Análisis de las condiciones geomorfológicas y de precipitación detonantes de eventos torrenciales en cuencas del departamento de Antioquia

dc.contributor.advisorVelásquez Girón, Nicolás
dc.contributor.advisorCarvajal Serna, Luis Fernando
dc.contributor.authorRodríguez Martínez, Laura
dc.contributor.orcid0000-0002-7690-6322spa
dc.date.accessioned2024-01-15T15:06:44Z
dc.date.available2024-01-15T15:06:44Z
dc.date.issued2023-10-20
dc.description.abstractLas avenidas torrenciales son una de las principales amenazas naturales a nivel mundial. Estos eventos son generados por una combinación de factores atmosféricos y geomorfológicos complejos que siguen siendo materia de estudio. El objetivo de este trabajo es identificar patrones geomorfológicos y de precipitación característicos de cuencas torrenciales en el departamento de Antioquia a partir de bases de datos con reportes históricos, información meteorológica detallada y modelos de elevación digital. Con esta investigación se pretende hacer inferencias generalizadas sobre el fenómeno. Inicialmente se analizan las características geomorfológicas y morfométricas de las cuencas, encontrando que las más importantes son las asociadas al relieve. Se proponen metodologías para identificar cuencas torrenciales obteniendo un porcentaje de error cercano al 15%, el cual disminuye a menos de 10% cuando se introducen indicadores relacionados con la lluvia. El análisis espacial agregado de la precipitación antecedente a los eventos torrenciales muestra que los 10 días anteriores son los más importantes. Además, el comportamiento espacial distribuido de la precipitación durante los eventos torrenciales, evidencia que la lluvia se concentra en las partes altas de las cuencas, donde la interacción con las condiciones geomorfológicas propicia el desencadenamiento del evento torrencial. Los resultados de este trabajo son significativos para la gestión del riesgo del territorio y aportan información relevante sobre el comportamiento geomorfológico y de la precipitación en cuencas torrenciales del departamento. (texto tomado de la fuente)spa
dc.description.abstractFlash floods are one of the main natural threats worldwide. These events are generated by a combination of complex atmospheric and geomorphological factors that that are still being studied. The objective of this work is to identify characteristic geomorphological and rainfall patterns of torrential basins in Antioquia, Colombia from databases with historical reports, detailed meteorological information, and digital elevation models. This research aims to make generalized inferences about the phenomenon. Initially, the geomorphological and morphometric characteristics of the basins are analyzed, finding that the most important are those associated with relief. Methodologies are proposed to identify torrential basins, obtaining an error percentage close to 15%, which decreases to less than 10% when indicators related to rain are introduced. The aggregate spatial analysis of the rainfall preceding torrential events shows that the previous 10 days are the most important. In addition, the spatial distribution behavior of rainfall during torrential events shows that the rain is concentrated in the upper parts of the basins, where the interaction with geomorphological conditions favors the triggering of the torrential event. The results of this work are significant for the risk management of the territory and provide relevant information on the geomorphological and rainfall behavior in torrential basins of the department of Antioquia.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería – Recursos Hidráulicosspa
dc.description.researchareaPlanificación de recursos hidráulicos, amenazas naturales, gestión del riesgospa
dc.format.extent109 páginas, ilustracionesspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85269
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAbdelkader, M. M., Al-Amoud, A. I., El Alfy, M., El-Feky, A., & Saber, M. (2021). Assessment of flash flood hazard based on morphometric aspects and rainfall-runoff modeling in Wadi Nisah, central Saudi Arabia. Remote Sensing Applications: Society and Environment, 23(May), 100562. https://doi.org/10.1016/j.rsase.2021.100562spa
dc.relation.referencesAdnan, M. S. G., Dewan, A., Zannat, K. E., & Abdullah, A. Y. M. (2019). The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh. Natural Hazards, 99(1), 425–448. https://doi.org/10.1007/s11069-019-03749-3spa
dc.relation.referencesAl, S. E. T., & Elson, P. E. A. N. (2005). Extraordinary flood response of a small urban watershed. Bulletin of the American Meteorological Society, 86(12), 1730–1732. https://doi.org/10.1175/JHM426.1spa
dc.relation.referencesAlam, A., Ahmed, B., & Sammonds, P. (2021). Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary International, 575–576(May 2020), 295–307. https://doi.org/10.1016/j.quaint.2020.04.047spa
dc.relation.referencesAl-Saif, H. (2010). Assessing flood vulnerability of Wadi Hanifa basin and surrounding area, central Saudi Arabia. Journal of Environmental Hydrology, 18, 1–12. http://www.hydroweb.comspa
dc.relation.referencesAmengual, A., Borga, M., Ravazzani, G., & Crema, S. (2021). The Role of Storm Movement in Controlling Flash Flood Response: An Analysis of the 28 September 2012 Extreme Event in Murcia, Southeastern Spain. Journal of Hydrometeorology, 22(9), 2379–2392. https://doi.org/10.1175/JHM-D-21-0001.1spa
dc.relation.referencesArango, M. I., Aristizábal, E., & Gómez, F. (2021). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105(1), 983–1012. https://doi.org/10.1007/s11069-020-04346-5spa
dc.relation.referencesArias, L. A. (2011). Estructura, Clasificación y Evolución del relieve en el departamento de Antioquia. In R. Callejas & Á. Idárraga (Eds.), FLORA DE ANTIOQUIA CATÁLOGO DE LAS PLANTAS VASCULARES VOLUMEN I (pp. 27–179). Universidad de Antioquia.spa
dc.relation.referencesAristizábal, E., Gamboa, M. F., & Javier Leoz, F. (2010). SISTEMA DE ALERTA TEMPRANA POR MOVIMIENTOS EN MASA INDUCIDOS POR LLUVIA PARA EL VALLE DE ABURRÁ, COLOMBIA. In Revista EIA.spa
dc.relation.referencesAristizábal, E., González, T., Montoya, J., Vélez, J., Martínez, H., & Guerra, A. (2011). Analysis of empirical rainfall thresholds for the prognosis of lanslides in the Aburrá Valley, Colombia. Revista EIA, 8(15), 95–111.spa
dc.relation.referencesAristizábal, E., Martínez, H., & Vélez, J. I. I. (2010). Una revisión sobre el estudio de movimientos en masa detonados por lluvias. Revista de La Academia Colombiana de Ciencias, 34(53), 209–227.spa
dc.relation.referencesAristizábal, E., Riaño, F., & Jiménez-Ortiz, J. (2022). Rainfall thresholds as triggering factor in the Central cordillera of the Colombian Andes. Boletin de Geologia, 44(2), 183–197. https://doi.org/10.18273/revbol.v44n2-2022009spa
dc.relation.referencesAristizábal, E., Vélez, J. I., Martínez, H. E., & Jaboyedoff, M. (2016). SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides, 13(3), 497–517. https://doi.org/10.1007/s10346-015-0580-7spa
dc.relation.referencesAristizábal, E., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2017). Influencia De La Lluvia Antecedente Y La Conductividad Hidráulica En La Ocurrencia De Deslizamientos Detonados Por Lluvias Utilizando El Modelo Shia_Landslide. Revista EIA, 13(26), 31–46. https://doi.org/10.24050/reia.v13i26.863spa
dc.relation.referencesAronica, G. T., Brigandí, G., & Morey, N. (2012). Flash floods and debris flow in the city area of Messina, north-east part of Sicily, Italy in October 2009: The case of the Giampilieri catchment. Natural Hazards and Earth System Science, 12(5), 1295–1309. https://doi.org/10.5194/nhess-12-1295-2012spa
dc.relation.referencesÁvila, A. D., Carvajal, Y. E., & Justino, F. (2015). Representative rainfall thresholds for flash floods, Colombia Representative rainfall thresholds for flash floods in the Cali river watershed, Colombia Representative rainfall thresholds for flash floods, Colombia. Nat. Hazards Earth Syst. Sci. Discuss, 3, 4095–4119. https://doi.org/10.5194/nhessd-3-4095-2015spa
dc.relation.referencesBajabaa, S., Masoud, M., & Al-Amri, N. (2014). Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arabian Journal of Geosciences, 7(6), 2469–2481. https://doi.org/10.1007/s12517-013-0941-2spa
dc.relation.referencesBedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., & Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of Colombia (1998–2005). Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00092spa
dc.relation.referencesBeven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834spa
dc.relation.referencesBezak, N., Šraj, M., & Mikoš, M. (2016). Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides. Journal of Hydrology, 541, 272–284. https://doi.org/10.1016/j.jhydrol.2016.02.058spa
dc.relation.referencesBhatt, S., & Ahmed, S. A. (2014). Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto International, 29(8), 878–894. https://doi.org/10.1080/10106049.2013.868042spa
dc.relation.referencesBorga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J.-D. (2011). Flash flood forecasting, warning and risk management: The HYDRATE project. Environmental Science and Policy, 14(7). https://doi.org/10.1016/j.envsci.2011.05.017spa
dc.relation.referencesBorga, M., Stoffel, M., Marchi, L., Marra, F., & Jakob, M. (2014). Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. Journal of Hydrology, 518(PB), 194–205. https://doi.org/10.1016/j.jhydrol.2014.05.022spa
dc.relation.referencesCaballero, J. H. (2011). Las avenidas torrenciales, una amenaza natural en el Valle de Aburrá. Revista Gestión y Ambiente, 45–50.spa
dc.relation.referencesCabral, V., Reis, F., Veloso, V., Ogura, A., & Zarfl, C. (2023). A multi-step hazard assessment for debris-flow prone areas influenced by hydroclimatic events. Engineering Geology, 313. https://doi.org/10.1016/j.enggeo.2022.106961spa
dc.relation.referencesCarvajal, E. (2018). 12 casas arrasadas y 50 evacuadas por avalancha en Puerto Venus. El Colombiano.spa
dc.relation.referencesCastillo, V. M., Gómez-Plaza, A., & Martínez-Mena, M. (2003). The role of antecedent soil water content in the runoff response of semiarid catchments: A simulation approach. Journal of Hydrology, 284(1–4), 114–130. https://doi.org/10.1016/S0022-1694(03)00264-6spa
dc.relation.referencesChen, C. Y., & Yu, F. C. (2011). Morphometric analysis of debris flows and their source areas using GIS. Geomorphology, 129(3–4), 387–397. https://doi.org/10.1016/j.geomorph.2011.03.002spa
dc.relation.referencesChen, S., Zhu, S., Wen, X., Shao, H., He, C., Qi, J., Lv, L., Han, L., & Liu, S. (2023). Mapping Potential Soil Water Erosion and Flood Hazard Zones in the Yarlung Tsangpo River Basin, China. Atmosphere, 14(1). https://doi.org/10.3390/atmos14010049spa
dc.relation.referencesComisión Económica para América Latina y el Caribe (Cepal). (2012). Valoración de daños y pérdidas. Ola invernal en Colombia 2010-2011.spa
dc.relation.referencesCostache, R., Pham, Q. B., Sharifi, E., Linh, N. T. T., Abba, S. I., Vojtek, M., Vojteková, J., Nhi, P. T. T., & Khoi, D. N. (2020). Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sensing, 12(1). https://doi.org/10.3390/RS12010106spa
dc.relation.referencesCoustau, M., Bouvier, C., Borrell-Estupina, V., & Jourde, H. (2012). Flood modelling with a distributed event-based parsimonious rainfall-runoff model: Case of the karstic Lez river catchment. Natural Hazards and Earth System Science, 12(4), 1119–1133. https://doi.org/10.5194/nhess-12-1119-2012spa
dc.relation.referencesCreutin, J. D., & Borga, M. (2003). Radar hydrology modifies the monitoring of flash-flood hazard. Hydrological Processes, 17(7), 1453–1456. https://doi.org/10.1002/hyp.5122spa
dc.relation.referencesCreutin, J. D., Borga, M., Gruntfest, E., Lutoff, C., Zoccatelli, D., & Ruin, I. (2013). A space and time framework for analyzing human anticipation of flash floods. Journal of Hydrology, 482, 14–24. https://doi.org/10.1016/J.JHYDROL.2012.11.009spa
dc.relation.referencesDAGRAN. (2023). Histórico de emergencias. https://gobantioquia.maps.arcgis.com/apps/dashboards/63b454366f2a482697185d1e1fd7b5faspa
dc.relation.referencesDESINVENTAR. (2023). Disaster Information Management System. https://db.desinventar.org/spa
dc.relation.referencesDhote, P. R., Joshi, Y., Rajib, A., Thakur, P. K., Nikam, B. R., & Aggarwal, S. P. (2023). Evaluating Topography-based Approaches for Fast Floodplain Mapping in Data-scarce Complex-terrain Regions: Findings from a Himalayan Basin. Journal of Hydrology, 129309. https://doi.org/10.1016/j.jhydrol.2023.129309spa
dc.relation.referencesDouinot, A., Roux, H., Garambois, P. A., Larnier, K., Labat, D., & Dartus, D. (2016). Accounting for rainfall systematic spatial variability in flash flood forecasting. Journal of Hydrology, 541, 359–370. https://doi.org/10.1016/j.jhydrol.2015.08.024spa
dc.relation.referencesEhlschlaeger, C. (1989). Using the AT search algorithm to develop hydrologic models from digital elevation data. https://www.researchgate.net/publication/243781937spa
dc.relation.referencesEl-Fakharany, M. A., Hegazy, M. N., Mansour, N. M., & Abdo, A. M. (2021). Flash flood hazard assessment and prioritization of sub-watersheds in Heliopolis basin, East Cairo, Egypt. Arabian Journal of Geosciences. https://doi.org/https://doi.org/10.1007/s12517-021-07991-7spa
dc.relation.referencesFarhan, Y., Anbar, A., Al-Shaikh, N., & Mousa, R. (2017). Prioritization of Semi-Arid Agricultural Watershed Using Morphometric and Principal Component Analysis, Remote Sensing, and GIS Techniques, the Zerqa River Watershed, Northern Jordan. Agricultural Sciences, 08(01), 113–148. https://doi.org/10.4236/as.2017.81009spa
dc.relation.referencesFarooq, H., Ahmad, S., Bhat, M. S., Ahmad, B., & Alam, A. (2019). Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environmental Earth Sciences, 78(2), 0. https://doi.org/10.1007/s12665-019-8046-1spa
dc.relation.referencesGaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., … Viglione, A. (2009). A compilation of data on European flash floods. Journal of Hydrology, 367(1–2), 70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028spa
dc.relation.referencesGhasemlounia, R., & Utlu, M. (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis and Redvan’s priority methods: A case study of Harşit River basin. Journal of Hydrology, 603(PC), 127061. https://doi.org/10.1016/j.jhydrol.2021.127061spa
dc.relation.referencesGómez, D., Aristizábal, E., García, E. F., Marín, D., Valencia, S., & Vásquez, M. (2023). Landslides forecasting using satellite rainfall estimations and machine learning in the Colombian Andean region. Journal of South American Earth Sciences, 104293. https://doi.org/10.1016/j.jsames.2023.104293spa
dc.relation.referencesGuerrero, L. A., & Aristizábal, E. (2019). Estimación y análisis de umbrales críticos de lluvia para la ocurrencia de avenidas torrenciales en el Valle de Aburrá (Antioquia). Revista EIA, 16(32), 97–111. https://doi.org/10.24050/reia.v16i32.1281spa
dc.relation.referencesGuzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17. https://doi.org/10.1007/s10346-007-0112-1spa
dc.relation.referencesHenao Salgado, M. J., & Zambrano Nájera, J. (2022). Assessing Flood Early Warning Systems for Flash Floods. In Frontiers in Climate (Vol. 4). Frontiers Media S.A. https://doi.org/10.3389/fclim.2022.787042spa
dc.relation.referencesHermelín, M. (2003). El Paisaje Antioqueño: Otra perspectiva.spa
dc.relation.referencesHirschberg, J., Badoux, A., McArdell, B. W., Leonarduzzi, E., & Molnar, P. (2021). Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment. Natural Hazards and Earth System Sciences, 21(9), 2773–2789. https://doi.org/10.5194/nhess-21-2773-2021spa
dc.relation.referencesHjerdt, K. N. N., McDonnell, J. J. J., Seibert, J., & Rodhe, A. (2004). A new topographic index to quantify downslope controls on local drainage. Water Resources Research, 40(5). https://doi.org/10.1029/2004WR003130spa
dc.relation.referencesHoyos, C. D., Ceballos, L. I., Pérez-Carrasquilla, J. S., Sepúlveda, J., López-Zapata, S. M., Zuluaga, M. D., Velásquez, N., Herrera-Mej\’\ia, L., Hernández, O., Guzmán-Echavarr\’\ia, G., & others. (2019). Meteorological conditions leading to the 2015 Salgar flash flood: lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19(11), 2635–2665.spa
dc.relation.referencesHoyos, C. D., Ceballos, L. I., Pérez-Carrasquilla, J. S., Sepúlveda, J., López-Zapata, S. M., Zuluaga, M. D., Velásquez, N., Herrera-Mejía, L., Hernández, O., Guzmán-Echavarría, G., & Zapata, M. (2019). Meteorological conditions leading to the 2015 Salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19(11), 2635–2665. https://doi.org/10.5194/nhess-19-2635-2019spa
dc.relation.referencesIlinca, V. (2021). Using morphometrics to distinguish between debris flow, debris flood and flood (Southern Carpathians, Romania). Catena, 197(February 2020), 104982. https://doi.org/10.1016/j.catena.2020.104982spa
dc.relation.referencesJaramillo, L., Poveda, G., & Mejía, J. F. (2017). Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM. International Journal of Climatology, 37, 380–397. https://doi.org/10.1002/joc.5009spa
dc.relation.referencesJAXA. (2015). Dataset: ASF DAAC 2015, ALOS PALSAR_Radiometric_Terrain_Corrected_hi_res; Includes Material © JAXA/METI 2023. https://doi.org/https://doi.org/10.5067/JBYK3J6HFSVFspa
dc.relation.referencesJha, A. K., Bloch, R., & Lamond, J. (2012). Cities and Flooding. The World Bank. https://doi.org/10.1596/978-0-8213-8866-2spa
dc.relation.referencesJonkman, S. N. (2005). Global Perspectives on Loss of Human Life Caused by Floods. Natural Hazards, 34, 151–175. http://www.em-dat.net/.spa
dc.relation.referencesKallio, M., Virkki, V., Guillaume, J. H. A., & van Dijk, A. I. J. M. (2019). Downscaling runoff products using areal interpolation: a combined pycnophylactic-dasymetric method. 23rd International Congress on Modelling and Simulation.spa
dc.relation.referencesKirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 6(10), 362.spa
dc.relation.referencesLe Lay, M., & Saulnier, G. M. (2007). Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(13). https://doi.org/10.1029/2007GL029746spa
dc.relation.referencesLin, J. (1991). Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Information Theory, 37(1), 145–151. https://doi.org/10.1109/18.61115spa
dc.relation.referencesLin, J. M., & Billa, L. (2021). Spatial Prediction of Flood-Prone Areas Using Geographically Weighted Regression. Environmental Advances, 6, 100118. https://doi.org/10.1016/j.envadv.2021.100118spa
dc.relation.referencesLlasat, M. C., del Moral, A., Cortès, M., & Rigo, T. (2021). Convective precipitation trends in the Spanish Mediterranean region. Atmospheric Research, 257. https://doi.org/10.1016/j.atmosres.2021.105581spa
dc.relation.referencesLlasat, M. C., Marcos, R., Turco, M., Gilabert, J., & Llasat-Botija, M. (2016). Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. Journal of Hydrology, 541, 24–37. https://doi.org/10.1016/j.jhydrol.2016.05.040spa
dc.relation.referencesLópez-Bermeo, C., Montoya, R. D., Caro-Lopera, F. J., & Díaz-García, J. A. (2022). Validation of the accuracy of the CHIRPS precipitation dataset at representing climate variability in a tropical mountainous region of South America. Physics and Chemistry of the Earth, 127. https://doi.org/10.1016/j.pce.2022.103184spa
dc.relation.referencesLoritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H., & Zehe, E. (2019). A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. Hydrology and Earth System Sciences, 23(9), 3807–3821. https://doi.org/10.5194/hess-23-3807-2019spa
dc.relation.referencesLv, J., Qin, S., Chen, J., Qiao, S., Yao, J., Zhao, X., Cao, R., & Yin, J. (2023). Application of different watershed units to debris flow susceptibility mapping: A case study of Northeast China. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1118160spa
dc.relation.referencesMa, M., Wang, H., Yang, Y., Zhao, G., Tang, G., Hong, Z., Clark, R. A., Chen, Y., Xu, H., & Hong, Y. (2021). Development of a new rainfall-triggering index of flash flood warning-case study in Yunnan province, China. Journal of Flood Risk Management, 14(1). https://doi.org/10.1111/jfr3.12676spa
dc.relation.referencesMahala, A. (2020). The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Applied Water Science, 10(1). https://doi.org/10.1007/s13201-019-1118-2spa
dc.relation.referencesMarchi, L., Borga, M., Preciso, E., & Gaume, E. (2010). Characterisation of selected extreme flash floods in Europe and implications for flood risk management. Journal of Hydrology, 394(1–2). https://doi.org/10.1016/j.jhydrol.2010.07.017spa
dc.relation.referencesMarchi, L., & Tecca, P. R. (1995). Cônes de dejection dans les alpes orientales italiennes: Morphométrie et processus d’accumulation. Geodinamica Acta, 8(1), 20–27. https://doi.org/10.1080/09853111.1995.11105270spa
dc.relation.referencesMoreno, H. A., Vélez, M. V., Montoya, J. D., & Rhenals Garrido, R. L. (2006). La lluvia y los deslizamientos de tierra en Antioquia: análisis de su ocurrencia en las escalas interanual, intraanual y diaria. Revista EIA, 5, 59–69. http://revista.eia.edu.co/articulos5/art45.pdfspa
dc.relation.referencesNefeslioglu, H. A., Duman, T. Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(3–4), 401–418. https://doi.org/10.1016/j.geomorph.2006.10.036spa
dc.relation.referencesNobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., Waterloo, M., & Saleska, S. (2011). Height Above the Nearest Drainage - a hydrologically relevant new terrain model. Journal of Hydrology, 404(1–2), 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051spa
dc.relation.referencesNobre, A. D., Cuartas, L. A., Momo, M. R., Severo, D. L., Pinheiro, A., & Nobre, C. A. (2016). HAND contour: A new proxy predictor of inundation extent. Hydrological Processes, 30(2), 320–333. https://doi.org/10.1002/hyp.10581spa
dc.relation.referencesNorbiato, D., Borga, M., Degli Esposti, S., Gaume, E., & Anquetin, S. (2008). Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. Journal of Hydrology, 362(3–4), 274–290. https://doi.org/10.1016/j.jhydrol.2008.08.023spa
dc.relation.referencesObeidat, M., Awawdeh, M., & Al-Hantouli, F. (2021). Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk Management, 14(2). https://doi.org/10.1111/jfr3.12711spa
dc.relation.referencesOh, C. H., Choo, K. S., Go, C. M., Choi, J. R., & Kim, B. S. (2021). Forecasting of debris flow using machine learning-based adjusted rainfall information and ramms model. Water (Switzerland), 13(17). https://doi.org/10.3390/w13172360spa
dc.relation.referencesPatton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12(5), 941–952. https://doi.org/10.1029/WR012i005p00941spa
dc.relation.referencesPenna, D., Tromp-Van Meerveld, H. J., Gobbi, A., Borga, M., & Dalla Fontana, G. (2011). The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15(3), 689–702. https://doi.org/10.5194/hess-15-689-2011spa
dc.relation.referencesPérez-Hincapié, A. M. (2019). Zonificación de amenazas por avenidas torrenciales a partir del análisis geomorfológico de los depósitos asociados y el uso de isótopos cosmogénicos. Caso de estudio: Cuencas de la vertiente oriental de la Cordillera Occidental Colombiana, Andes del Norte.spa
dc.relation.referencesPérez-Hincapié, A. M., Ramírez, G., Geovany, O., Sanmiguel, B., & Paniagua-arroyave, J. F. (2010). Comparative geomorphological analysis applied to the hazard assessment of debris flows : case study of three watersheds of the Western Cordillera of Colombia , Northern Andes . 1, 12.spa
dc.relation.referencesPonziani, M., Ponziani, D., Giorgi, A., Stevenin, H., & Ratto, S. M. (2023). The use of machine learning techniques for a predictive model of debris flows triggered by short intense rainfall. Natural Hazards. https://doi.org/10.1007/s11069-023-05853-xspa
dc.relation.referencesPoveda, G. (2006). El Clima de Antioquia. Geografía de Antioquia, January 2006.spa
dc.relation.referencesPradhan, A. M. S., Lee, S. R., & Kim, Y. T. (2019). A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan, Korea. Landslides, 16(3), 647–659. https://doi.org/10.1007/s10346-018-1112-zspa
dc.relation.referencesQing, F., Zhao, Y., Meng, X., Su, X., Qi, T., & Yue, D. (2020). Application of machine learning to debris flow susceptibility mapping along the China-Pakistan Karakoram Highway. Remote Sensing, 12(18). https://doi.org/10.3390/RS12182933spa
dc.relation.referencesRagettli, S., Zhou, J., Wang, H., Liu, C., & Guo, L. (2017). Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization. Journal of Hydrology, 555, 330–346. https://doi.org/10.1016/j.jhydrol.2017.10.031spa
dc.relation.referencesRennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G., Tomasella, J., & Waterloo, M. J. (2008). HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sensing of Environment, 112(9), 3469–3481. https://doi.org/10.1016/j.rse.2008.03.018spa
dc.relation.referencesRiazi, M., Khosravi, K., Shahedi, K., Ahmad, S., Jun, C., Bateni, S. M., & Kazakis, N. (2023). Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms. Science of the Total Environment, 871. https://doi.org/10.1016/j.scitotenv.2023.162066spa
dc.relation.referencesRigo, T. (2008). Estudio de sistemas convectivos mesoscalares en la zona mediterránea occidental mediante el uso del radar meteorológico. Universidad de Barcelona.spa
dc.relation.referencesRivera, D. (2015, May 18). El país sumido en la tristeza por el desastre de Salgar. Revista Semana. https://www.semana.com/nacion/articulo/avalancha-en-salgar-deja-48-muertos-un-centenar-de-desaparecidos/428243-3spa
dc.relation.referencesRodríguez‐Iturbe, I., & Valdés, J. B. (1979). The geomorphologic structure of hydrologic response. Water Resources Research, 15(6), 1409–1420. https://doi.org/10.1029/WR015i006p01409spa
dc.relation.referencesRozalis, S., Morin, E., Yair, Y., & Price, C. (2010). Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. Journal of Hydrology, 394(1–2), 245–255. https://doi.org/10.1016/j.jhydrol.2010.03.021spa
dc.relation.referencesRuiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., & Ehret, U. (2012). Extreme flood response to short-duration convective rainfall in South-West Germany. Hydrology and Earth System Sciences, 16(5), 1543–1559. https://doi.org/10.5194/hess-16-1543-2012spa
dc.relation.referencesRuiz-Villanueva, V., Díez-Herrero, A., Bodoque, J. M., Ballesteros Cánovas, J. A., & Stoffel, M. (2013). Characterisation of flash floods in small ungauged mountain basins of Central Spain using an integrated approach. Catena, 110, 32–43. https://doi.org/10.1016/j.catena.2013.06.015spa
dc.relation.referencesSaharia, M., Kirstetter, P.-E., Vergara, H., Gourley, J., Emmanuel, I., & Andrieu, H. (2021). On the Impact of Rainfall Spatial Variability, Geomorphology, and Climatology on Flash Floods. Water Resources Research.spa
dc.relation.referencesSantos, M., & Fragoso, M. (2016). Precipitation thresholds for triggering floods in the Corgo basin, Portugal. Water (Switzerland), 8(9). https://doi.org/10.3390/w8090376spa
dc.relation.referencesSaxton, K. E., Rawls, W. J. (2006). oil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 1569–1578. https://doi.org/https://doi.org/10.2136/sssaj2005.0117spa
dc.relation.referencesSegoni, S., Piciullo, L., & Gariano, S. L. (2018). A review of the recent literature on rainfall thresholds for landslide occurrence. In Landslides (Vol. 15, Issue 8, pp. 1483–1501). Springer Verlag. https://doi.org/10.1007/s10346-018-0966-4spa
dc.relation.referencesSepúlveda Berrío, J. (2015). Estimación cuantitativa de precipitación a partir de la información de Radar Meteorológico del Área Metropolitana del Valle de Aburrá [Universidad Nacional de Colombia, sede Medellín]. http://www.bdigital.unal.edu.co/54581/spa
dc.relation.referencesSepúlveda-Berrío, J., & Hoyos, C. D. (2017). Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia.spa
dc.relation.referencesShivhare, V., Gupta, C., Mallick, J., & Singh, C. K. (2022). Geospatial modelling for sub-watershed prioritization in Western Himalayan Basin using morphometric parameters. Natural Hazards, 110(1), 545–561. https://doi.org/10.1007/s11069-021-04957-6spa
dc.relation.referencesSIATA. (2023). SIATA Monitoreo. https://siata.gov.co/sitio_web/index.php/monitoreospa
dc.relation.referencesSivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Liang, X., Mcdonnell, J. J., Mendiondo, E. M., Connell, P. E. O., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S., & Zehe, E. (2012). IAHS Decade on Predictions in Ungauged Basins ( PUB ), 2003 – 2012 : Shaping an exciting future for the hydrological sciences IAHS Decade on Predictions in Ungauged Basins ( PUB ), 2003 – 2012 : Shaping an exciting future for the hydrological sciences. 6667(June 2013), 2003–2012. https://doi.org/10.1623/hysj.48.6.857.51421spa
dc.relation.referencesSørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1), 101–112. https://doi.org/10.5194/hess-10-101-2006spa
dc.relation.referencesSteiner, M., Houze, R. A., & Yuter, S. E. (1995). Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. In Journal of Applied Meteorology (Vol. 34, Issue 9, pp. 1978–2007). https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2spa
dc.relation.referencesTaha, M. M. N., Elbarbary, S. M., Naguib, D. M., & El-Shamy, I. Z. (2017). Flash flood hazard zonation based on basin morphometry using remote sensing and GIS techniques: A case study of Wadi Qena basin, Eastern Desert, Egypt. Remote Sensing Applications: Society and Environment, 8, 157–167. https://doi.org/10.1016/j.rsase.2017.08.007spa
dc.relation.referencesTarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319. https://doi.org/10.1029/96WR03137spa
dc.relation.referencesUllah, K., Wang, Y., Fang, Z., Wang, L., & Rahman, M. (2022). Multi-hazard susceptibility mapping based on Convolutional Neural Networks. Geoscience Frontiers, 13(5). https://doi.org/10.1016/j.gsf.2022.101425spa
dc.relation.referencesUnnithan, S. L. K., Biswal, B., Sharples, W., Rüdiger, C., Bahramian, K., & Hou, J. (2023). Sensitivity Analysis of Modelled Flood Inundation Extents over Hawkesbury–Nepean Catchment. Geosciences, 13(3), 67. https://doi.org/10.3390/geosciences13030067spa
dc.relation.referencesVannier, O., Braud, I., & Anquetin, S. (2014). Regional estimation of catchment-scale soil properties by means of streamflow recession analysis for use in distributed hydrological models. Hydrological Processes, 28(26), 6276–6291. https://doi.org/10.1002/hyp.10101spa
dc.relation.referencesVelásquez, N. (2022). Assessment of Deep Convective Systems in the Colombian Andean Region. Hydrology, 9(7). https://doi.org/10.3390/hydrology9070119spa
dc.relation.referencesVelásquez, N., Hoyos, C., Vélez, J., & Zapata, E. (2020). Reconstructing the Salgar 2015 Flash Flood Using Radar Retrievals and a Conceptual Modeling Framework: A Basis for a Better Flood Generating Mechanisms Discrimination. Hydrology and Earth System Sciences Discussions, 1–36. https://doi.org/10.5194/hess-2018-452spa
dc.relation.referencesVelásquez, N., Vélez, J. I., Álvarez-Villa, O. D., & Salamanca, S. P. (2023). Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework. Hydrology, 10(4). https://doi.org/10.3390/hydrology10040076spa
dc.relation.referencesWelsh, A., & Davies, T. (2011). Identification of alluvial fans susceptible to debris-flow hazards. Landslides, 8(2), 183–194. https://doi.org/10.1007/s10346-010-0238-4spa
dc.relation.referencesWu, W., Fan, Y., Wang, Z., & Liu, H. (2008). Assessing effects of digital elevation model resolutions on soil-landscape correlations in a hilly area. Agriculture, Ecosystems and Environment, 126(3–4), 209–216. https://doi.org/10.1016/j.agee.2008.01.026spa
dc.relation.referencesXiong, K., Adhikari, B. R., Stamatopoulos, C. A., Zhan, Y., Wu, S., Dong, Z., & Di, B. (2020). Comparison of different machine learning methods for debris flow susceptibility mapping: A case study in the Sichuan Province, China. Remote Sensing, 12(2). https://doi.org/10.3390/rs12020295spa
dc.relation.referencesYang, L., Smith, J., Baeck, M. L., & Morin, E. (2019). Flash flooding in arid/semiarid regions: Climatological analyses of flood-producing storms in central arizona during the North American monsoon. Journal of Hydrometeorology, 20(7), 1449–1471. https://doi.org/10.1175/JHM-D-19-0016.1spa
dc.relation.referencesYoung, A., Bhattacharya, B., & Zevenbergen, C. (2021). A rainfall threshold-based approach to early warnings in urban data-scarce regions: A case study of pluvial flooding in Alexandria, Egypt. Journal of Flood Risk Management, 14(2). https://doi.org/10.1111/jfr3.12702spa
dc.relation.referencesYoussef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3). https://doi.org/10.1007/s12665-010-0551-1spa
dc.relation.referencesZhang, R., Chen, Y., Zhang, X., Ma, Q., & Ren, L. (2022). Mapping homogeneous regions for flash floods using machine learning: A case study in Jiangxi province, China. International Journal of Applied Earth Observation and Geoinformation, 108. https://doi.org/10.1016/j.jag.2022.102717spa
dc.relation.referencesZhang, Y., Ge, T., Tian, W., & Liou, Y. A. (2019). Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China. Remote Sensing, 11(23). https://doi.org/10.3390/rs11232801spa
dc.relation.referencesZhao, Y., Meng, X., Qi, T., Chen, G., Li, Y., Yue, D., & Qing, F. (2021). Modeling the spatial distribution of debris flows and analysis of the controlling factors: A machine learning approach. Remote Sensing, 13(23). https://doi.org/10.3390/rs13234813spa
dc.relation.referencesZhao, Y., Meng, X., Qi, T., Chen, G., Li, Y., Yue, D., & Qing, F. (2022). Extracting more features from rainfall data to analyze the conditions triggering debris flows. Landslides, 19(9), 2091–2099. https://doi.org/10.1007/s10346-022-01893-9spa
dc.relation.referencesZhao, Y., Meng, X., Qi, T., Chen, G., Li, Y., Yue, D., & Qing, F. (2023). Estimating the daily rainfall thresholds of regional debris flows in the Bailong River Basin, China. Bulletin of Engineering Geology and the Environment, 82(2). https://doi.org/10.1007/s10064-023-03068-9spa
dc.relation.referencesZoccatelli, D., Bernhofer, C., Janabi, F. al, Borga, M., Jatho, N., & Tarolli, M. (2013). Rainfall Space-Time Organization and Orographic Control on Flash Flood Response: The Weisseritz Event of August 13, 2002. Journal of Hydrologic Engineering, 18(2), 183–193. https://doi.org/10.1061/(asce)he.1943-5584.0000569spa
dc.relation.referencesZoccatelli, D., Borga, M., Viglione, A., Chirico, G. B., & Blöschl, G. (2011). Spatial moments of catchment rainfall: Rainfall spatial organisation, basin morphology, and flood response. Hydrology and Earth System Sciences, 15(12), 3767–3783. https://doi.org/10.5194/hess-15-3767-2011spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.lembGeomorfología
dc.subject.lembMorfometría
dc.subject.lembCuencas hidrográficas
dc.subject.proposalAvenidas torrencialesspa
dc.subject.proposalGeomorfologíaspa
dc.subject.proposalMorfometríaspa
dc.subject.proposalLluviaspa
dc.subject.proposalAmenazas naturalesspa
dc.subject.proposalGestión del riesgospa
dc.subject.proposalFlash floodsspa
dc.subject.proposalGeomorphologyeng
dc.subject.proposalMorphometryeng
dc.subject.proposalRainfalleng
dc.subject.proposalNatural hazardseng
dc.subject.proposalRisk managementeng
dc.titleAnálisis de las condiciones geomorfológicas y de precipitación detonantes de eventos torrenciales en cuencas del departamento de Antioquiaspa
dc.title.translatedAnalysis of the geomorphological and rainfall conditions triggering flash floods in basins of the department of Antioquiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017216112.2023.pdf
Tamaño:
3.55 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: