Aspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12

dc.contributor.advisorRoa Rojas, Jairo
dc.contributor.authorNieto Camacho, Johann Andrés
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2021-05-31T22:23:24Z
dc.date.available2021-05-31T22:23:24Z
dc.date.issued2021-01-20
dc.descriptiondiagramas, ilustraciones a color, fotografías, tablasspa
dc.description.abstractEl material de tipo perovskita doble Dy2Bi2Fe4O12 fue sintetizado a partir de la técnica de estado sólido. La caracterización estructural, mediante difracción de rayos x, revela un cristal ortorrómbico perteneciente al grupo espacial Pnma (#62) con fuertes distorsiones octaédricas. El análisis morfológico mediante SEM muestra una difusión granular con tamaños promedios del orden nanométrico. El espectro de energía por dispersión de rayos X señala que no hay elementos diferentes a los esperados de los óxidos precursores y en la proporción estequiométrica calculada. La determinación de la banda prohibida Eg=1.88 eV, a partir de espectroscopía por reflectancia difusa, clasifica a Dy2Bi2Fe4O12 como un material semiconductor. Las curvas de corriente contra voltaje sugieren una respuesta eléctrica no lineal de tipo varistor. Además, su permitividad eléctrica está marcada por polarización de tipo Maxwell-Wagner. La respuesta magnética clasifica a esta perovskita doble como un ferromagneto blando con bajo campo coercitivo (500 Oe < HC < 700 Oe) y magnetización remanente (2.15x10-4 emu/g < MR < 3.25x10-4 emu/g). Las curvas de histéresis muestran un comportamiento ferromagnético con evidencia de efectos superparamagnéticos debido a la presencia de granos nanométricos ferromagnéticos.spa
dc.description.abstractDouble perovskite-like material Dy2Bi2Fe4O12 has been obtain using the solid-state synthesis Structural characterization through X-ray diffraction technique reveals an orthorhombic crystal belonging to Pnma space group (# 62) with strong octahedral distortions. Analysis of the Morphology by SEM shows a granular diffusion with nanometric order mean sizes. X-ray energy dispersion spectra establishes that there are no elements other than those expected from the precursor oxides in the stoichiometric proportions calculated. Determination of the band gap Eg = 1.88 eV from diffuse reflectance spectroscopy classifies Dy2Bi2Fe4O12 as a semiconductor material. The I-V curves suggest a non-linear varistor-type electrical response. Furthermore, its electrical permittivity is marked by Maxwell-Wagner-type polarization. The magnetic response of the material shows a soft ferromagnet with low coercive field (500 Oe < HC <700 Oe) and remnant magnetization (2.15x10-4 emu/g < MR <3.25x10-4 emu/g). Hysteresis curves reveal a ferromagnetic response with evidence of superparamagnetic effects due to the significant presence of nano-sized ferromagnetic grains.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaCaracterización y Síntesis de Nuevos Materialesspa
dc.format.extent1 recurso en línea (88 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79581
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.references[1] G. Kieslich, S. Sun, and A. K. Cheetham, “Solid-state principles applied to organic–inorganic perovskites: New tricks for an old dog,” Chem. Sci., vol. 5, no. 12, pp. 4712–4715, Oct. 2014, doi: 10.1039/c4sc02211d.spa
dc.relation.references[2] Yuanbing Mao, Hongjun Zhou, and Stanislaus S. Wong, “Synthesis, Properties, and Applications of Perovskite-Phase Metal Oxide Nanostructures Properties of Perovskite Systems,” Mater. Matters, vol. 5, no. 2, p. 50, 2010.spa
dc.relation.references[3] S. Jiang et al., “A new class of high-entropy perovskite oxides,” Scr. Mater., vol. 142, pp. 116–120, 2017, doi: 10.1016/j.scriptamat.2017.08.040.spa
dc.relation.references[4] H. W. Eng, P. W. Barnes, B. M. Auer, and P. M. Woodward, “Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family,” J. Solid State Chem., vol. 175, no. 1, pp. 94–109, Oct. 2003, doi: 10.1016/S0022-4596(03)00289-5.spa
dc.relation.references[5] A. S. Bhalla, R. Guo, and R. Roy, “The perovskite structure - A review of its role in ceramic science and technology,” Materials Research Innovations, vol. 4, no. 1. Springer New York, pp. 3–26, Nov. 13, 2000, doi: 10.1007/s100190000062.spa
dc.relation.references[6] A. S. Cavichini et al., “Exotic magnetism and spin-orbit-assisted Mott insulating state in a 3d-5d double perovskite,” Phys. Rev. B, vol. 97, no. 5, p. 054431, Feb. 2018, doi: 10.1103/PhysRevB.97.054431.spa
dc.relation.references[7] M. W. Lufaso and P. M. Woodward, “Prediction of the crystal structures of perovskites using the software program SPuDS,” Acta Crystallogr. Sect. B Struct. Sci., vol. 57, no. 6, pp. 725–738, Dec. 2001, doi: 10.1107/S0108768101015282.spa
dc.relation.references[8] J. A. Cuervo-Farfán et al., “Structural, magnetic, dielectric and optical properties of the Eu2Bi2Fe4O12 bismuth-based low-temperature biferroic,” J. Mater. Sci. Mater. Electron., vol. 29, no. 24, pp. 20942–20951, Dec. 2018, doi: 10.1007/s10854-018-0238-z.spa
dc.relation.references[9] G. King and P. M. Woodward, “Cation ordering in perovskites,” J. Mater. Chem., vol. 20, no. 28, pp. 5785–5796, Jul. 2010, doi: 10.1039/b926757c.spa
dc.relation.references[10] Y. Shimakawa and T. Saito, “A-site magnetism in A-site-ordered perovskite-structure oxides,” Phys. Status Solidi Basic Res., vol. 249, no. 3, pp. 423–434, Mar. 2012, doi: 10.1002/pssb.201147477.spa
dc.relation.references[11] S. Sahoo, P. K. Mahapatra, and R. N. P. Choudhary, “The structural, electrical and magnetoelectric properties of soft-chemically-synthesized SmFeO3 ceramics,” J. Phys. D. Appl. Phys., vol. 49, no. 3, Dec. 2015, doi: 10.1088/0022-3727/49/3/035302.spa
dc.relation.references[12] A. S. Mahapatra, A. Mitra, A. Mallick, A. Shaw, J. M. Greneche, and P. K. Chakrabarti, “Modulation of magnetic and dielectric property of LaFeO3 by simultaneous doping with Ca2+ and Co2+-ions,” J. Alloys Compd., vol. 743, pp. 274–282, Apr. 2018, doi: 10.1016/j.jallcom.2018.01.207.spa
dc.relation.references[13] R. D. Kumar and R. Jayavel, “Synthesis, morphology and optical properties of LaFeO3 nanospheres,” in AIP Conference Proceedings, 2014, vol. 1591, pp. 315–317, doi: 10.1063/1.4872585.spa
dc.relation.references[14] S. S. K. Reddy et al., “Study of Mn doped multiferroic DyFeO3 ceramics,” Ceram. Int., vol. 43, no. 8, pp. 6148–6155, Jun. 2017, doi: 10.1016/j.ceramint.2017.02.010.spa
dc.relation.references[15] G. Srinivasan, A. N. Slavin, A. M. BALBASHOV, G. V. KOZLOV, A. A. MUKHIN, and A. S. PROKHOROV, “SUBMILLIMETER SPECTROSCOPY OF ANTIFERROMAGNETIC DIELECTRICS: RARE-EARTH ORTHOFERRITES,” in High Frequency Processes in Magnetic Materials, WORLD SCIENTIFIC, 1995, pp. 56–98.spa
dc.relation.references[16] E. Haye et al., “Properties of rare-earth orthoferrites perovskite driven by steric hindrance,” J. Alloys Compd., vol. 657, pp. 631–638, Feb. 2016, doi: 10.1016/j.jallcom.2015.10.135.spa
dc.relation.references[17] U. Nuraini and S. Suasmoro, “ Crystal structure and phase transformation of BiFeO 3 multiferroics on the temperature variation ,” J. Phys. Conf. Ser., vol. 817, p. 012059, Apr. 2017, doi: 10.1088/1742-6596/817/1/012059.spa
dc.relation.references[18] J. A. Nieto Camacho, J. A. Cardona Vásquez, A. Sarmiento Santos, D. A. Landínez Téllez, and J. Roa-Rojas, “Study of the microstructure and the optical, electrical, and magnetic feature of the Dy2Bi2Fe4O12 ferromagnetic semiconductor,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 10686–10697, Sep. 2020, doi: 10.1016/j.jmrt.2020.07.073.spa
dc.relation.references[19] J. Even, G. Giorgi, C. Katan, H. Kawai, and K. Yamashita, Organic-inorganic halide perovskite quasi-particle nature analysis via the interplay among classic solid-state concepts, density functional, and many-body perturbation theory. CRC Press, 2017.spa
dc.relation.references[20] R. J. D. Tilley, Perovskites: Structure-Property Relationships. Willey, 2016.spa
dc.relation.references[21] T. Wolfram and S. Ellialtioglu, Electronic and Optical Properties of D -Band Perovskites . Cambridge University Press, 2006.spa
dc.relation.references[22] A. K. Kundu, Magnetic Perovskitesm, Synthesis, Structures and Physical Properties, no. 2016. Srpinger, 2016.spa
dc.relation.references[23] T. Kubo and H. Nozoye, “Microscopic properties of the SrTiO3(100) surface,” Appl. Phys. A Mater. Sci. Process., vol. 72, no. 8, pp. S277–S280, Apr. 2001, doi: 10.1007/s003390100662.spa
dc.relation.references[24] J. B. Goodenough and J. S. Zhou, “Localized to Itinerant Electronic Transitions in Transition-Metal Oxides with the Perovskite Structure,” Chemistry of Materials, vol. 10, no. 10. Springer, pp. 2980–2993, 1998, doi: 10.1021/cm980276u.spa
dc.relation.references[25] A. M. Glazer, “The classification of tilted octahedra in perovskites,” Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., vol. 28, no. 11, pp. 3384–3392, Nov. 1972, doi: 10.1107/s0567740872007976.spa
dc.relation.references[26] C. J. Howard and H. T. Stokes, “Group-Theoretical Analysis of Octahedral Tilting in Perovskites,” Acta Crystallogr. Sect. B Struct. Sci., vol. 54, no. 6, pp. 782–789, Dec. 1998, doi: 10.1107/S0108768198004200.spa
dc.relation.references[27] P. M. Woodward, “Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces,” Acta Crystallogr. Sect. B Struct. Sci., vol. 53, no. 1, pp. 44–66, Feb. 1997, doi: 10.1107/S0108768196012050.spa
dc.relation.references[28] R. ROY, “Multiple Ion Substitution in the Perovskite Lattice,” J. Am. Ceram. Soc., vol. 37, no. 12, pp. 581–588, Dec. 1954, doi: 10.1111/j.1151-2916.1954.tb13992.x.spa
dc.relation.references[29] Y. Kawasaki et al., “NMR study of successive magnetic transitions in the A-site ordered perovskite LaMn3Cr4O12,” J. Korean Phys. Soc., vol. 63, no. 3, pp. 640–643, Aug. 2013, doi: 10.3938/jkps.63.640.spa
dc.relation.references[30] M. Bieringer et al., “Cation ordering, domain growth, and zinc loss in the microwave dielectric oxide Ba3ZnTa2O9-δ,” Chem. Mater., vol. 15, no. 2, pp. 586–597, Jan. 2003, doi: 10.1021/cm020461e.spa
dc.relation.references[31] M. Ducau, K. S. Suh, J. Senegas, and J. Darriet, “Crystal structure and NMR studies of a cubic perovskite. The fluoride NaBaLiNiF6,” Mater. Res. Bull., vol. 27, no. 9, pp. 1115–1123, Sep. 1992, doi: 10.1016/0025-5408(92)90251-T.spa
dc.relation.references[32] V. M. Talanov, M. V. Talanov, and V. B. Shirokov, “Group-theoretical study of cationic ordering in perovskite structure,” Crystallogr. Reports, vol. 59, no. 5, pp. 650–661, Sep. 2014, doi: 10.1134/S1063774514050186.spa
dc.relation.references[33] V. M. Goldschmidt, “Die Gesetze der Krystallochemie,” Naturwissenschaften, vol. 14, no. 21, pp. 477–485, May 1926, doi: 10.1007/BF01507527.spa
dc.relation.references[34] A. E. Fedorovskiy, N. A. Drigo, and M. K. Nazeeruddin, “The Role of Goldschmidt’s Tolerance Factor in the Formation of A 2 BX 6 Double Halide Perovskites and its Optimal Range,” Small Methods, vol. 4, no. 5, p. 1900426, May 2020, doi: 10.1002/smtd.201900426.spa
dc.relation.references[35] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo, “Formability of ABX 3 (X = F, Cl, Br, I) halide perovskites,” Acta Crystallogr. Sect. B Struct. Sci., vol. 64, no. 6, pp. 702–707, Dec. 2008, doi: 10.1107/S0108768108032734.spa
dc.relation.references[36] N. F. Atta, A. Galal, and E. H. El-Ads, “Perovskite Nanomaterials – Synthesis, Characterization, and Applications,” in Perovskite Materials - Synthesis, Characterisation, Properties, and Applications, InTech, 2016.spa
dc.relation.references[37] S. T. Thornton and A. Rex, Modern Physics for Scientists and Engineers: 4th edition, vol. 4. 2013.spa
dc.relation.references[38] M. N. O. Sadiku, Elements of Electromagnetics, Second Edition. Oxford University Press, 1989.spa
dc.relation.references[39] H. Y. Chang, S. H. Kim, M. O. Kang, and P. S. Halasyamani, “Polar or nonpolar? A+ cation polarity control in A 2Ti(IO3)6 (A = Li, Na, K, Rb, Cs, Tl),” J. Am. Chem. Soc., vol. 131, no. 19, pp. 6865–6873, May 2009, doi: 10.1021/ja9015099.spa
dc.relation.references[40] K. Daum Machado, Teoria do Eletromagnetismo - Vol 1. Universidade Estadual de Ponta Grossa, 2000.spa
dc.relation.references[41] H. I. Hsiang, K. Y. Lin, F. S. Yen, and C. Y. Hwang, “Effects of particle size of BaTiO3 powder on the dielectric properties of BaTiO3/polyvinylidene fluoride composites,” J. Mater. Sci., vol. 36, no. 15, pp. 3809–3815, Aug. 2001, doi: 10.1023/A:1017946405447.spa
dc.relation.references[42] W. Gao and N. M. Sammes, “An Introduction to Electronic and Ionic Materials.” 1999.spa
dc.relation.references[43] D. R. Askeland, “The Science and Engineering of Materials,” Eur. J. Eng. Educ., vol. 19, no. 3, p. 380, 1994, doi: 10.1080/03043799408928327.spa
dc.relation.references[44] M. W. Lufaso, P. W. Barnes, and P. M. Woodward, “Structure prediction of ordered and disordered multiple octahedral cation perovskites using SPuDS,” Acta Crystallogr. Sect. B Struct. Sci., vol. 62, no. 3, pp. 397–410, Jun. 2006, doi: 10.1107/S010876810600262X.spa
dc.relation.references[45] F. Orlandi et al., “Structural and electric evidence of ferrielectric state in Pb2MnWO6 double perovskite system,” Inorg. Chem., vol. 53, no. 19, pp. 10283–10290, Oct. 2014, doi: 10.1021/ic501328s.spa
dc.relation.references[46] Y. Q. Huang, J. Su, Q. F. Li, D. Wang, L. H. Xu, and Y. Bai, “Structure, optical and electrical properties of CH 3 NH 3 SnI 3 single crystal,” Phys. B Condens. Matter, vol. 563, pp. 107–112, Jun. 2019, doi: 10.1016/j.physb.2019.03.035.spa
dc.relation.references[47] N. A. Spaldin, Magnetic materials: Fundamentals and applications, vol. 9780521886. 2010.spa
dc.relation.references[48] R. Skomski, Simple Models of Magnetism, vol. 9780198570752. 2010.spa
dc.relation.references[49] S. Blundell and D. Thouless, Magnetism in Condensed Matter, vol. 71, no. 1. 2003.spa
dc.relation.references[50] Y. M. Poplavko, Electronic Materials. Principles and Applied Science. Elsevier, 2019.spa
dc.relation.references[51] M. Reis, Fundamentals of Magnetism. 2013.spa
dc.relation.references[52] S. N. Achary, O. D. Jayakumar, and A. K. Tyagi, “Multiferroic materials,” in Functional Materials, Elsevier Inc., 2012, pp. 155–191.spa
dc.relation.references[53] Suk-joong L. Kang, Sintering. Densification, Grain Growth and Microstructure. Elsevier Ltd, 2005.spa
dc.relation.references[54] Z. Z. Fang, Sintering of Advanced Materials. 2010.spa
dc.relation.references[55] M. N. Rahaman, Sintering of ceramics. 2007.spa
dc.relation.references[56] A. Clearfield, J. H. Reibenspies, and N. Bhuvanesh, Principles and Applications of Powder Diffraction. 2009.spa
dc.relation.references[57] G. Will, Powder diffraction: The rietveld method and the two stage method to determine and refine crystal structures from powder diffraction data. 2006.spa
dc.relation.references[58] Tilley and R. J. D., Crystals and Crystal Structures. 2006.spa
dc.relation.references[59] V. Pecharsky, P. Zavalij, J. R. Votano, M. Parham, and L. H. Hall, Fundamentals of Powder Diffraction and Structural Characterization of Materials, Second Edition. 2008.spa
dc.relation.references[60] H. M. Rietveld, “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr., vol. 22, no. 1, pp. 151–152, Jan. 1967, doi: 10.1107/s0365110x67000234.spa
dc.relation.references[61] D. S. J. B. Robert E., Powder Diffraction Theory and Practice. 2008.spa
dc.relation.references[62] R. Dinnebier, A. Leineweber, and J. Evans, Rietveld Refinement Practical Powder Diffraction Pattern Analysis using TOPAS. 2019.spa
dc.relation.references[63] N. Tanaka, Scanning transmission electron microscopy of nanomaterials: Basics of imaging and analysis. Imperial College Press, 2014.spa
dc.relation.references[64] D. J. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM). Wiley, 2008.spa
dc.relation.references[65] V. Kazmiruk, Scanning Electron Microscopy. Rijeka: InTech, 2012.spa
dc.relation.references[66] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. M. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and x-ray microanalysis. Springer, 2017.spa
dc.relation.references[67] A. Ul-Hamid, A Beginners’ Guide to Scanning Electron Microscopy. Springer, 2018.spa
dc.relation.references[68] R. W. Frei and J. . D. MacNeil, Diffuse Reflectance Spectroscopy in Enviromental Problem-Solving. CRC Press, 1973.spa
dc.relation.references[69] W. W. Wendlandt, Modern Aspects of Reflectance Spectroscopy. New York: Plenum Press, 1968.spa
dc.relation.references[70] H. M. Niemz, Laser-Tissue Interactions. Fundamentals and Applications. Springer, 1996.spa
dc.relation.references[71] G. Kortüm, Reflectance Spectroscopy. Principles, Methods, Applications. New York: Springer-Verlag, 1969.spa
dc.relation.references[72] B. Hapke, Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, 2012.spa
dc.relation.references[73] S. Jacquemoud and S. Ustin, Leaf Optical Properties. Cambridge University Press, 2019.spa
dc.relation.references[74] I. J. Pankove, Optical Processes in Semiconductors. Dover books, 1975.spa
dc.relation.references[75] S. Foner, “Versatile and sensitive vibrating-sample magnetometer,” Rev. Sci. Instrum., vol. 30, no. 7, pp. 548–557, Jul. 1959, doi: 10.1063/1.1716679.spa
dc.relation.references[76] F. Fiorillo, Measurement And Characterization of Magnetic Materials. Elsevier, 2004.spa
dc.relation.references[77] A. C. Larson, R. B. Von, and D. Lansce, “LAUR 86-748 © GENERAL STRUCTURE ANALYSIS SYSTEM,” 2004.spa
dc.relation.references[78] P. M. Woodward, “Octahedral Tilting in Perovskites. I. Geometrical Considerations,” Acta Crystallogr. Sect. B Struct. Sci., vol. 53, no. 1, pp. 32–43, Feb. 1997, doi: 10.1107/S0108768196010713.spa
dc.relation.references[79] R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A, vol. 32, no. 5, pp. 751–767, Sep. 1976, doi: 10.1107/S0567739476001551.spa
dc.relation.references[80] M. J. Mehl et al., “The AFLOW Library of Crystallographic Prototypes: Part 1,” Comput. Mater. Sci., vol. 136, pp. S1–S828, Aug. 2017, doi: 10.1016/j.commatsci.2017.01.017.spa
dc.relation.references[81] C. Suryanarayana and M. G. Norton, X-ray diffraction: a practical approach. New York: Plenum Press Publishing, 1998.spa
dc.relation.references[82] M. Saleem, “Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method,” Int. J. Phys. Sci., vol. 7, no. 23, Jun. 2012, doi: 10.5897/ijps12.219.spa
dc.relation.references[83] S. Vasala and M. Karppinen, “A2B′B″O6 perovskites: A review,” Progress in Solid State Chemistry, vol. 43, no. 1–2. Elsevier Ltd, pp. 1–36, May 01, 2015, doi: 10.1016/j.progsolidstchem.2014.08.001.spa
dc.relation.references[84] C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nature Methods, vol. 9, no. 7. pp. 671–675, Jul. 28, 2012, doi: 10.1038/nmeth.2089.spa
dc.relation.references[85] J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” Phys. status solidi, vol. 15, no. 2, pp. 627–637, 1966, doi: 10.1002/pssb.19660150224.spa
dc.relation.references[86] K. Kharel and A. Freundlich, “Design of wide bandgap (1.7 eV-1.9 eV) III-V dilute nitride quantum-engineered solar cells for tandem application with silicon,” in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII, Feb. 2018, vol. 10527, p. 12, doi: 10.1117/12.2290053.spa
dc.relation.references[87] C. Persson, “Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4,” J. Appl. Phys., vol. 107, no. 5, p. 053710, Mar. 2010, doi: 10.1063/1.3318468.spa
dc.relation.references[88] A. Nakane et al., “Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis,” J. Appl. Phys., vol. 120, no. 6, p. 064505, Aug. 2016, doi: 10.1063/1.4960698.spa
dc.relation.references[89] G. Blatter and F. Greuter, “Carrier transport through grain boundaries in semiconductors,” Phys. Rev. B, vol. 33, no. 6, pp. 3952–3966, Mar. 1986, doi: 10.1103/PhysRevB.33.3952.spa
dc.relation.references[90] C. R. M. Grovenor, “Grain boundaries in semiconductors,” J. Phys. C Solid State Phys., vol. 18, no. 21, pp. 4079–4119, Jul. 1985, doi: 10.1088/0022-3719/18/21/008.spa
dc.relation.references[91] F. Greuter and G. Blatter, “Electrical properties of grain boundaries in polycrystalline compound semiconductors,” Semiconductor Science and Technology, vol. 5, no. 2. pp. 111–137, Feb. 01, 1990, doi: 10.1088/0268-1242/5/2/001.spa
dc.relation.references[92] A. Vojta, Q. Wen, and D. R. Clarke, “Influence of microstructural disorder on the current transport behavior of varistor ceramics,” Comput. Mater. Sci., vol. 6, no. 1, pp. 51–62, Jul. 1996, doi: 10.1016/0927-0256(96)00011-0.spa
dc.relation.references[93] G. Zhao, R. P. Joshi, V. K. Lakdawala, and H. P. Hjalmarson, “Electro-thermal simulation studies for pulsed voltage induced energy absorption and potential failure in microstructured ZnO varistors,” in IEEE Transactions on Dielectrics and Electrical Insulation, Aug. 2007, vol. 14, no. 4, pp. 1007–1015, doi: 10.1109/TDEI.2007.4286541.spa
dc.relation.references[94] A. I. Dedyk, A. D. Kanareykin, E. A. Nenasheva, J. V. Pavlova, and S. F. Karmanenko, “I-V and C-V characteristics of ceramic materials based on barium strontium titanate,” Tech. Phys., vol. 51, no. 9, pp. 1168–1173, Sep. 2006, doi: 10.1134/S1063784206090106.spa
dc.relation.references[95] K. Bavelis, E. Gjonaj, and T. Weiland, “Modeling of electrical transport in Zinc Oxide varistors,” Adv. Radio Sci, vol. 12, pp. 29–34, 2014, doi: 10.5194/ars-12-29-2014.spa
dc.relation.references[96] A. Jiingel, Quasi-hydrodynamic Semiconductor Equations. Berlin: Birkhauser Verlag, 2001.spa
dc.relation.references[97] F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy. Berlin: Springer-Verlag, 2003.spa
dc.relation.references[98] H. R. Fuh, K. C. Weng, Y. P. Liu, and Y. K. Wang, “New ferromagnetic semiconductor double perovskites: La2FeMO6 (M = Co, Rh, and Ir),” J. Alloys Compd., vol. 622, pp. 657–661, Feb. 2015, doi: 10.1016/j.jallcom.2014.10.010.spa
dc.relation.references[99] L. Ren et al., “Tuning Magnetism and Photocurrent in Mn-Doped Organic-Inorganic Perovskites,” J. Phys. Chem. Lett., vol. 11, no. 7, pp. 2577–2584, Apr. 2020, doi: 10.1021/acs.jpclett.0c00034.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.otherFerromagnetismo
dc.subject.otherFerromagnetism
dc.subject.otherPropiedades magnéticas
dc.subject.otherMagnetic properties
dc.subject.proposalPerovskitaspa
dc.subject.proposalPerovskita doblespa
dc.subject.proposalEstructura cristalinaspa
dc.subject.proposalperovskita semiconductoraspa
dc.subject.proposalpropiedades magnéticasspa
dc.subject.proposalcaracterización estructuralspa
dc.subject.proposalgap ópticospa
dc.subject.proposalCrystal structureeng
dc.subject.proposalFerromagnetic perovskite-like materialeng
dc.subject.proposalStructural and morphological analysiseng
dc.subject.proposalElectric featureeng
dc.subject.proposalSemiconductor charactereng
dc.subject.proposalOptical band gapeng
dc.subject.proposalSoft ferromagneteng
dc.titleAspectos estructurales y propiedades magnéticas de la Ferrobismutita de Disprosio Dy2Bi2Fe4O12spa
dc.title.translatedStructural aspects and magnetic properties of Dysprosium Ferrobismutite Dy2Bi2Fe4O12eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1012406518.2021.pdf
Tamaño:
2.15 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: