Smart Grids: Una estrategia de conectividad para sus aplicaciones basada en la tecnología Ethernet

dc.contributor.advisorUstariz Farfán, Armando Jaime
dc.contributor.advisorDíaz Cadavid, Luis Fernando
dc.contributor.authorNarváez Villota, Ana Isabel
dc.contributor.researchgroupGrupo de Investigación en Calidad de la Energía y Electrónica de Potencia – GICEPspa
dc.contributor.researchgroupGrupo de Investigación en Telemática y Telecomunicaciones – GTTspa
dc.contributor.researchgroupGrupo de Investigación en Redes de Distribución y Potencia – GRED&Pspa
dc.date.accessioned2021-07-02T18:30:45Z
dc.date.available2021-07-02T18:30:45Z
dc.date.issued2021
dc.descriptionAbreviaturas, figuras, tablasspa
dc.description.abstractLa modernización de los sistemas tradicionales de potencia hacia el concepto de red eléctrica inteligente o Smart Grid ha traído consigo varios desafíos tecnológicos, que deben ser estudiados y evaluados antes de su despliegue. Ante esto, ha surgido la necesidad de encontrar nuevas estrategias y metodologías de simulación que permitan evaluar los componentes de una Smart Grid y la interacción entre ellos. Como una solución a la necesidad planteada, esta tesis de maestría presenta una estrategia que permite la transmisión de datos entre modelos de una Smart Grid implementados en simulación y/o en sistemas embebidos, a través de una red de comunicación real basada en la tecnología Ethernet convencional. Para determinar esta estrategia, se realiza una revisión de las técnicas de simulación para Smart Grids que son ampliamente utilizadas en la literatura. Posteriormente se realiza una revisión de los conceptos básicos sobre Smart Grids y las redes de comunicación basadas en la tecnología Ethernet. Con base en lo anterior, se realiza la propuesta de una estrategia de simulación basada en la técnica de hardware-in-the-loop (HIL), denominada estrategia de conectividad. Esta estrategia posee dos enfoques de aplicación. El primer enfoque permite su implementación en entornos de simulación. De la misma manera, el segundo enfoque permite su implementación en sistemas embebidos, en la cual se hace uso de kits de desarrollo basados en microcontroladores. Consecuentemente, se emplea la estrategia de conectividad en la simulación de tres redes de prueba, con un enfoque en la aplicación de la automatización del sistema de distribución (ADA). La primera red de prueba corresponde al sistema IEEE de 34 barras, el cual ha sido adecuado para que opere bajo una topología radial y una topología con conexión a la red principal con generación distribuida. La segunda red de prueba es una microrred que pertenece a un usuario industrial y posee una carga no lineal, un horno de arco eléctrico (HAE). Respecto a la tercera red de prueba, esta es una microrred que posee dos topologías de operación, en isla y conectada a la red principal con generación distribuida. Finalmente, a partir del análisis de los resultados obtenidos, se comprueba el funcionamiento de la estrategia de conectividad en sus dos enfoques. En consecuencia, se obtiene que el uso de la estrategia de conectividad ha permitido obtener tiempos del ciclo de comunicación desde 87 ms en tiempo real, para el primer enfoque y 12 ms en tiempo real, para el segundo enfoque (Texto tomado de la fuente).spa
dc.description.abstractThe modernization of the traditional power systems towards the Smart Grid concept has brought several technological challenges, which must be studied and evaluated before the deployment. Therefore, the need has arisen to find new simulation strategies and methodologies to evaluate the components of a Smart Grid and the interaction among them. As a solution to this need, this master thesis presents a strategy that allows the data transmission between Smart Grid models implemented in simulation or embedded systems, through a real communication network based on conventional Ethernet technology. In order to determine this strategy, a literature review is carried out for the basic concepts, the widely used simulation techniques, and the communication networks based on Ethernet technology for the Smart Grids. A simulation strategy is proposed based on the Hardware-in-the-loop (HIL) technique, called connectivity strategy. This strategy has two application approaches. The first approach allows its implementation in simulation environments. Similarly, the second approach allows its implementation in embedded systems, in which microcontroller-based development kits are used. Consequently, the connectivity strategy is employed in the simulation of three test networks, with a focus on the application of advanced distribution automation. The first test network corresponds to the 34-bus IEEE system, which has been adapted to operate under both a radial topology and a topology with connection to the main grid and the distributed generation. The second test network is a microgrid that belongs to an industrial user and has a non-linear load and electric arc furnace. The third test grid is a microgrid with two operating topologies, i.e., islanded and connected to the main grid and the distributed generation. Finally, from the analysis of the obtained results, the performance of the connectivity strategy in its two approaches is verified. It is observed that the use of the connectivity strategy has achieved communication cycle times of 87 ms and 12 ms as the shortest in real-time, for the first and second approaches, respectively.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Ingeniería Eléctricaspa
dc.format.extent101 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79759
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.references[1] UPME, “Smart Grids Colombia VISIÓN 2030. Parte 1 - Antecedentes y Marco Conceptual del Análisis, Evaluación y Recomendaciones para la Implementación de Redes Inteligentes en Colombia”. 2016, [En línea]. Disponible en: http://www1.upme.gov.co/DemandayEficiencia/Doc_Hemeroteca/Smart_Grids_Colombia_Vision_2030/1_Parte1_Proyecto_BID_Smart_Grids.pdf.spa
dc.relation.references[2] E. Ancillotti, R. Bruno, y M. Conti, “The role of communication systems in smart grids: Architectures, technical solutions and research challenges”, Comput. Commun., vol. 36, núm. 17–18, pp. 1665–1697, nov. 2013, doi: 10.1016/j.comcom.2013.09.004.spa
dc.relation.references[3] C. Greer et al., “NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0”, Gaithersburg, MD, oct. 2014. doi: 10.6028/NIST.SP.1108r3.spa
dc.relation.references[4] J. D. Molina C., D. E. Sanchez O., L. F. Buitrago A., y J. A. Zapata U., “Challenges and opportunities of smart grids implementation: A case of Colombia electricity sector”, en 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), dic. 2019, pp. 1–6, doi: 10.1109/FISECIGRE48012.2019.8985022.spa
dc.relation.references[5] M. Ali, M. Zakariya, M. Asif, y A. Ullah, “TCP/IP Based Intelligent Load Management System in Micro-Grids Network Using MATLAB/Simulink”, Energy Power Eng., vol. 04, núm. 04, pp. 283–289, 2012, doi: 10.4236/epe.2012.44038.spa
dc.relation.references[6] Z. CAI y M. YU, “Modeling and Simulation of a Real-time Ethernet Protocol for Smart Grids”, Int. J. Intell. Control Syst., vol. 17, núm. 3, pp. 69–78, 2012.spa
dc.relation.references[7] W. Li, M. Ferdowsi, M. Stevic, A. Monti, y F. Ponci, “Cosimulation for Smart Grid Communications”, IEEE Trans. Ind. Informatics, vol. 10, núm. 4, pp. 2374–2384, nov. 2014, doi: 10.1109/TII.2014.2338740.spa
dc.relation.references[8] M. Garau, G. Celli, E. Ghiani, F. Pilo, y S. Corti, “Evaluation of Smart Grid Communication Technologies with a Co-Simulation Platform”, IEEE Wirel. Commun., vol. 24, núm. 2, pp. 42–49, abr. 2017, doi: 10.1109/MWC.2017.1600214.spa
dc.relation.references[9] M. A. E. Elabbas, A. M. E. Awad, y S. F. Babikir, “Agent based load management for Microgrid”, en 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), ene. 2017, pp. 1–6, doi: 10.1109/ICCCCEE.2017.7867684.spa
dc.relation.references[10] V. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, y N. D. Hatziargyriou, “Hardware-In-the-Loop Design and Optimal Setting of Adaptive Protection Schemes for Distribution Systems With Distributed Generation”, IEEE Trans. Power Deliv., vol. 32, núm. 1, pp. 393–400, feb. 2017, doi: 10.1109/TPWRD.2015.2509784.spa
dc.relation.references[11] H. Palahalli, E. Ragaini, y G. Gruosso, “Smart Grid Simulation Including Communication Network: A Hardware in the Loop Approach”, IEEE Access, vol. 7, pp. 90171–90179, 2019, doi: 10.1109/ACCESS.2019.2927821.spa
dc.relation.references[12] F. Guo et al., “Design and development of a reconfigurable hybrid Microgrid testbed”, en 2013 IEEE Energy Conversion Congress and Exposition, sep. 2013, pp. 1350–1356, doi: 10.1109/ECCE.2013.6646862.spa
dc.relation.references[13] D. Celeita, M. Hernandez, G. Ramos, N. Penafiel, M. Rangel, y J. D. Bernal, “Implementation of an educational real-time platform for relaying automation on smart grids”, Electr. Power Syst. Res., vol. 130, pp. 156–166, ene. 2016, doi: 10.1016/j.epsr.2015.09.003.spa
dc.relation.references[14] A. I. Narvaez-Villota, A. J. Ustariz-Farfan, L. F. Diaz-Cadavid, J. A. Ocampo-Wilches, y E. A. Cano-Plata, “Development of a Methodology for Data Flow over TCP/IP for a Protection Scheme in Smart Grids”, 2019 IEEE Work. Power Electron. Power Qual. Appl. PEPQA 2019 - Proc., 2019, doi: 10.1109/PEPQA.2019.8851536.spa
dc.relation.references[15] J. A. Ocampo-Wilches, A. I. Narvaez-Villota, D. M. Van Strahlen-Gutierrez, A. J. Ustariz-Farfan, y E. A. Cano-Plata, “MATLAB/Simulink Protection Library development for Evaluation of Protection Coordination for Steel Manufacturer Companies”, 2019 IEEE Ind. Appl. Soc. Annu. Meet. IAS 2019, pp. 1–7, 2019, doi: 10.1109/IAS.2019.8912318.spa
dc.relation.references[16] A. J. Ustariz-Farfan, J. A. Ocampo-Wilches, A. I. Narvaez-Villota, D. M. Van Strahlen-Gutierrez, y E. A. Cano-Plata, “Evaluation of Protection Systems in Electric Arc Furnaces: A Methodology for Assessment”, IEEE Ind. Appl. Mag., núm. April 2021, 2020, doi: 10.1109/mias.2020.3024481.spa
dc.relation.references[17] J. A. Ocampo-Wilches et al., “Steel Manufacturer Small-Scale Prototype Focused on Industry Application Research”, pp. 1–6, 2021, doi: 10.1109/ias44978.2020.9334842.spa
dc.relation.references[18] C. A. Lemoine, “STUDY OF SMART GRIDS FRAMED IN THE CONCEPT OF MICROGRIDS: Application in minimizing energy losses”, 2014, [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/52153.spa
dc.relation.references[19] R. H. Lasseter, “Smart Distribution: Coupled Microgrids”, Proc. IEEE, vol. 99, núm. 6, pp. 1074–1082, jun. 2011, doi: 10.1109/JPROC.2011.2114630.spa
dc.relation.references[20] D. Cornforth, “Role of Microgrids in the Smart Grid”, J. Electron. Sci. Technol., vol. 9, núm. 1, pp. 9–16, 2011.spa
dc.relation.references[21] K. C. Budka, J. G. Deshpande, T. L. Doumi, M. Madden, y T. Mew, “Communication network architecture and design principles for smart grids”, Bell Labs Tech. J., vol. 15, núm. 2, pp. 205–227, ago. 2010, doi: 10.1002/bltj.20450.spa
dc.relation.references[22] K. C. Budka, J. G. Deshpande, y M. Thottan, Communication Networks for Smart Grids. London: Springer London, 2014.spa
dc.relation.references[23] T. S. Ustun, C. Ozansoy, y A. Zayegh, “Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420”, IEEE Trans. Power Syst., vol. 27, núm. 3, pp. 1560–1567, 2012, doi: 10.1109/TPWRS.2012.2185072.spa
dc.relation.references[24] T. S. Ustun, R. H. Khan, A. Hadbah, y A. Kalam, “An adaptive microgrid protection scheme based on a wide-area smart grid communications network”, 2013 IEEE Latin-America Conf. Commun. LATINCOM 2013 - Conf. Proc., 2013, doi: 10.1109/LatinCom.2013.6759822.spa
dc.relation.references[25] J. A. Ocampo-Wilches, A. J. Ustariz-Farfan, y E. A. Cano-Plata, “Modeling of a centralized microgrid protection scheme”, 2017 3rd IEEE Work. Power Electron. Power Qual. Appl. PEPQA 2017 - Proc., 2017, doi: 10.1109/PEPQA.2017.7981652.spa
dc.relation.references[26] J. A. Ocampo Wilches, “ANÁLISIS EN MICRORREDES: Estrategias de Coordinación de Protecciones Inteligentes”, p. 110, 2019, [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/76108.spa
dc.relation.references[27] H. Laaksonen, D. Ishchenko, y A. Oudalov, “Adaptive Protection and Microgrid Control Design for Hailuoto Island”, IEEE Trans. Smart Grid, vol. 5, núm. 3, pp. 1486–1493, may 2014, doi: 10.1109/TSG.2013.2287672.spa
dc.relation.references[28] B. K. Duncan y B. G. Bailey, “Protection, Metering, Monitoring, and Control of Medium-Voltage Power Systems”, IEEE Trans. Ind. Appl., vol. 40, núm. 1, pp. 33–40, ene. 2004, doi: 10.1109/TIA.2003.821809.spa
dc.relation.references[29] H. Laaksonen, “IED Functionalities Fulfilling Future Smart Grid Requirements”, Int. J. Distrib. Energy Resour. Smart Grids (DER Journal), vol. 9, pp. 289–311, 2013, [En línea]. Disponible en: https://www.researchgate.net/profile/Hannu_Laaksonen2/publication/270128305_IED_Functionalities_Fulfilling_Future_Smart_Grid_Requirements/links/54a40a280cf257a63607183b/IED-Functionalities-Fulfilling-Future-Smart-Grid-Requirements.pdf.spa
dc.relation.references[30] E. Planas, J. Andreu, J. I. Gárate, I. Martínez de Alegría, y E. Ibarra, “AC and DC technology in microgrids: A review”, Renew. Sustain. Energy Rev., vol. 43, pp. 726–749, 2015, doi: 10.1016/j.rser.2014.11.067.spa
dc.relation.references[31] Y. Yoldaş, A. Önen, S. M. Muyeen, A. V. Vasilakos, y İ. Alan, “Enhancing smart grid with microgrids: Challenges and opportunities”, Renew. Sustain. Energy Rev., vol. 72, pp. 205–214, may 2017, doi: 10.1016/j.rser.2017.01.064.spa
dc.relation.references[32] M. Yigit, V. C. Gungor, G. Tuna, M. Rangoussi, y E. Fadel, “Power line communication technologies for smart grid applications: A review of advances and challenges”, Comput. Networks, vol. 70, 2014, doi: 10.1016/j.comnet.2014.06.005.spa
dc.relation.references[33] S. E. Collier, “The Emerging Enernet: Convergence of the Smart Grid with the Internet of Things”, IEEE Ind. Appl. Mag., vol. 23, núm. 2, pp. 12–16, mar. 2017, doi: 10.1109/MIAS.2016.2600737.spa
dc.relation.references[34] A. Meloni y L. Atzori, “The Role of Satellite Communications in the Smart Grid”, IEEE Wirel. Commun., vol. 24, núm. 2, pp. 50–56, abr. 2017, doi: 10.1109/MWC.2017.1600251spa
dc.relation.references[35] M. Garau, M. Anedda, C. Desogus, E. Ghiani, M. Murroni, y G. Celli, “A 5G cellular technology for distributed monitoring and control in smart grid”, en 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), jun. 2017, pp. 1–6, doi: 10.1109/BMSB.2017.7986141.spa
dc.relation.references[36] H. Hui, Y. Ding, Q. Shi, F. Li, Y. Song, y J. Yan, “5G network-based Internet of Things for demand response in smart grid: A survey on application potential”, Appl. Energy, vol. 257, p. 113972, ene. 2020, doi: 10.1016/j.apenergy.2019.113972.spa
dc.relation.references[37] “NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0”, NIST Spec. Publ. 1108R2, 2012, [En línea]. Disponible en: https://www.nist.gov/system/files/documents/smartgrid/NIST_Framework_Release_2-0_corr.pdf.spa
dc.relation.references[38] “Internet Protocols for the Smart Grid, RFC 6272”. 2011, [En línea]. Disponible en: https://tools.ietf.org/html/rfc6272.spa
dc.relation.references[39] B. A. Forouzan, Data Communications and Networking, 4th ed. McGraw-Hill, 2007.spa
dc.relation.references[40] A. S. Tanenbaum y D. J. Wetherall, Computer Networks, 5th ed. Prentice Hall, 2011.spa
dc.relation.references[41] J. F. Kurose y K. W. Rose, Computer Networking: A Top-Down Approach, 6th ed. 2013.spa
dc.relation.references[42] Y. Li, D. Li, W. Cui, y R. Zhang, “Research based on OSI model”, en 2011 IEEE 3rd International Conference on Communication Software and Networks, may 2011, pp. 554–557, doi: 10.1109/ICCSN.2011.6014631.spa
dc.relation.references[43] F. Salvadori, C. S. Gehrke, A. C. de Oliveira, M. de Campos, y P. S. Sausen, “Smart Grid Infrastructure Using a Hybrid Network Architecture”, IEEE Trans. Smart Grid, vol. 4, núm. 3, pp. 1630–1639, sep. 2013, doi: 10.1109/TSG.2013.2265264.spa
dc.relation.references[44] M. Donahoo y K. Calvert, TCP/IP Sockets in C - Practical Guide for Programmers. 2001.spa
dc.relation.references[45] “IEEE Standard for Ethernet”, IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015). pp. 1–5600, 2018, doi: 10.1109/IEEESTD.2018.8457469.spa
dc.relation.references[46] S. Goldschmidt y D. Ziegelmeier, “lwIP - A Lightweight TCP/IP stack - Sumario”. http://savannah.nongnu.org/projects/lwip/ (consultado jun. 12, 2020).spa
dc.relation.references[47] A. Dunkels, “Design and Implementation of the lwIP TCP/IP Stack”. Swedish Institute of Computer Science, 2001.spa
dc.relation.references[48] F. Buchholz, “Das Begriffsystem Rechtleistung. Wirkleistung, totale Blindleistung”, 1950.spa
dc.relation.references[49] “IEEE Standard for Inverse-Time Characteristics Equations for Overcurrent Relays”, IEEE Std C37.112-2018 (Revision of IEEE Std C37.112-1996). pp. 1–25, 2019, doi: 10.1109/IEEESTD.2019.8635630.spa
dc.relation.references[50] S. Arias-Guzman, A. J. Ustariz-Farfan, y E. A. Cano-Plata, “Overcurrent Protection in Electric Arc Furnaces”, IEEE Trans. Ind. Appl., vol. 55, núm. 6, pp. 6652–6659, 2019, doi: 10.1109/TIA.2019.2937498.spa
dc.relation.references[51] K. U. Vinayaka y P. S. Puttaswamy, “Review on characteristic modeling of electric arc furnace and its effects”, en 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), jul. 2017, pp. 1222–1229, doi: 10.1109/ICICICT1.2017.8342744.spa
dc.relation.references[52] “Dynamic Host Configuration Protocol, RFC 2131”. 1997, [En línea]. Disponible en: https://tools.ietf.org/html/rfc2131.spa
dc.relation.references[53] IEEE Std 802.3u-1995 -IEEE Standards for Local and Metropolitan Area Networks. 1995.spa
dc.relation.references[54] 1646-2004 - IEEE Standard Communication Delivery Time Performance Requirements for Electric Power Substation Automation. IEEE, 2005.spa
dc.relation.references[55] The MathWorks Inc, “Instrument Control ToolboxTM User’s Guide ©”. 2019.spa
dc.relation.references[56] Texas Instruments, “RM57L843 Hercules TM Microcontroller Based on the ARM ® Cortex ® -R Core”, 2016. [En línea]. Disponible en: https://www.ti.com/lit/ds/symlink/rm57l843.pdf.spa
dc.relation.references[57] E. Ding, “HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web Server Demo”, 2019. https://www.ti.com/lit/an/spna239/spna239.pdf (consultado jun. 01, 2020).spa
dc.relation.references[58] W. H. Kersting, “Radial distribution test feeders”, en 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, vol. 2, núm. WINTER MEETING, pp. 908–912, doi: 10.1109/PESW.2001.916993.spa
dc.relation.references[59] R. C. Dugan y W. H. Kersting, “Induction machine test case for the 34-bus test feeder -description”, en 2006 IEEE Power Engineering Society General Meeting, 2006, p. 4 pp., doi: 10.1109/PES.2006.1709506.spa
dc.relation.references[60] S. Arias-Guzman, A. J. Ustariz-Farfan, y E. A. Cano-Plata, “Protection Coordination in Steel Manufacturers”, en 2018 IEEE Industry Applications Society Annual Meeting (IAS), sep. 2018, pp. 1–6, doi: 10.1109/IAS.2018.8544654.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lcshElectric power systems
dc.subject.lcshDistributed generation of electric power
dc.subject.lembSistemas de potencia
dc.subject.lembGeneración distribuida de energía eléctrica
dc.subject.proposalAdvanced Distribution Automation (ADA)eng
dc.subject.proposalAutomatización del sistema de distribución (ADA)spa
dc.subject.proposalDistributed Generationeng
dc.subject.proposalGeneración distribuidaspa
dc.subject.proposalEmbedded Systemseng
dc.subject.proposalSistemas embebidosspa
dc.subject.proposalEtherneteng
dc.subject.proposalEthernetspa
dc.subject.proposalhardware-in-the-loop (HIL)eng
dc.subject.proposalhardware-in-the-loop (HIL)spa
dc.subject.proposalLightweight TCP/IP Stackeng
dc.subject.proposalModelo LWIPspa
dc.subject.proposalMicrogrideng
dc.subject.proposalMicrorredspa
dc.subject.proposalSimulation Environmenteng
dc.subject.proposalEntorno de simulaciónspa
dc.subject.proposalSmart Grideng
dc.subject.proposalSmart Gridspa
dc.subject.proposalTCP/IP stackeng
dc.subject.proposalModelo TCP/IPspa
dc.titleSmart Grids: Una estrategia de conectividad para sus aplicaciones basada en la tecnología Ethernetspa
dc.title.translatedSMART GRIDS: A connectivity strategy for the applications based on the Ethernet technologyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053838217.2021.pdf
Tamaño:
3.19 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: