Optimal energy dispatch in multiple periods of time considering the variability and uncertainty of generation from renewable sources/despacho de energía óptimo en múltiples periodos de tiempo considerando la variabilidad y la incertidumbre de la generación a partir de fuentes renovables," Revista Prospectiva, vol. 16, no. 2, pp. 75-81, 2018.spa
dc.relation.referencesW. Guzman, S. Osorio, and S. Rivera, "Modelado de cargas controlables en el despacho de sistemas con fuentes renovables y vehículos eléctricos," Ingeniería y Región, no. 17, pp. 49-60, 2017.spa
dc.relation.referencesA. Peña, D. Romero, and S. Rivera, "Generation and demand scheduling in a microgrid with battery-based storage systems, hybrid renewable systems and electric vehicle aggregators," WSEAS TRANSACTIONS on POWER SYSTEMS, vol. 10, pp. 8-23, 2019.spa
dc.relation.referencesJ. Torres Riveros and S. Rivera, "Despacho de energía óptimo en múltiples periodos considerando la incertidumbre de la generación a partir de fuentes renovables en un modelo reducido del sistema de potencia colombiano," AVANCES: Investigacion en Ingenieria, vol. 15, pp. 48-58, 12 2018.spa
dc.relation.referencesUPME, "Plan de expansión de generación-transmisión 2017-2031," , Unidad de planeación minero energética, 2017.spa
dc.relation.referencesE. Mojica-Nava, S. Rivera, and N. Quijano, "Distributed dispatch control in microgrids with network losses," in 2016 IEEE Conference on Control Applications (CCA), pp. 285-290, Sep. 2016.spa
dc.relation.referencesE. Mojica-Nava, S. Rivera, and N. Quijano, "Game-theoretic dispatch control in microgrids considering network losses and renewable distributed energy resources integration," IET Generation, Transmission Distribution, vol. 11, no. 6, pp. 1583-1590, 2017.spa
dc.relation.referencesXM, "El mercado de energía mayorista y su administración," Feb. 2007.spa
dc.relation.referencesCREG, "Resolución no. 112 "por la cual se reglamentan los aspectos comerciales aplicables a las transacciones internacionales de energía, que se realizan en el mercado mayorista de electricidad, como parte integrante del reglamento de operación."," Sept. 1998.spa
dc.relation.referencesA. S. Al-Sumaiti, M. H. Ahmed, S. Rivera, M. S. El Moursi, M. M. A. Salama, and T. Alsumaiti, "Stochastic pv model for power system planning applications," IET Renewable Power Generation, vol. 13, no. 16, pp. 3168-3179, 2019.spa
dc.relation.referencesS. Surender Reddy, P. R. Bijwe, and A. R. Abhyankar, "Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period," IEEE Systems Journal, vol. 9, no. 4, pp. 1440-1451, 2015.spa
dc.relation.referencesT. Chang, "Investigation on frequency distribution of global radiation using different probability density functions," International Journal of Applied Science and Engineering, vol. 8, no. 2, pp. 99-107, 2010.spa
dc.relation.referencesN. Zhang, P. K. Behera, and C. Williams, "Solar radiation prediction based on particle swarm optimization and evolutionary algorithm using recurrent neural networks," in 2013 IEEE International Systems Conference (SysCon), pp. 280-286, 2013.spa
dc.relation.referencesJ. Meng, G. Li, and Y. Du, "Economic dispatch for power systems with wind and solar energy integration considering reserve risk," in 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1-5, 2013.spa
dc.relation.referencesOFFICE of ENERGY EFFICIENCY & RENEWABLE ENERGY, "How do wind turbines survive severe storms?," Nov. 2020.spa
dc.relation.referencesQinglei Guo, Jonghoon Han, Minhan Yoon, and Gilsoo Jang, "A study of economic dispatch with emission constraint in smart grid including wind turbines and electric vehicles," in 2012 IEEE Vehicle Power and Propulsion Conference, pp. 1002-1005, 2012.spa
dc.relation.referencesF. Xie, M. Huang, W. Zhang, and J. Li, "Research on electric vehicle charging station load forecasting," vol. 3, 10 2011.spa
dc.relation.referencesT. Sufen, Z. Youbing, and Q. Jun, "Impact of electric vehicles as interruptible load on economic dispatch incorporating wind power," in International Conference on Sustainable Power Generation and Supply (SUPERGEN 2012), pp. 1-5, 2012.spa
dc.relation.referencesA. Gomez-Exposito, A. Conejo, and C. Canizares, Electric Energy Systems: Analysis and Operation. Electric Power Engineering Series, CRC Press, 2017.spa
dc.relation.referencesR. D. Zimmerman and C. E. Murillo-Sánchez, "Matpower user’s manual," Oct. 2020.spa
dc.relation.referencesJ. J. G. . W. D. Stevenson, Análisis de Sistemas de Potencia. McGraw-Hill, 1 ed., 2002.spa
dc.relation.referencesY. Wen, C. Guo, H. Pandzíc, and D. S. Kirschen, "Enhanced security-constrained unit commitment with emerging utility-scale energy storage," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 652-662, 2016.spa
dc.relation.referencesD. Pozo, J. Contreras, and E. E. Sauma, "Unit commitment with ideal and generic energy storage units," IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 2974- 2984, 2014.spa
dc.relation.referencesV. Miranda and R. Alves, "Differential evolutionary particle swarm optiization (deepso): A successful hybrid," in 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, pp. 368-374, 2013.spa
dc.relation.referencesJ. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942-1948 vol.4, 1995.spa
dc.relation.referencesJ. Arevalo, D. Medina, J. Rueda, and S. Rivera, "2018 competition on operational planning of sustainable power systems: Testsbeds and results," WSEAS Transactions on Power Systems, vol. 14, pp. 98-106, 08 2019.spa
dc.relation.referencesH. Mostapha Kalami, "Practical genetic algorithms in python and matlab - video tutorial," 2020.spa
dc.relation.referencesD. Goldberg and K. Deb, "A comparative analysis of selection schemes used in genetic algorithms," in FOGA, 1990.spa
dc.relation.referencesB. Miller and D. Goldberg, "Genetic algorithms, tournament selection, and the effects of noise," Complex Syst., vol. 9, 1995.80 Bibliografíaspa
dc.relation.referencesH. Wang, C. E. Murillo-Sanchez, R. D. Zimmerman, and R. J. Thomas, "On computational issues of market-based optimal power flow," IEEE Transactions on Power Systems, vol. 22, pp. 1185-1193, Aug 2007.spa
dc.relation.referencesA. Wächter and L. T. Biegler, "On the implementation of an interior-point filter linesearch algorithm for large-scale nonlinear programming," Mathematical Programming, vol. 106, pp. 25-57, Mar 2006.spa
dc.relation.referencesI. The MathWorks, "Constrained nonlinear optimization algorithms," 2021.spa
dc.relation.referencesR. Parkinson A.R.and Balling and J. Hedengren, Optimization Methods for Engineering Design. Brigham Young University, 2 ed., 2018.spa
dc.relation.referencesE. D. Reyes, A. S. Bretas, and S. Rivera, "Marginal uncertainty cost functions for solar photovoltaic, wind energy, hydro generators, and plug-in electric vehicles," Energies, vol. 13, no. 23, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalFlujo óptimo de potenciaspa
dc.subject.proposalCostos de incertidumbrespa
dc.subject.proposalSistemas renovables controlablesspa
dc.subject.proposalCargas controlablesspa
dc.subject.proposalProgramación no linealspa
dc.subject.proposalTécnicas metaheurísticasspa
dc.subject.proposalOptimal power floweng
dc.subject.proposalUncertainty costseng
dc.subject.proposalRenewable and controllable systemseng
dc.subject.proposalControllable loadeng
dc.subject.proposalMetaheuristicseng
dc.subject.proposalNon-linear programmingeng
dc.titleFlujo óptimo de potencia extendido a sistemas renovables controlables y cargas controlablesspa
dc.title.translatedOptimal power flow extended to controllable and renewable systems and controllable loadseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030633993.2021.pdf
Tamaño:
782.69 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Electríca

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: