Análisis de las condiciones geomorfológicas y de precipitación detonantes de eventos torrenciales en cuencas del departamento de Antioquia
dc.contributor.advisor | Velásquez Girón, Nicolás | |
dc.contributor.advisor | Carvajal Serna, Luis Fernando | |
dc.contributor.author | Rodríguez Martínez, Laura | |
dc.contributor.orcid | 0000-0002-7690-6322 | spa |
dc.date.accessioned | 2024-01-15T15:06:44Z | |
dc.date.available | 2024-01-15T15:06:44Z | |
dc.date.issued | 2023-10-20 | |
dc.description.abstract | Las avenidas torrenciales son una de las principales amenazas naturales a nivel mundial. Estos eventos son generados por una combinación de factores atmosféricos y geomorfológicos complejos que siguen siendo materia de estudio. El objetivo de este trabajo es identificar patrones geomorfológicos y de precipitación característicos de cuencas torrenciales en el departamento de Antioquia a partir de bases de datos con reportes históricos, información meteorológica detallada y modelos de elevación digital. Con esta investigación se pretende hacer inferencias generalizadas sobre el fenómeno. Inicialmente se analizan las características geomorfológicas y morfométricas de las cuencas, encontrando que las más importantes son las asociadas al relieve. Se proponen metodologías para identificar cuencas torrenciales obteniendo un porcentaje de error cercano al 15%, el cual disminuye a menos de 10% cuando se introducen indicadores relacionados con la lluvia. El análisis espacial agregado de la precipitación antecedente a los eventos torrenciales muestra que los 10 días anteriores son los más importantes. Además, el comportamiento espacial distribuido de la precipitación durante los eventos torrenciales, evidencia que la lluvia se concentra en las partes altas de las cuencas, donde la interacción con las condiciones geomorfológicas propicia el desencadenamiento del evento torrencial. Los resultados de este trabajo son significativos para la gestión del riesgo del territorio y aportan información relevante sobre el comportamiento geomorfológico y de la precipitación en cuencas torrenciales del departamento. (texto tomado de la fuente) | spa |
dc.description.abstract | Flash floods are one of the main natural threats worldwide. These events are generated by a combination of complex atmospheric and geomorphological factors that that are still being studied. The objective of this work is to identify characteristic geomorphological and rainfall patterns of torrential basins in Antioquia, Colombia from databases with historical reports, detailed meteorological information, and digital elevation models. This research aims to make generalized inferences about the phenomenon. Initially, the geomorphological and morphometric characteristics of the basins are analyzed, finding that the most important are those associated with relief. Methodologies are proposed to identify torrential basins, obtaining an error percentage close to 15%, which decreases to less than 10% when indicators related to rain are introduced. The aggregate spatial analysis of the rainfall preceding torrential events shows that the previous 10 days are the most important. In addition, the spatial distribution behavior of rainfall during torrential events shows that the rain is concentrated in the upper parts of the basins, where the interaction with geomorphological conditions favors the triggering of the torrential event. The results of this work are significant for the risk management of the territory and provide relevant information on the geomorphological and rainfall behavior in torrential basins of the department of Antioquia. | eng |
dc.description.curriculararea | Área Curricular de Medio Ambiente | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería – Recursos Hidráulicos | spa |
dc.description.researcharea | Planificación de recursos hidráulicos, amenazas naturales, gestión del riesgo | spa |
dc.format.extent | 109 páginas, ilustraciones | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85269 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos | spa |
dc.relation.references | Abdelkader, M. M., Al-Amoud, A. I., El Alfy, M., El-Feky, A., & Saber, M. (2021). Assessment of flash flood hazard based on morphometric aspects and rainfall-runoff modeling in Wadi Nisah, central Saudi Arabia. Remote Sensing Applications: Society and Environment, 23(May), 100562. https://doi.org/10.1016/j.rsase.2021.100562 | spa |
dc.relation.references | Adnan, M. S. G., Dewan, A., Zannat, K. E., & Abdullah, A. Y. M. (2019). The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh. Natural Hazards, 99(1), 425–448. https://doi.org/10.1007/s11069-019-03749-3 | spa |
dc.relation.references | Al, S. E. T., & Elson, P. E. A. N. (2005). Extraordinary flood response of a small urban watershed. Bulletin of the American Meteorological Society, 86(12), 1730–1732. https://doi.org/10.1175/JHM426.1 | spa |
dc.relation.references | Alam, A., Ahmed, B., & Sammonds, P. (2021). Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quaternary International, 575–576(May 2020), 295–307. https://doi.org/10.1016/j.quaint.2020.04.047 | spa |
dc.relation.references | Al-Saif, H. (2010). Assessing flood vulnerability of Wadi Hanifa basin and surrounding area, central Saudi Arabia. Journal of Environmental Hydrology, 18, 1–12. http://www.hydroweb.com | spa |
dc.relation.references | Amengual, A., Borga, M., Ravazzani, G., & Crema, S. (2021). The Role of Storm Movement in Controlling Flash Flood Response: An Analysis of the 28 September 2012 Extreme Event in Murcia, Southeastern Spain. Journal of Hydrometeorology, 22(9), 2379–2392. https://doi.org/10.1175/JHM-D-21-0001.1 | spa |
dc.relation.references | Arango, M. I., Aristizábal, E., & Gómez, F. (2021). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105(1), 983–1012. https://doi.org/10.1007/s11069-020-04346-5 | spa |
dc.relation.references | Arias, L. A. (2011). Estructura, Clasificación y Evolución del relieve en el departamento de Antioquia. In R. Callejas & Á. Idárraga (Eds.), FLORA DE ANTIOQUIA CATÁLOGO DE LAS PLANTAS VASCULARES VOLUMEN I (pp. 27–179). Universidad de Antioquia. | spa |
dc.relation.references | Aristizábal, E., Gamboa, M. F., & Javier Leoz, F. (2010). SISTEMA DE ALERTA TEMPRANA POR MOVIMIENTOS EN MASA INDUCIDOS POR LLUVIA PARA EL VALLE DE ABURRÁ, COLOMBIA. In Revista EIA. | spa |
dc.relation.references | Aristizábal, E., González, T., Montoya, J., Vélez, J., Martínez, H., & Guerra, A. (2011). Analysis of empirical rainfall thresholds for the prognosis of lanslides in the Aburrá Valley, Colombia. Revista EIA, 8(15), 95–111. | spa |
dc.relation.references | Aristizábal, E., Martínez, H., & Vélez, J. I. I. (2010). Una revisión sobre el estudio de movimientos en masa detonados por lluvias. Revista de La Academia Colombiana de Ciencias, 34(53), 209–227. | spa |
dc.relation.references | Aristizábal, E., Riaño, F., & Jiménez-Ortiz, J. (2022). Rainfall thresholds as triggering factor in the Central cordillera of the Colombian Andes. Boletin de Geologia, 44(2), 183–197. https://doi.org/10.18273/revbol.v44n2-2022009 | spa |
dc.relation.references | Aristizábal, E., Vélez, J. I., Martínez, H. E., & Jaboyedoff, M. (2016). SHIA_Landslide: a distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides, 13(3), 497–517. https://doi.org/10.1007/s10346-015-0580-7 | spa |
dc.relation.references | Aristizábal, E., Vélez Upegui, J. I., & Martínez Carvajal, H. E. (2017). Influencia De La Lluvia Antecedente Y La Conductividad Hidráulica En La Ocurrencia De Deslizamientos Detonados Por Lluvias Utilizando El Modelo Shia_Landslide. Revista EIA, 13(26), 31–46. https://doi.org/10.24050/reia.v13i26.863 | spa |
dc.relation.references | Aronica, G. T., Brigandí, G., & Morey, N. (2012). Flash floods and debris flow in the city area of Messina, north-east part of Sicily, Italy in October 2009: The case of the Giampilieri catchment. Natural Hazards and Earth System Science, 12(5), 1295–1309. https://doi.org/10.5194/nhess-12-1295-2012 | spa |
dc.relation.references | Ávila, A. D., Carvajal, Y. E., & Justino, F. (2015). Representative rainfall thresholds for flash floods, Colombia Representative rainfall thresholds for flash floods in the Cali river watershed, Colombia Representative rainfall thresholds for flash floods, Colombia. Nat. Hazards Earth Syst. Sci. Discuss, 3, 4095–4119. https://doi.org/10.5194/nhessd-3-4095-2015 | spa |
dc.relation.references | Bajabaa, S., Masoud, M., & Al-Amri, N. (2014). Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arabian Journal of Geosciences, 7(6), 2469–2481. https://doi.org/10.1007/s12517-013-0941-2 | spa |
dc.relation.references | Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., & Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of Colombia (1998–2005). Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00092 | spa |
dc.relation.references | Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834 | spa |
dc.relation.references | Bezak, N., Šraj, M., & Mikoš, M. (2016). Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides. Journal of Hydrology, 541, 272–284. https://doi.org/10.1016/j.jhydrol.2016.02.058 | spa |
dc.relation.references | Bhatt, S., & Ahmed, S. A. (2014). Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto International, 29(8), 878–894. https://doi.org/10.1080/10106049.2013.868042 | spa |
dc.relation.references | Borga, M., Anagnostou, E. N., Blöschl, G., & Creutin, J.-D. (2011). Flash flood forecasting, warning and risk management: The HYDRATE project. Environmental Science and Policy, 14(7). https://doi.org/10.1016/j.envsci.2011.05.017 | spa |
dc.relation.references | Borga, M., Stoffel, M., Marchi, L., Marra, F., & Jakob, M. (2014). Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. Journal of Hydrology, 518(PB), 194–205. https://doi.org/10.1016/j.jhydrol.2014.05.022 | spa |
dc.relation.references | Caballero, J. H. (2011). Las avenidas torrenciales, una amenaza natural en el Valle de Aburrá. Revista Gestión y Ambiente, 45–50. | spa |
dc.relation.references | Cabral, V., Reis, F., Veloso, V., Ogura, A., & Zarfl, C. (2023). A multi-step hazard assessment for debris-flow prone areas influenced by hydroclimatic events. Engineering Geology, 313. https://doi.org/10.1016/j.enggeo.2022.106961 | spa |
dc.relation.references | Carvajal, E. (2018). 12 casas arrasadas y 50 evacuadas por avalancha en Puerto Venus. El Colombiano. | spa |
dc.relation.references | Castillo, V. M., Gómez-Plaza, A., & Martínez-Mena, M. (2003). The role of antecedent soil water content in the runoff response of semiarid catchments: A simulation approach. Journal of Hydrology, 284(1–4), 114–130. https://doi.org/10.1016/S0022-1694(03)00264-6 | spa |
dc.relation.references | Chen, C. Y., & Yu, F. C. (2011). Morphometric analysis of debris flows and their source areas using GIS. Geomorphology, 129(3–4), 387–397. https://doi.org/10.1016/j.geomorph.2011.03.002 | spa |
dc.relation.references | Chen, S., Zhu, S., Wen, X., Shao, H., He, C., Qi, J., Lv, L., Han, L., & Liu, S. (2023). Mapping Potential Soil Water Erosion and Flood Hazard Zones in the Yarlung Tsangpo River Basin, China. Atmosphere, 14(1). https://doi.org/10.3390/atmos14010049 | spa |
dc.relation.references | Comisión Económica para América Latina y el Caribe (Cepal). (2012). Valoración de daños y pérdidas. Ola invernal en Colombia 2010-2011. | spa |
dc.relation.references | Costache, R., Pham, Q. B., Sharifi, E., Linh, N. T. T., Abba, S. I., Vojtek, M., Vojteková, J., Nhi, P. T. T., & Khoi, D. N. (2020). Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sensing, 12(1). https://doi.org/10.3390/RS12010106 | spa |
dc.relation.references | Coustau, M., Bouvier, C., Borrell-Estupina, V., & Jourde, H. (2012). Flood modelling with a distributed event-based parsimonious rainfall-runoff model: Case of the karstic Lez river catchment. Natural Hazards and Earth System Science, 12(4), 1119–1133. https://doi.org/10.5194/nhess-12-1119-2012 | spa |
dc.relation.references | Creutin, J. D., & Borga, M. (2003). Radar hydrology modifies the monitoring of flash-flood hazard. Hydrological Processes, 17(7), 1453–1456. https://doi.org/10.1002/hyp.5122 | spa |
dc.relation.references | Creutin, J. D., Borga, M., Gruntfest, E., Lutoff, C., Zoccatelli, D., & Ruin, I. (2013). A space and time framework for analyzing human anticipation of flash floods. Journal of Hydrology, 482, 14–24. https://doi.org/10.1016/J.JHYDROL.2012.11.009 | spa |
dc.relation.references | DAGRAN. (2023). Histórico de emergencias. https://gobantioquia.maps.arcgis.com/apps/dashboards/63b454366f2a482697185d1e1fd7b5fa | spa |
dc.relation.references | DESINVENTAR. (2023). Disaster Information Management System. https://db.desinventar.org/ | spa |
dc.relation.references | Dhote, P. R., Joshi, Y., Rajib, A., Thakur, P. K., Nikam, B. R., & Aggarwal, S. P. (2023). Evaluating Topography-based Approaches for Fast Floodplain Mapping in Data-scarce Complex-terrain Regions: Findings from a Himalayan Basin. Journal of Hydrology, 129309. https://doi.org/10.1016/j.jhydrol.2023.129309 | spa |
dc.relation.references | Douinot, A., Roux, H., Garambois, P. A., Larnier, K., Labat, D., & Dartus, D. (2016). Accounting for rainfall systematic spatial variability in flash flood forecasting. Journal of Hydrology, 541, 359–370. https://doi.org/10.1016/j.jhydrol.2015.08.024 | spa |
dc.relation.references | Ehlschlaeger, C. (1989). Using the AT search algorithm to develop hydrologic models from digital elevation data. https://www.researchgate.net/publication/243781937 | spa |
dc.relation.references | El-Fakharany, M. A., Hegazy, M. N., Mansour, N. M., & Abdo, A. M. (2021). Flash flood hazard assessment and prioritization of sub-watersheds in Heliopolis basin, East Cairo, Egypt. Arabian Journal of Geosciences. https://doi.org/https://doi.org/10.1007/s12517-021-07991-7 | spa |
dc.relation.references | Farhan, Y., Anbar, A., Al-Shaikh, N., & Mousa, R. (2017). Prioritization of Semi-Arid Agricultural Watershed Using Morphometric and Principal Component Analysis, Remote Sensing, and GIS Techniques, the Zerqa River Watershed, Northern Jordan. Agricultural Sciences, 08(01), 113–148. https://doi.org/10.4236/as.2017.81009 | spa |
dc.relation.references | Farooq, H., Ahmad, S., Bhat, M. S., Ahmad, B., & Alam, A. (2019). Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environmental Earth Sciences, 78(2), 0. https://doi.org/10.1007/s12665-019-8046-1 | spa |
dc.relation.references | Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., Blaškovičová, L., Blöschl, G., Borga, M., Dumitrescu, A., Daliakopoulos, I., Garcia, J., Irimescu, A., Kohnova, S., Koutroulis, A., Marchi, L., Matreata, S., Medina, V., Preciso, E., … Viglione, A. (2009). A compilation of data on European flash floods. Journal of Hydrology, 367(1–2), 70–78. https://doi.org/10.1016/j.jhydrol.2008.12.028 | spa |
dc.relation.references | Ghasemlounia, R., & Utlu, M. (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis and Redvan’s priority methods: A case study of Harşit River basin. Journal of Hydrology, 603(PC), 127061. https://doi.org/10.1016/j.jhydrol.2021.127061 | spa |
dc.relation.references | Gómez, D., Aristizábal, E., García, E. F., Marín, D., Valencia, S., & Vásquez, M. (2023). Landslides forecasting using satellite rainfall estimations and machine learning in the Colombian Andean region. Journal of South American Earth Sciences, 104293. https://doi.org/10.1016/j.jsames.2023.104293 | spa |
dc.relation.references | Guerrero, L. A., & Aristizábal, E. (2019). Estimación y análisis de umbrales críticos de lluvia para la ocurrencia de avenidas torrenciales en el Valle de Aburrá (Antioquia). Revista EIA, 16(32), 97–111. https://doi.org/10.24050/reia.v16i32.1281 | spa |
dc.relation.references | Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17. https://doi.org/10.1007/s10346-007-0112-1 | spa |
dc.relation.references | Henao Salgado, M. J., & Zambrano Nájera, J. (2022). Assessing Flood Early Warning Systems for Flash Floods. In Frontiers in Climate (Vol. 4). Frontiers Media S.A. https://doi.org/10.3389/fclim.2022.787042 | spa |
dc.relation.references | Hermelín, M. (2003). El Paisaje Antioqueño: Otra perspectiva. | spa |
dc.relation.references | Hirschberg, J., Badoux, A., McArdell, B. W., Leonarduzzi, E., & Molnar, P. (2021). Evaluating methods for debris-flow prediction based on rainfall in an Alpine catchment. Natural Hazards and Earth System Sciences, 21(9), 2773–2789. https://doi.org/10.5194/nhess-21-2773-2021 | spa |
dc.relation.references | Hjerdt, K. N. N., McDonnell, J. J. J., Seibert, J., & Rodhe, A. (2004). A new topographic index to quantify downslope controls on local drainage. Water Resources Research, 40(5). https://doi.org/10.1029/2004WR003130 | spa |
dc.relation.references | Hoyos, C. D., Ceballos, L. I., Pérez-Carrasquilla, J. S., Sepúlveda, J., López-Zapata, S. M., Zuluaga, M. D., Velásquez, N., Herrera-Mej\’\ia, L., Hernández, O., Guzmán-Echavarr\’\ia, G., & others. (2019). Meteorological conditions leading to the 2015 Salgar flash flood: lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19(11), 2635–2665. | spa |
dc.relation.references | Hoyos, C. D., Ceballos, L. I., Pérez-Carrasquilla, J. S., Sepúlveda, J., López-Zapata, S. M., Zuluaga, M. D., Velásquez, N., Herrera-Mejía, L., Hernández, O., Guzmán-Echavarría, G., & Zapata, M. (2019). Meteorological conditions leading to the 2015 Salgar flash flood: Lessons for vulnerable regions in tropical complex terrain. Natural Hazards and Earth System Sciences, 19(11), 2635–2665. https://doi.org/10.5194/nhess-19-2635-2019 | spa |
dc.relation.references | Ilinca, V. (2021). Using morphometrics to distinguish between debris flow, debris flood and flood (Southern Carpathians, Romania). Catena, 197(February 2020), 104982. https://doi.org/10.1016/j.catena.2020.104982 | spa |
dc.relation.references | Jaramillo, L., Poveda, G., & Mejía, J. F. (2017). Mesoscale convective systems and other precipitation features over the tropical Americas and surrounding seas as seen by TRMM. International Journal of Climatology, 37, 380–397. https://doi.org/10.1002/joc.5009 | spa |
dc.relation.references | JAXA. (2015). Dataset: ASF DAAC 2015, ALOS PALSAR_Radiometric_Terrain_Corrected_hi_res; Includes Material © JAXA/METI 2023. https://doi.org/https://doi.org/10.5067/JBYK3J6HFSVF | spa |
dc.relation.references | Jha, A. K., Bloch, R., & Lamond, J. (2012). Cities and Flooding. The World Bank. https://doi.org/10.1596/978-0-8213-8866-2 | spa |
dc.relation.references | Jonkman, S. N. (2005). Global Perspectives on Loss of Human Life Caused by Floods. Natural Hazards, 34, 151–175. http://www.em-dat.net/. | spa |
dc.relation.references | Kallio, M., Virkki, V., Guillaume, J. H. A., & van Dijk, A. I. J. M. (2019). Downscaling runoff products using areal interpolation: a combined pycnophylactic-dasymetric method. 23rd International Congress on Modelling and Simulation. | spa |
dc.relation.references | Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 6(10), 362. | spa |
dc.relation.references | Le Lay, M., & Saulnier, G. M. (2007). Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(13). https://doi.org/10.1029/2007GL029746 | spa |
dc.relation.references | Lin, J. (1991). Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Information Theory, 37(1), 145–151. https://doi.org/10.1109/18.61115 | spa |
dc.relation.references | Lin, J. M., & Billa, L. (2021). Spatial Prediction of Flood-Prone Areas Using Geographically Weighted Regression. Environmental Advances, 6, 100118. https://doi.org/10.1016/j.envadv.2021.100118 | spa |
dc.relation.references | Llasat, M. C., del Moral, A., Cortès, M., & Rigo, T. (2021). Convective precipitation trends in the Spanish Mediterranean region. Atmospheric Research, 257. https://doi.org/10.1016/j.atmosres.2021.105581 | spa |
dc.relation.references | Llasat, M. C., Marcos, R., Turco, M., Gilabert, J., & Llasat-Botija, M. (2016). Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. Journal of Hydrology, 541, 24–37. https://doi.org/10.1016/j.jhydrol.2016.05.040 | spa |
dc.relation.references | López-Bermeo, C., Montoya, R. D., Caro-Lopera, F. J., & Díaz-García, J. A. (2022). Validation of the accuracy of the CHIRPS precipitation dataset at representing climate variability in a tropical mountainous region of South America. Physics and Chemistry of the Earth, 127. https://doi.org/10.1016/j.pce.2022.103184 | spa |
dc.relation.references | Loritz, R., Kleidon, A., Jackisch, C., Westhoff, M., Ehret, U., Gupta, H., & Zehe, E. (2019). A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. Hydrology and Earth System Sciences, 23(9), 3807–3821. https://doi.org/10.5194/hess-23-3807-2019 | spa |
dc.relation.references | Lv, J., Qin, S., Chen, J., Qiao, S., Yao, J., Zhao, X., Cao, R., & Yin, J. (2023). Application of different watershed units to debris flow susceptibility mapping: A case study of Northeast China. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1118160 | spa |
dc.relation.references | Ma, M., Wang, H., Yang, Y., Zhao, G., Tang, G., Hong, Z., Clark, R. A., Chen, Y., Xu, H., & Hong, Y. (2021). Development of a new rainfall-triggering index of flash flood warning-case study in Yunnan province, China. Journal of Flood Risk Management, 14(1). https://doi.org/10.1111/jfr3.12676 | spa |
dc.relation.references | Mahala, A. (2020). The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Applied Water Science, 10(1). https://doi.org/10.1007/s13201-019-1118-2 | spa |
dc.relation.references | Marchi, L., Borga, M., Preciso, E., & Gaume, E. (2010). Characterisation of selected extreme flash floods in Europe and implications for flood risk management. Journal of Hydrology, 394(1–2). https://doi.org/10.1016/j.jhydrol.2010.07.017 | spa |
dc.relation.references | Marchi, L., & Tecca, P. R. (1995). Cônes de dejection dans les alpes orientales italiennes: Morphométrie et processus d’accumulation. Geodinamica Acta, 8(1), 20–27. https://doi.org/10.1080/09853111.1995.11105270 | spa |
dc.relation.references | Moreno, H. A., Vélez, M. V., Montoya, J. D., & Rhenals Garrido, R. L. (2006). La lluvia y los deslizamientos de tierra en Antioquia: análisis de su ocurrencia en las escalas interanual, intraanual y diaria. Revista EIA, 5, 59–69. http://revista.eia.edu.co/articulos5/art45.pdf | spa |
dc.relation.references | Nefeslioglu, H. A., Duman, T. Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(3–4), 401–418. https://doi.org/10.1016/j.geomorph.2006.10.036 | spa |
dc.relation.references | Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., Waterloo, M., & Saleska, S. (2011). Height Above the Nearest Drainage - a hydrologically relevant new terrain model. Journal of Hydrology, 404(1–2), 13–29. https://doi.org/10.1016/j.jhydrol.2011.03.051 | spa |
dc.relation.references | Nobre, A. D., Cuartas, L. A., Momo, M. R., Severo, D. L., Pinheiro, A., & Nobre, C. A. (2016). HAND contour: A new proxy predictor of inundation extent. Hydrological Processes, 30(2), 320–333. https://doi.org/10.1002/hyp.10581 | spa |
dc.relation.references | Norbiato, D., Borga, M., Degli Esposti, S., Gaume, E., & Anquetin, S. (2008). Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. Journal of Hydrology, 362(3–4), 274–290. https://doi.org/10.1016/j.jhydrol.2008.08.023 | spa |
dc.relation.references | Obeidat, M., Awawdeh, M., & Al-Hantouli, F. (2021). Morphometric analysis and prioritisation of watersheds for flood risk management in Wadi Easal Basin (WEB), Jordan, using geospatial technologies. Journal of Flood Risk Management, 14(2). https://doi.org/10.1111/jfr3.12711 | spa |
dc.relation.references | Oh, C. H., Choo, K. S., Go, C. M., Choi, J. R., & Kim, B. S. (2021). Forecasting of debris flow using machine learning-based adjusted rainfall information and ramms model. Water (Switzerland), 13(17). https://doi.org/10.3390/w13172360 | spa |
dc.relation.references | Patton, P. C., & Baker, V. R. (1976). Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resources Research, 12(5), 941–952. https://doi.org/10.1029/WR012i005p00941 | spa |
dc.relation.references | Penna, D., Tromp-Van Meerveld, H. J., Gobbi, A., Borga, M., & Dalla Fontana, G. (2011). The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15(3), 689–702. https://doi.org/10.5194/hess-15-689-2011 | spa |
dc.relation.references | Pérez-Hincapié, A. M. (2019). Zonificación de amenazas por avenidas torrenciales a partir del análisis geomorfológico de los depósitos asociados y el uso de isótopos cosmogénicos. Caso de estudio: Cuencas de la vertiente oriental de la Cordillera Occidental Colombiana, Andes del Norte. | spa |
dc.relation.references | Pérez-Hincapié, A. M., Ramírez, G., Geovany, O., Sanmiguel, B., & Paniagua-arroyave, J. F. (2010). Comparative geomorphological analysis applied to the hazard assessment of debris flows : case study of three watersheds of the Western Cordillera of Colombia , Northern Andes . 1, 12. | spa |
dc.relation.references | Ponziani, M., Ponziani, D., Giorgi, A., Stevenin, H., & Ratto, S. M. (2023). The use of machine learning techniques for a predictive model of debris flows triggered by short intense rainfall. Natural Hazards. https://doi.org/10.1007/s11069-023-05853-x | spa |
dc.relation.references | Poveda, G. (2006). El Clima de Antioquia. Geografía de Antioquia, January 2006. | spa |
dc.relation.references | Pradhan, A. M. S., Lee, S. R., & Kim, Y. T. (2019). A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan, Korea. Landslides, 16(3), 647–659. https://doi.org/10.1007/s10346-018-1112-z | spa |
dc.relation.references | Qing, F., Zhao, Y., Meng, X., Su, X., Qi, T., & Yue, D. (2020). Application of machine learning to debris flow susceptibility mapping along the China-Pakistan Karakoram Highway. Remote Sensing, 12(18). https://doi.org/10.3390/RS12182933 | spa |
dc.relation.references | Ragettli, S., Zhou, J., Wang, H., Liu, C., & Guo, L. (2017). Modeling flash floods in ungauged mountain catchments of China: A decision tree learning approach for parameter regionalization. Journal of Hydrology, 555, 330–346. https://doi.org/10.1016/j.jhydrol.2017.10.031 | spa |
dc.relation.references | Rennó, C. D., Nobre, A. D., Cuartas, L. A., Soares, J. V., Hodnett, M. G., Tomasella, J., & Waterloo, M. J. (2008). HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sensing of Environment, 112(9), 3469–3481. https://doi.org/10.1016/j.rse.2008.03.018 | spa |
dc.relation.references | Riazi, M., Khosravi, K., Shahedi, K., Ahmad, S., Jun, C., Bateni, S. M., & Kazakis, N. (2023). Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms. Science of the Total Environment, 871. https://doi.org/10.1016/j.scitotenv.2023.162066 | spa |
dc.relation.references | Rigo, T. (2008). Estudio de sistemas convectivos mesoscalares en la zona mediterránea occidental mediante el uso del radar meteorológico. Universidad de Barcelona. | spa |
dc.relation.references | Rivera, D. (2015, May 18). El país sumido en la tristeza por el desastre de Salgar. Revista Semana. https://www.semana.com/nacion/articulo/avalancha-en-salgar-deja-48-muertos-un-centenar-de-desaparecidos/428243-3 | spa |
dc.relation.references | Rodríguez‐Iturbe, I., & Valdés, J. B. (1979). The geomorphologic structure of hydrologic response. Water Resources Research, 15(6), 1409–1420. https://doi.org/10.1029/WR015i006p01409 | spa |
dc.relation.references | Rozalis, S., Morin, E., Yair, Y., & Price, C. (2010). Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. Journal of Hydrology, 394(1–2), 245–255. https://doi.org/10.1016/j.jhydrol.2010.03.021 | spa |
dc.relation.references | Ruiz-Villanueva, V., Borga, M., Zoccatelli, D., Marchi, L., Gaume, E., & Ehret, U. (2012). Extreme flood response to short-duration convective rainfall in South-West Germany. Hydrology and Earth System Sciences, 16(5), 1543–1559. https://doi.org/10.5194/hess-16-1543-2012 | spa |
dc.relation.references | Ruiz-Villanueva, V., Díez-Herrero, A., Bodoque, J. M., Ballesteros Cánovas, J. A., & Stoffel, M. (2013). Characterisation of flash floods in small ungauged mountain basins of Central Spain using an integrated approach. Catena, 110, 32–43. https://doi.org/10.1016/j.catena.2013.06.015 | spa |
dc.relation.references | Saharia, M., Kirstetter, P.-E., Vergara, H., Gourley, J., Emmanuel, I., & Andrieu, H. (2021). On the Impact of Rainfall Spatial Variability, Geomorphology, and Climatology on Flash Floods. Water Resources Research. | spa |
dc.relation.references | Santos, M., & Fragoso, M. (2016). Precipitation thresholds for triggering floods in the Corgo basin, Portugal. Water (Switzerland), 8(9). https://doi.org/10.3390/w8090376 | spa |
dc.relation.references | Saxton, K. E., Rawls, W. J. (2006). oil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 1569–1578. https://doi.org/https://doi.org/10.2136/sssaj2005.0117 | spa |
dc.relation.references | Segoni, S., Piciullo, L., & Gariano, S. L. (2018). A review of the recent literature on rainfall thresholds for landslide occurrence. In Landslides (Vol. 15, Issue 8, pp. 1483–1501). Springer Verlag. https://doi.org/10.1007/s10346-018-0966-4 | spa |
dc.relation.references | Sepúlveda Berrío, J. (2015). Estimación cuantitativa de precipitación a partir de la información de Radar Meteorológico del Área Metropolitana del Valle de Aburrá [Universidad Nacional de Colombia, sede Medellín]. http://www.bdigital.unal.edu.co/54581/ | spa |
dc.relation.references | Sepúlveda-Berrío, J., & Hoyos, C. D. (2017). Disdrometer-based C-Band Radar Quantitative Precipitation Estimation (QPE) in a highly complex terrain region in tropical Colombia. | spa |
dc.relation.references | Shivhare, V., Gupta, C., Mallick, J., & Singh, C. K. (2022). Geospatial modelling for sub-watershed prioritization in Western Himalayan Basin using morphometric parameters. Natural Hazards, 110(1), 545–561. https://doi.org/10.1007/s11069-021-04957-6 | spa |
dc.relation.references | SIATA. (2023). SIATA Monitoreo. https://siata.gov.co/sitio_web/index.php/monitoreo | spa |
dc.relation.references | Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Liang, X., Mcdonnell, J. J., Mendiondo, E. M., Connell, P. E. O., Oki, T., Pomeroy, J. W., Schertzer, D., Uhlenbrook, S., & Zehe, E. (2012). IAHS Decade on Predictions in Ungauged Basins ( PUB ), 2003 – 2012 : Shaping an exciting future for the hydrological sciences IAHS Decade on Predictions in Ungauged Basins ( PUB ), 2003 – 2012 : Shaping an exciting future for the hydrological sciences. 6667(June 2013), 2003–2012. https://doi.org/10.1623/hysj.48.6.857.51421 | spa |
dc.relation.references | Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1), 101–112. https://doi.org/10.5194/hess-10-101-2006 | spa |
dc.relation.references | Steiner, M., Houze, R. A., & Yuter, S. E. (1995). Climatological Characterization of Three-Dimensional Storm Structure from Operational Radar and Rain Gauge Data. In Journal of Applied Meteorology (Vol. 34, Issue 9, pp. 1978–2007). https://doi.org/10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2 | spa |
dc.relation.references | Taha, M. M. N., Elbarbary, S. M., Naguib, D. M., & El-Shamy, I. Z. (2017). Flash flood hazard zonation based on basin morphometry using remote sensing and GIS techniques: A case study of Wadi Qena basin, Eastern Desert, Egypt. Remote Sensing Applications: Society and Environment, 8, 157–167. https://doi.org/10.1016/j.rsase.2017.08.007 | spa |
dc.relation.references | Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319. https://doi.org/10.1029/96WR03137 | spa |
dc.relation.references | Ullah, K., Wang, Y., Fang, Z., Wang, L., & Rahman, M. (2022). Multi-hazard susceptibility mapping based on Convolutional Neural Networks. Geoscience Frontiers, 13(5). https://doi.org/10.1016/j.gsf.2022.101425 | spa |
dc.relation.references | Unnithan, S. L. K., Biswal, B., Sharples, W., Rüdiger, C., Bahramian, K., & Hou, J. (2023). Sensitivity Analysis of Modelled Flood Inundation Extents over Hawkesbury–Nepean Catchment. Geosciences, 13(3), 67. https://doi.org/10.3390/geosciences13030067 | spa |
dc.relation.references | Vannier, O., Braud, I., & Anquetin, S. (2014). Regional estimation of catchment-scale soil properties by means of streamflow recession analysis for use in distributed hydrological models. Hydrological Processes, 28(26), 6276–6291. https://doi.org/10.1002/hyp.10101 | spa |
dc.relation.references | Velásquez, N. (2022). Assessment of Deep Convective Systems in the Colombian Andean Region. Hydrology, 9(7). https://doi.org/10.3390/hydrology9070119 | spa |
dc.relation.references | Velásquez, N., Hoyos, C., Vélez, J., & Zapata, E. (2020). Reconstructing the Salgar 2015 Flash Flood Using Radar Retrievals and a Conceptual Modeling Framework: A Basis for a Better Flood Generating Mechanisms Discrimination. Hydrology and Earth System Sciences Discussions, 1–36. https://doi.org/10.5194/hess-2018-452 | spa |
dc.relation.references | Velásquez, N., Vélez, J. I., Álvarez-Villa, O. D., & Salamanca, S. P. (2023). Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework. Hydrology, 10(4). https://doi.org/10.3390/hydrology10040076 | spa |
dc.relation.references | Welsh, A., & Davies, T. (2011). Identification of alluvial fans susceptible to debris-flow hazards. Landslides, 8(2), 183–194. https://doi.org/10.1007/s10346-010-0238-4 | spa |
dc.relation.references | Wu, W., Fan, Y., Wang, Z., & Liu, H. (2008). Assessing effects of digital elevation model resolutions on soil-landscape correlations in a hilly area. Agriculture, Ecosystems and Environment, 126(3–4), 209–216. https://doi.org/10.1016/j.agee.2008.01.026 | spa |
dc.relation.references | Xiong, K., Adhikari, B. R., Stamatopoulos, C. A., Zhan, Y., Wu, S., Dong, Z., & Di, B. (2020). Comparison of different machine learning methods for debris flow susceptibility mapping: A case study in the Sichuan Province, China. Remote Sensing, 12(2). https://doi.org/10.3390/rs12020295 | spa |
dc.relation.references | Yang, L., Smith, J., Baeck, M. L., & Morin, E. (2019). Flash flooding in arid/semiarid regions: Climatological analyses of flood-producing storms in central arizona during the North American monsoon. Journal of Hydrometeorology, 20(7), 1449–1471. https://doi.org/10.1175/JHM-D-19-0016.1 | spa |
dc.relation.references | Young, A., Bhattacharya, B., & Zevenbergen, C. (2021). A rainfall threshold-based approach to early warnings in urban data-scarce regions: A case study of pluvial flooding in Alexandria, Egypt. Journal of Flood Risk Management, 14(2). https://doi.org/10.1111/jfr3.12702 | spa |
dc.relation.references | Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3). https://doi.org/10.1007/s12665-010-0551-1 | spa |
dc.relation.references | Zhang, R., Chen, Y., Zhang, X., Ma, Q., & Ren, L. (2022). Mapping homogeneous regions for flash floods using machine learning: A case study in Jiangxi province, China. International Journal of Applied Earth Observation and Geoinformation, 108. https://doi.org/10.1016/j.jag.2022.102717 | spa |
dc.relation.references | Zhang, Y., Ge, T., Tian, W., & Liou, Y. A. (2019). Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China. Remote Sensing, 11(23). https://doi.org/10.3390/rs11232801 | spa |
dc.relation.references | Zhao, Y., Meng, X., Qi, T., Chen, G., Li, Y., Yue, D., & Qing, F. (2021). Modeling the spatial distribution of debris flows and analysis of the controlling factors: A machine learning approach. Remote Sensing, 13(23). https://doi.org/10.3390/rs13234813 | spa |
dc.relation.references | Zhao, Y., Meng, X., Qi, T., Chen, G., Li, Y., Yue, D., & Qing, F. (2022). Extracting more features from rainfall data to analyze the conditions triggering debris flows. Landslides, 19(9), 2091–2099. https://doi.org/10.1007/s10346-022-01893-9 | spa |
dc.relation.references | Zhao, Y., Meng, X., Qi, T., Chen, G., Li, Y., Yue, D., & Qing, F. (2023). Estimating the daily rainfall thresholds of regional debris flows in the Bailong River Basin, China. Bulletin of Engineering Geology and the Environment, 82(2). https://doi.org/10.1007/s10064-023-03068-9 | spa |
dc.relation.references | Zoccatelli, D., Bernhofer, C., Janabi, F. al, Borga, M., Jatho, N., & Tarolli, M. (2013). Rainfall Space-Time Organization and Orographic Control on Flash Flood Response: The Weisseritz Event of August 13, 2002. Journal of Hydrologic Engineering, 18(2), 183–193. https://doi.org/10.1061/(asce)he.1943-5584.0000569 | spa |
dc.relation.references | Zoccatelli, D., Borga, M., Viglione, A., Chirico, G. B., & Blöschl, G. (2011). Spatial moments of catchment rainfall: Rainfall spatial organisation, basin morphology, and flood response. Hydrology and Earth System Sciences, 15(12), 3767–3783. https://doi.org/10.5194/hess-15-3767-2011 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica | spa |
dc.subject.lemb | Geomorfología | |
dc.subject.lemb | Morfometría | |
dc.subject.lemb | Cuencas hidrográficas | |
dc.subject.proposal | Avenidas torrenciales | spa |
dc.subject.proposal | Geomorfología | spa |
dc.subject.proposal | Morfometría | spa |
dc.subject.proposal | Lluvia | spa |
dc.subject.proposal | Amenazas naturales | spa |
dc.subject.proposal | Gestión del riesgo | spa |
dc.subject.proposal | Flash floods | spa |
dc.subject.proposal | Geomorphology | eng |
dc.subject.proposal | Morphometry | eng |
dc.subject.proposal | Rainfall | eng |
dc.subject.proposal | Natural hazards | eng |
dc.subject.proposal | Risk management | eng |
dc.title | Análisis de las condiciones geomorfológicas y de precipitación detonantes de eventos torrenciales en cuencas del departamento de Antioquia | spa |
dc.title.translated | Analysis of the geomorphological and rainfall conditions triggering flash floods in basins of the department of Antioquia | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017216112.2023.pdf
- Tamaño:
- 3.55 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Recursos Hidráulicos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: