Programación óptima de la operación en redes de distribución considerando costos de incertidumbre de fuentes de energías renovables
| dc.contributor.advisor | Rivera Rodríguez, Sergio Raúl | spa |
| dc.contributor.author | Díaz Martín, Miguel David | spa |
| dc.contributor.researchgroup | Grupo de Investigación EMC-UN | spa |
| dc.date.accessioned | 2021-01-25T13:55:56Z | spa |
| dc.date.available | 2021-01-25T13:55:56Z | spa |
| dc.date.issued | 2020-06-11 | spa |
| dc.description.abstract | The current distribution grids incorporate generators and loads dependent on stochastic variables that generate uncertainty, an example of this is wind speed or solar irradiation. (For wind or photovoltaic generators respectively). Uncertainty represents a challenge in scheduling the power to be generated or demanded, since there is no certainty in estimating the specific cost. In effect, uncertainty has been associated with penalty cost [1], which occurs when the demand aggregator assumes a different power value to be dispatched. Uncertainty cost have been defined as mathematical tool that model stochastic behaviors through probability density functions, that allow to calculate the expected value of penalty cost to be calculated effectively. Smart Distribution Grids must manage bi-directional power flows that depends of stochastics behaviors through information and communication technologies. Its optimal operation consists of minimizing cost and maximizing profits in the exercise of buying and selling energy in 24-hour periods. For this propose, metaheuristic optimization algorithms have been used, because it is necessary to consider discrete, continuous, binary variables and nonlinear equations. The VNS-DEEPSO algorithm was sown to obtain the best performance in the IEEE-PES WCCI 2018 [2], obtaining of 7% in total average grid operating costs compared to the second algorithm. In this document the optimal power scheduling of a smart distribution grid is carried out in eight different scenarios, considering the uncertainty cost for photovoltaic, wind generator and connection nodes of electric vehicles. It was obtained that by replacing a conventional distributed generator with a sola generator with the maximum power capacity of 20% of the grid, a reduction in the total cost of optimal scheduling can be achieved by 40.16%. However, under this same scheme, but evaluating the impact of wind generation, an increase of 9.16% was reached over total costs. Therefore, the taking in count of eh uncertainty cost associated with each type of charging or generation technology has a considerable impact on the optimal scheduling of an smart distribution grid, which requires a specific analysis for each case depending on its generators, loads and environmental factors, as is exposed in the present study. | spa |
| dc.description.abstract | Las redes de distribución actuales incorporan generadores y cargas dependientes de variables estocásticas que generan incertidumbre, ejemplo de ello es la velocidad del viento o la irradiación solar. (Para generadores eólicos o fotovoltáicos respectivamente). La incertidumbre representa un reto en la programación de la potencia a ser generada o demandada, puesto que no hay certeza en la estimación del costo específico. En efecto, a la incertidumbre se le ha asociado un costo de penalización [1], que se da cuando el agregador de demanda asume un valor de potencia diferente a despachar. Se han definido los costos de incertidumbre como herramientas matemáticas que modelan los comportamientos estocásticos a través de funciones de densidad de probabilidad, tales que permiten calcular de forma efectiva el valor esperado de los costos de penalización. Las redes de distribución inteligentes deben gestionar flujos de potencia bidireccionales dependientes de comportamientos estocásticos por medio de tecnologías de la información y comunicación. Su óptima operación consiste en minimizar los costos y maximizar las ganancias en el ejercicio de la compra y venta de energía en lapsos de 24 horas. Para ello se han utilizado algoritmos de optimización metaheurísticos, debido a que es necesario considerar variables discretas, continuas, binarias y ecuaciones no lineales. El algoritmo VNS-DEEPSO demostró obtener el mejor rendimiento en la competencia IEEE-PES WCCI 2018 [2], obteniendo una reducción del los costos promedios totales de operación de la red del 7% respecto al segundo algoritmo. En el presente documento se realiza la programación óptima de potencia de una red de distribución inteligente en ocho escenarios diferentes, considerando los costos de incertidumbre para generadores fotovoltaicos, eólicos y nodos de conexión de vehículos eléctricos. Se obtuvo que al reemplazar un generador distribuido convencional por un generador solar con la capacidad máxima del 20% de la red, se puede lograr una reducción del costo total de la programación óptima de la red en un 40.16%. No obstante, bajo este mismo esquema pero evaluando el impacto de la generación eólica, se llegó a un aumento del 9.16% sobre los costos totales. Por tanto, la consideración de los costos de incertidumbre asociados a cada tipo de tecnología de carga o generación, tiene un impacto considerable en la programación óptima de una red inteligente de distribución, lo que requiere un análisis específico para cada caso en función de sus generadores, cargas y factores ambientes, tal como se expone en el presente estudio. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 86 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.citation | Díaz, M. (2020). Programación óptima de la operación en redes de distribución considerando costos de incertidumbre de fuentes de energías renovables[Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional. | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78893 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
| dc.relation.references | J. C. Arevalo and F. Santos, “Uncertainty cost function for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles,” pp. 12–15. | spa |
| dc.relation.references | F. Lezama, J. Soares, Z. Vale, and J. Rueda, “Guidelines for the CEC’2018 competition evolutionary computation in uncertain environments: a smart grid application,” no. December, 2018, [Online]. Available: http://www.gecad.isep.ipp.pt/WCCI2018-SGCOMPETITION/files/WCCI2018_Guidelines_CISG.pdf | spa |
| dc.relation.references | F. Santos and J. C. Arevalo, “Application of Analytical Uncertainty Costs of Solar, Wind and Electric Vehicles in Optimal Power Dispatch,” Ingenie Ia, pp. 1–24, 2015, doi: 10.14483/udistrital.jour.reving.20XX.X.aXX. | spa |
| dc.relation.references | R. Lyster, “Smart Grids: Opportunities for Climate Change Mitigation and Adaptation,” Monash Univ. Law Rev., vol. 36, 2010, [Online]. Available: https://heinonline.org/HOL/Page?handle=hein.journals/monash36&id=175&div=&collectio n=. | spa |
| dc.relation.references | “Smart grids: Another step towards competition, energy security and climate change objectives - ScienceDirect.” https://www.sciencedirect.com/science/article/abs/pii/S030142151100396X. | spa |
| dc.relation.references | R. Bayindir, E. Hossain, and S. Vadi, “The path of the smart grid - The new and improved power grid,” in 2016 International Smart Grid Workshop and Certificate Program, ISGWCP 2016, Aug. 2016, doi: 10.1109/ISGWCP.2016.7548270. | spa |
| dc.relation.references | R. G. Harley and J. Liang, “Computational Intelligence in Smart Grids,” 2011. [Online]. Available: https://www.researchgate.net/publication/228517480. | spa |
| dc.relation.references | T. P. Chang, “Investigation on Frequency Distribution of Global Radiation Using Different Probability Density Functions,” Int. J. Appl. Sci. Eng., vol. 8, no. 2, pp. 99–107, 2010. | spa |
| dc.relation.references | J. Arévalo, F. Santos, and S. Rivera, “Aplicación de Costos de Incertidumbre Analíticos de Energía Solar, Eólica y Vehículos Eléctricos en el Despacho Óptimo de Potencia,” Ingeniería, vol. 22, no. 3, p. 324, Sep. 2017, doi: 10.14483/23448393.11673. | spa |
| dc.relation.references | R. Stefan and V. Simbaqueba, “Costos de Incertidumbre Para Demandas Controlables Considerando su Estocasticidad,” 2018. | spa |
| dc.relation.references | J. Garcia-guarin, F. Lezama, J. Soares, and S. Rivera, “OPERATION SCHEDULING OF SMART GRIDS CONSIDERING STOCHASTIC UNCERTAINTY MODELLING Polytechnic Institute of Porto electric vehicles and wind energy systems with thermal power plants [ 1 ]. generation , u | spa |
| dc.relation.references | P. J. García-Guarín, J. Cantor-López, C. Cortés-Guerrero, M. A. Guzmán-Pardo, and S. Rivera, “Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes,” INGE CUC, vol. 15, no. 1, pp. 142–154, Jun. 2019, doi: 10.17981/ingecuc.15.1.2019.13. | spa |
| dc.relation.references | J. Soares, M. A. Fotouhi Ghazvini, N. Borges, and Z. Vale, “A stochastic model for energy resources management considering demand response in smart grids,” Electr. Power Syst. Res., vol. 143, pp. 599–610, Feb. 2017, doi: 10.1016/j.epsr.2016.10.056 | spa |
| dc.relation.references | O. Abrishambaf, P. Faria, J. Spínola, and Z. Vale, “An aggregation model for energy resources management and market negotiations,” Adv. Sci. Technol. Eng. Syst., vol. 3, no. 2, pp. 231–237, 2018, doi: 10.25046/aj030227. | spa |
| dc.relation.references | W. Tushar et al., “Three-Party Energy Management with Distributed Energy Resources in Smart Grid,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2487–2498, 2015, doi: 10.1109/TIE.2014.2341556. | spa |
| dc.relation.references | ] F. Lezama, J. Soares, Z. Vale, J. Rueda, S. Rivera, and I. Elrich, “2017 IEEE competition on modern heuristic optimizers for smart grid operation: Testbeds and results,” Swarm Evol. Comput., vol. 44, pp. 420–427, Feb. 2019, doi: 10.1016/j.swevo.2018.05.005. | spa |
| dc.relation.references | S. Vargas, D. Rodriguez, and S. Rivera, “Mathematical formulation and numerical validation of uncertainty costs for controllable loads,” Rev. Int. Metod. Numer. para Calc. y Disen. en Ing., vol. 35, no. 1, 2019, doi: 10.23967/j.rimni.2019.01.002. | spa |
| dc.relation.references | J. C. Arevalo and F. Santos, “Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: mathematical expected value and verification by Monte Carlo simulation.” https://www.researchgate.net/publication/332098716_Uncertainty_cost_functions_for_solar _photovoltaic_generation_wind_energy_generation_and_plugin_electric_vehicles_mathematical_expected_value_and_verification_by_Monte_Carlo_sim ulation. | spa |
| dc.relation.references | J. Hetzer, D. C. Yu, and K. Bhattarai, “An Economic Dispatch Model Incorporating Wind Power,” IEEE Trans. ENERGY Convers., vol. 23, no. 2, p. 603, 2008, doi: 10.1109/TEC.2007.914171. | spa |
| dc.relation.references | F. X. Xie, M. Huang, W. G. Zhang, and J. Li, “Research on electric vehicle charging station load forecasting,” in APAP 2011 - Proceedings: 2011 International Conference on Advanced Power System Automation and Protection, 2011, vol. 3, pp. 2055–2060, doi: 10.1109/APAP.2011.6180772. | spa |
| dc.relation.references | B. E. Gillett and L. R. Miller, “A Heuristic Algorithm for the Vehicle-Dispatch Problem,” Oper. Res., vol. 22, no. 2, pp. 340–349, Apr. 1974, doi: 10.1287/opre.22.2.340. | spa |
| dc.relation.references | B. Melián, J. A. Moreno Pérez, / J Marcos, and M. Vega, “Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial Asociación Española para la Inteligencia Artificial,” Accessed: May 24, 2020. [Online]. Available: http://redalyc.uaemex.mx. | spa |
| dc.relation.references | R. C. Eberhart and Y. Shi, “Computational intelligence - concepts to implementations,” undefined, 2007. | spa |
| dc.relation.references | ] O. Dzobo, A. M. Shehata, and C. L. Azimoh, “Optimal economic load dispatch in smart grids considering uncertainty,” in 2017 IEEE AFRICON: Science, Technology and Innovation for Africa, AFRICON 2017, Nov. 2017, pp. 1277–1282, doi: 10.1109/AFRCON.2017.8095666 | spa |
| dc.relation.references | H. Kamankesh, V. Agelidis, A. K.-F.- Energy, and U. 2016, “Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand,” Elsevier, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360544216000931. | spa |
| dc.relation.references | K. Qin, P. N. Suganthan, A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 2, 2009, doi: 10.1109/TEVC.2008.927706. | spa |
| dc.relation.references | Z.-H. Zhan, S. Member, J. Zhang, S. Member, Y. Li, and H. Shu-Hung Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. MAN, Cybern. B Cybern., vol. 39, no. 6, pp. 1362–1381, 2009, doi: 10.1109/TSMCB.2009.2015956. | spa |
| dc.relation.references | E. De Vargas Fortes, L. H. Macedo, P. Bueno De Araujo, and R. Romero, “A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis,” Int. J. Electr. Power Energy Syst., vol. 94, pp. 41–56, 2018, doi: 10.1016/j.ijepes.2017.06.017. | spa |
| dc.relation.references | IEEE-PES, “Open Data Sets « IEEE PES Intelligent Systems Subcommittee.” https://site.ieee.org/pes-iss/data-sets (accessed Jun. 10, 2020). | spa |
| dc.relation.references | H. Cai, Q. Chen, Z. Guan, and J. Huang, “Day-ahead optimal charging/discharging scheduling for electric vehicles in microgrids,” Prot. Control Mod. Power Syst., vol. 3, no. 1, pp. 1–15, Dec. 2018, doi: 10.1186/s41601-018-0083-3. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
| dc.subject.proposal | Renewable energy sources | eng |
| dc.subject.proposal | Fuentes de energía renovables | spa |
| dc.subject.proposal | Redes de distribución inteligentes | spa |
| dc.subject.proposal | Smart power distribution systems | eng |
| dc.subject.proposal | Smart grid | eng |
| dc.subject.proposal | Costos de incertidumbre | spa |
| dc.subject.proposal | Uncertainty costs | eng |
| dc.subject.proposal | Comportamientos estocásticos | spa |
| dc.subject.proposal | Stochastic behaviors | eng |
| dc.subject.proposal | Algoritmos de optimización metaheurística | spa |
| dc.subject.proposal | Metaheuristic optimization algorithms | eng |
| dc.title | Programación óptima de la operación en redes de distribución considerando costos de incertidumbre de fuentes de energías renovables | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo Final - Programación óptima de la operación considerando costos de incertidumbre de fuentes de energías renovables.pdf
- Tamaño:
- 4.34 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

