Smart Grids: Una estrategia de conectividad para sus aplicaciones basada en la tecnología Ethernet
dc.contributor.advisor | Ustariz Farfán, Armando Jaime | |
dc.contributor.advisor | Díaz Cadavid, Luis Fernando | |
dc.contributor.author | Narváez Villota, Ana Isabel | |
dc.contributor.researchgroup | Grupo de Investigación en Calidad de la Energía y Electrónica de Potencia – GICEP | spa |
dc.contributor.researchgroup | Grupo de Investigación en Telemática y Telecomunicaciones – GTT | spa |
dc.contributor.researchgroup | Grupo de Investigación en Redes de Distribución y Potencia – GRED&P | spa |
dc.date.accessioned | 2021-07-02T18:30:45Z | |
dc.date.available | 2021-07-02T18:30:45Z | |
dc.date.issued | 2021 | |
dc.description | Abreviaturas, figuras, tablas | spa |
dc.description.abstract | La modernización de los sistemas tradicionales de potencia hacia el concepto de red eléctrica inteligente o Smart Grid ha traído consigo varios desafíos tecnológicos, que deben ser estudiados y evaluados antes de su despliegue. Ante esto, ha surgido la necesidad de encontrar nuevas estrategias y metodologías de simulación que permitan evaluar los componentes de una Smart Grid y la interacción entre ellos. Como una solución a la necesidad planteada, esta tesis de maestría presenta una estrategia que permite la transmisión de datos entre modelos de una Smart Grid implementados en simulación y/o en sistemas embebidos, a través de una red de comunicación real basada en la tecnología Ethernet convencional. Para determinar esta estrategia, se realiza una revisión de las técnicas de simulación para Smart Grids que son ampliamente utilizadas en la literatura. Posteriormente se realiza una revisión de los conceptos básicos sobre Smart Grids y las redes de comunicación basadas en la tecnología Ethernet. Con base en lo anterior, se realiza la propuesta de una estrategia de simulación basada en la técnica de hardware-in-the-loop (HIL), denominada estrategia de conectividad. Esta estrategia posee dos enfoques de aplicación. El primer enfoque permite su implementación en entornos de simulación. De la misma manera, el segundo enfoque permite su implementación en sistemas embebidos, en la cual se hace uso de kits de desarrollo basados en microcontroladores. Consecuentemente, se emplea la estrategia de conectividad en la simulación de tres redes de prueba, con un enfoque en la aplicación de la automatización del sistema de distribución (ADA). La primera red de prueba corresponde al sistema IEEE de 34 barras, el cual ha sido adecuado para que opere bajo una topología radial y una topología con conexión a la red principal con generación distribuida. La segunda red de prueba es una microrred que pertenece a un usuario industrial y posee una carga no lineal, un horno de arco eléctrico (HAE). Respecto a la tercera red de prueba, esta es una microrred que posee dos topologías de operación, en isla y conectada a la red principal con generación distribuida. Finalmente, a partir del análisis de los resultados obtenidos, se comprueba el funcionamiento de la estrategia de conectividad en sus dos enfoques. En consecuencia, se obtiene que el uso de la estrategia de conectividad ha permitido obtener tiempos del ciclo de comunicación desde 87 ms en tiempo real, para el primer enfoque y 12 ms en tiempo real, para el segundo enfoque (Texto tomado de la fuente). | spa |
dc.description.abstract | The modernization of the traditional power systems towards the Smart Grid concept has brought several technological challenges, which must be studied and evaluated before the deployment. Therefore, the need has arisen to find new simulation strategies and methodologies to evaluate the components of a Smart Grid and the interaction among them. As a solution to this need, this master thesis presents a strategy that allows the data transmission between Smart Grid models implemented in simulation or embedded systems, through a real communication network based on conventional Ethernet technology. In order to determine this strategy, a literature review is carried out for the basic concepts, the widely used simulation techniques, and the communication networks based on Ethernet technology for the Smart Grids. A simulation strategy is proposed based on the Hardware-in-the-loop (HIL) technique, called connectivity strategy. This strategy has two application approaches. The first approach allows its implementation in simulation environments. Similarly, the second approach allows its implementation in embedded systems, in which microcontroller-based development kits are used. Consequently, the connectivity strategy is employed in the simulation of three test networks, with a focus on the application of advanced distribution automation. The first test network corresponds to the 34-bus IEEE system, which has been adapted to operate under both a radial topology and a topology with connection to the main grid and the distributed generation. The second test network is a microgrid that belongs to an industrial user and has a non-linear load and electric arc furnace. The third test grid is a microgrid with two operating topologies, i.e., islanded and connected to the main grid and the distributed generation. Finally, from the analysis of the obtained results, the performance of the connectivity strategy in its two approaches is verified. It is observed that the use of the connectivity strategy has achieved communication cycle times of 87 ms and 12 ms as the shortest in real-time, for the first and second approaches, respectively. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería - Ingeniería Eléctrica | spa |
dc.format.extent | 101 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79759 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Electrónica | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | [1] UPME, “Smart Grids Colombia VISIÓN 2030. Parte 1 - Antecedentes y Marco Conceptual del Análisis, Evaluación y Recomendaciones para la Implementación de Redes Inteligentes en Colombia”. 2016, [En línea]. Disponible en: http://www1.upme.gov.co/DemandayEficiencia/Doc_Hemeroteca/Smart_Grids_Colombia_Vision_2030/1_Parte1_Proyecto_BID_Smart_Grids.pdf. | spa |
dc.relation.references | [2] E. Ancillotti, R. Bruno, y M. Conti, “The role of communication systems in smart grids: Architectures, technical solutions and research challenges”, Comput. Commun., vol. 36, núm. 17–18, pp. 1665–1697, nov. 2013, doi: 10.1016/j.comcom.2013.09.004. | spa |
dc.relation.references | [3] C. Greer et al., “NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0”, Gaithersburg, MD, oct. 2014. doi: 10.6028/NIST.SP.1108r3. | spa |
dc.relation.references | [4] J. D. Molina C., D. E. Sanchez O., L. F. Buitrago A., y J. A. Zapata U., “Challenges and opportunities of smart grids implementation: A case of Colombia electricity sector”, en 2019 FISE-IEEE/CIGRE Conference - Living the energy Transition (FISE/CIGRE), dic. 2019, pp. 1–6, doi: 10.1109/FISECIGRE48012.2019.8985022. | spa |
dc.relation.references | [5] M. Ali, M. Zakariya, M. Asif, y A. Ullah, “TCP/IP Based Intelligent Load Management System in Micro-Grids Network Using MATLAB/Simulink”, Energy Power Eng., vol. 04, núm. 04, pp. 283–289, 2012, doi: 10.4236/epe.2012.44038. | spa |
dc.relation.references | [6] Z. CAI y M. YU, “Modeling and Simulation of a Real-time Ethernet Protocol for Smart Grids”, Int. J. Intell. Control Syst., vol. 17, núm. 3, pp. 69–78, 2012. | spa |
dc.relation.references | [7] W. Li, M. Ferdowsi, M. Stevic, A. Monti, y F. Ponci, “Cosimulation for Smart Grid Communications”, IEEE Trans. Ind. Informatics, vol. 10, núm. 4, pp. 2374–2384, nov. 2014, doi: 10.1109/TII.2014.2338740. | spa |
dc.relation.references | [8] M. Garau, G. Celli, E. Ghiani, F. Pilo, y S. Corti, “Evaluation of Smart Grid Communication Technologies with a Co-Simulation Platform”, IEEE Wirel. Commun., vol. 24, núm. 2, pp. 42–49, abr. 2017, doi: 10.1109/MWC.2017.1600214. | spa |
dc.relation.references | [9] M. A. E. Elabbas, A. M. E. Awad, y S. F. Babikir, “Agent based load management for Microgrid”, en 2017 International Conference on Communication, Control, Computing and Electronics Engineering (ICCCCEE), ene. 2017, pp. 1–6, doi: 10.1109/ICCCCEE.2017.7867684. | spa |
dc.relation.references | [10] V. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, y N. D. Hatziargyriou, “Hardware-In-the-Loop Design and Optimal Setting of Adaptive Protection Schemes for Distribution Systems With Distributed Generation”, IEEE Trans. Power Deliv., vol. 32, núm. 1, pp. 393–400, feb. 2017, doi: 10.1109/TPWRD.2015.2509784. | spa |
dc.relation.references | [11] H. Palahalli, E. Ragaini, y G. Gruosso, “Smart Grid Simulation Including Communication Network: A Hardware in the Loop Approach”, IEEE Access, vol. 7, pp. 90171–90179, 2019, doi: 10.1109/ACCESS.2019.2927821. | spa |
dc.relation.references | [12] F. Guo et al., “Design and development of a reconfigurable hybrid Microgrid testbed”, en 2013 IEEE Energy Conversion Congress and Exposition, sep. 2013, pp. 1350–1356, doi: 10.1109/ECCE.2013.6646862. | spa |
dc.relation.references | [13] D. Celeita, M. Hernandez, G. Ramos, N. Penafiel, M. Rangel, y J. D. Bernal, “Implementation of an educational real-time platform for relaying automation on smart grids”, Electr. Power Syst. Res., vol. 130, pp. 156–166, ene. 2016, doi: 10.1016/j.epsr.2015.09.003. | spa |
dc.relation.references | [14] A. I. Narvaez-Villota, A. J. Ustariz-Farfan, L. F. Diaz-Cadavid, J. A. Ocampo-Wilches, y E. A. Cano-Plata, “Development of a Methodology for Data Flow over TCP/IP for a Protection Scheme in Smart Grids”, 2019 IEEE Work. Power Electron. Power Qual. Appl. PEPQA 2019 - Proc., 2019, doi: 10.1109/PEPQA.2019.8851536. | spa |
dc.relation.references | [15] J. A. Ocampo-Wilches, A. I. Narvaez-Villota, D. M. Van Strahlen-Gutierrez, A. J. Ustariz-Farfan, y E. A. Cano-Plata, “MATLAB/Simulink Protection Library development for Evaluation of Protection Coordination for Steel Manufacturer Companies”, 2019 IEEE Ind. Appl. Soc. Annu. Meet. IAS 2019, pp. 1–7, 2019, doi: 10.1109/IAS.2019.8912318. | spa |
dc.relation.references | [16] A. J. Ustariz-Farfan, J. A. Ocampo-Wilches, A. I. Narvaez-Villota, D. M. Van Strahlen-Gutierrez, y E. A. Cano-Plata, “Evaluation of Protection Systems in Electric Arc Furnaces: A Methodology for Assessment”, IEEE Ind. Appl. Mag., núm. April 2021, 2020, doi: 10.1109/mias.2020.3024481. | spa |
dc.relation.references | [17] J. A. Ocampo-Wilches et al., “Steel Manufacturer Small-Scale Prototype Focused on Industry Application Research”, pp. 1–6, 2021, doi: 10.1109/ias44978.2020.9334842. | spa |
dc.relation.references | [18] C. A. Lemoine, “STUDY OF SMART GRIDS FRAMED IN THE CONCEPT OF MICROGRIDS: Application in minimizing energy losses”, 2014, [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/52153. | spa |
dc.relation.references | [19] R. H. Lasseter, “Smart Distribution: Coupled Microgrids”, Proc. IEEE, vol. 99, núm. 6, pp. 1074–1082, jun. 2011, doi: 10.1109/JPROC.2011.2114630. | spa |
dc.relation.references | [20] D. Cornforth, “Role of Microgrids in the Smart Grid”, J. Electron. Sci. Technol., vol. 9, núm. 1, pp. 9–16, 2011. | spa |
dc.relation.references | [21] K. C. Budka, J. G. Deshpande, T. L. Doumi, M. Madden, y T. Mew, “Communication network architecture and design principles for smart grids”, Bell Labs Tech. J., vol. 15, núm. 2, pp. 205–227, ago. 2010, doi: 10.1002/bltj.20450. | spa |
dc.relation.references | [22] K. C. Budka, J. G. Deshpande, y M. Thottan, Communication Networks for Smart Grids. London: Springer London, 2014. | spa |
dc.relation.references | [23] T. S. Ustun, C. Ozansoy, y A. Zayegh, “Modeling of a centralized microgrid protection system and distributed energy resources according to IEC 61850-7-420”, IEEE Trans. Power Syst., vol. 27, núm. 3, pp. 1560–1567, 2012, doi: 10.1109/TPWRS.2012.2185072. | spa |
dc.relation.references | [24] T. S. Ustun, R. H. Khan, A. Hadbah, y A. Kalam, “An adaptive microgrid protection scheme based on a wide-area smart grid communications network”, 2013 IEEE Latin-America Conf. Commun. LATINCOM 2013 - Conf. Proc., 2013, doi: 10.1109/LatinCom.2013.6759822. | spa |
dc.relation.references | [25] J. A. Ocampo-Wilches, A. J. Ustariz-Farfan, y E. A. Cano-Plata, “Modeling of a centralized microgrid protection scheme”, 2017 3rd IEEE Work. Power Electron. Power Qual. Appl. PEPQA 2017 - Proc., 2017, doi: 10.1109/PEPQA.2017.7981652. | spa |
dc.relation.references | [26] J. A. Ocampo Wilches, “ANÁLISIS EN MICRORREDES: Estrategias de Coordinación de Protecciones Inteligentes”, p. 110, 2019, [En línea]. Disponible en: https://repositorio.unal.edu.co/handle/unal/76108. | spa |
dc.relation.references | [27] H. Laaksonen, D. Ishchenko, y A. Oudalov, “Adaptive Protection and Microgrid Control Design for Hailuoto Island”, IEEE Trans. Smart Grid, vol. 5, núm. 3, pp. 1486–1493, may 2014, doi: 10.1109/TSG.2013.2287672. | spa |
dc.relation.references | [28] B. K. Duncan y B. G. Bailey, “Protection, Metering, Monitoring, and Control of Medium-Voltage Power Systems”, IEEE Trans. Ind. Appl., vol. 40, núm. 1, pp. 33–40, ene. 2004, doi: 10.1109/TIA.2003.821809. | spa |
dc.relation.references | [29] H. Laaksonen, “IED Functionalities Fulfilling Future Smart Grid Requirements”, Int. J. Distrib. Energy Resour. Smart Grids (DER Journal), vol. 9, pp. 289–311, 2013, [En línea]. Disponible en: https://www.researchgate.net/profile/Hannu_Laaksonen2/publication/270128305_IED_Functionalities_Fulfilling_Future_Smart_Grid_Requirements/links/54a40a280cf257a63607183b/IED-Functionalities-Fulfilling-Future-Smart-Grid-Requirements.pdf. | spa |
dc.relation.references | [30] E. Planas, J. Andreu, J. I. Gárate, I. Martínez de Alegría, y E. Ibarra, “AC and DC technology in microgrids: A review”, Renew. Sustain. Energy Rev., vol. 43, pp. 726–749, 2015, doi: 10.1016/j.rser.2014.11.067. | spa |
dc.relation.references | [31] Y. Yoldaş, A. Önen, S. M. Muyeen, A. V. Vasilakos, y İ. Alan, “Enhancing smart grid with microgrids: Challenges and opportunities”, Renew. Sustain. Energy Rev., vol. 72, pp. 205–214, may 2017, doi: 10.1016/j.rser.2017.01.064. | spa |
dc.relation.references | [32] M. Yigit, V. C. Gungor, G. Tuna, M. Rangoussi, y E. Fadel, “Power line communication technologies for smart grid applications: A review of advances and challenges”, Comput. Networks, vol. 70, 2014, doi: 10.1016/j.comnet.2014.06.005. | spa |
dc.relation.references | [33] S. E. Collier, “The Emerging Enernet: Convergence of the Smart Grid with the Internet of Things”, IEEE Ind. Appl. Mag., vol. 23, núm. 2, pp. 12–16, mar. 2017, doi: 10.1109/MIAS.2016.2600737. | spa |
dc.relation.references | [34] A. Meloni y L. Atzori, “The Role of Satellite Communications in the Smart Grid”, IEEE Wirel. Commun., vol. 24, núm. 2, pp. 50–56, abr. 2017, doi: 10.1109/MWC.2017.1600251 | spa |
dc.relation.references | [35] M. Garau, M. Anedda, C. Desogus, E. Ghiani, M. Murroni, y G. Celli, “A 5G cellular technology for distributed monitoring and control in smart grid”, en 2017 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), jun. 2017, pp. 1–6, doi: 10.1109/BMSB.2017.7986141. | spa |
dc.relation.references | [36] H. Hui, Y. Ding, Q. Shi, F. Li, Y. Song, y J. Yan, “5G network-based Internet of Things for demand response in smart grid: A survey on application potential”, Appl. Energy, vol. 257, p. 113972, ene. 2020, doi: 10.1016/j.apenergy.2019.113972. | spa |
dc.relation.references | [37] “NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0”, NIST Spec. Publ. 1108R2, 2012, [En línea]. Disponible en: https://www.nist.gov/system/files/documents/smartgrid/NIST_Framework_Release_2-0_corr.pdf. | spa |
dc.relation.references | [38] “Internet Protocols for the Smart Grid, RFC 6272”. 2011, [En línea]. Disponible en: https://tools.ietf.org/html/rfc6272. | spa |
dc.relation.references | [39] B. A. Forouzan, Data Communications and Networking, 4th ed. McGraw-Hill, 2007. | spa |
dc.relation.references | [40] A. S. Tanenbaum y D. J. Wetherall, Computer Networks, 5th ed. Prentice Hall, 2011. | spa |
dc.relation.references | [41] J. F. Kurose y K. W. Rose, Computer Networking: A Top-Down Approach, 6th ed. 2013. | spa |
dc.relation.references | [42] Y. Li, D. Li, W. Cui, y R. Zhang, “Research based on OSI model”, en 2011 IEEE 3rd International Conference on Communication Software and Networks, may 2011, pp. 554–557, doi: 10.1109/ICCSN.2011.6014631. | spa |
dc.relation.references | [43] F. Salvadori, C. S. Gehrke, A. C. de Oliveira, M. de Campos, y P. S. Sausen, “Smart Grid Infrastructure Using a Hybrid Network Architecture”, IEEE Trans. Smart Grid, vol. 4, núm. 3, pp. 1630–1639, sep. 2013, doi: 10.1109/TSG.2013.2265264. | spa |
dc.relation.references | [44] M. Donahoo y K. Calvert, TCP/IP Sockets in C - Practical Guide for Programmers. 2001. | spa |
dc.relation.references | [45] “IEEE Standard for Ethernet”, IEEE Std 802.3-2018 (Revision of IEEE Std 802.3-2015). pp. 1–5600, 2018, doi: 10.1109/IEEESTD.2018.8457469. | spa |
dc.relation.references | [46] S. Goldschmidt y D. Ziegelmeier, “lwIP - A Lightweight TCP/IP stack - Sumario”. http://savannah.nongnu.org/projects/lwip/ (consultado jun. 12, 2020). | spa |
dc.relation.references | [47] A. Dunkels, “Design and Implementation of the lwIP TCP/IP Stack”. Swedish Institute of Computer Science, 2001. | spa |
dc.relation.references | [48] F. Buchholz, “Das Begriffsystem Rechtleistung. Wirkleistung, totale Blindleistung”, 1950. | spa |
dc.relation.references | [49] “IEEE Standard for Inverse-Time Characteristics Equations for Overcurrent Relays”, IEEE Std C37.112-2018 (Revision of IEEE Std C37.112-1996). pp. 1–25, 2019, doi: 10.1109/IEEESTD.2019.8635630. | spa |
dc.relation.references | [50] S. Arias-Guzman, A. J. Ustariz-Farfan, y E. A. Cano-Plata, “Overcurrent Protection in Electric Arc Furnaces”, IEEE Trans. Ind. Appl., vol. 55, núm. 6, pp. 6652–6659, 2019, doi: 10.1109/TIA.2019.2937498. | spa |
dc.relation.references | [51] K. U. Vinayaka y P. S. Puttaswamy, “Review on characteristic modeling of electric arc furnace and its effects”, en 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), jul. 2017, pp. 1222–1229, doi: 10.1109/ICICICT1.2017.8342744. | spa |
dc.relation.references | [52] “Dynamic Host Configuration Protocol, RFC 2131”. 1997, [En línea]. Disponible en: https://tools.ietf.org/html/rfc2131. | spa |
dc.relation.references | [53] IEEE Std 802.3u-1995 -IEEE Standards for Local and Metropolitan Area Networks. 1995. | spa |
dc.relation.references | [54] 1646-2004 - IEEE Standard Communication Delivery Time Performance Requirements for Electric Power Substation Automation. IEEE, 2005. | spa |
dc.relation.references | [55] The MathWorks Inc, “Instrument Control ToolboxTM User’s Guide ©”. 2019. | spa |
dc.relation.references | [56] Texas Instruments, “RM57L843 Hercules TM Microcontroller Based on the ARM ® Cortex ® -R Core”, 2016. [En línea]. Disponible en: https://www.ti.com/lit/ds/symlink/rm57l843.pdf. | spa |
dc.relation.references | [57] E. Ding, “HALCoGen Ethernet Driver With lwIP Integration Demo and Active Web Server Demo”, 2019. https://www.ti.com/lit/an/spna239/spna239.pdf (consultado jun. 01, 2020). | spa |
dc.relation.references | [58] W. H. Kersting, “Radial distribution test feeders”, en 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194), 2001, vol. 2, núm. WINTER MEETING, pp. 908–912, doi: 10.1109/PESW.2001.916993. | spa |
dc.relation.references | [59] R. C. Dugan y W. H. Kersting, “Induction machine test case for the 34-bus test feeder -description”, en 2006 IEEE Power Engineering Society General Meeting, 2006, p. 4 pp., doi: 10.1109/PES.2006.1709506. | spa |
dc.relation.references | [60] S. Arias-Guzman, A. J. Ustariz-Farfan, y E. A. Cano-Plata, “Protection Coordination in Steel Manufacturers”, en 2018 IEEE Industry Applications Society Annual Meeting (IAS), sep. 2018, pp. 1–6, doi: 10.1109/IAS.2018.8544654. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines | spa |
dc.subject.lcsh | Electric power systems | |
dc.subject.lcsh | Distributed generation of electric power | |
dc.subject.lemb | Sistemas de potencia | |
dc.subject.lemb | Generación distribuida de energía eléctrica | |
dc.subject.proposal | Advanced Distribution Automation (ADA) | eng |
dc.subject.proposal | Automatización del sistema de distribución (ADA) | spa |
dc.subject.proposal | Distributed Generation | eng |
dc.subject.proposal | Generación distribuida | spa |
dc.subject.proposal | Embedded Systems | eng |
dc.subject.proposal | Sistemas embebidos | spa |
dc.subject.proposal | Ethernet | eng |
dc.subject.proposal | Ethernet | spa |
dc.subject.proposal | hardware-in-the-loop (HIL) | eng |
dc.subject.proposal | hardware-in-the-loop (HIL) | spa |
dc.subject.proposal | Lightweight TCP/IP Stack | eng |
dc.subject.proposal | Modelo LWIP | spa |
dc.subject.proposal | Microgrid | eng |
dc.subject.proposal | Microrred | spa |
dc.subject.proposal | Simulation Environment | eng |
dc.subject.proposal | Entorno de simulación | spa |
dc.subject.proposal | Smart Grid | eng |
dc.subject.proposal | Smart Grid | spa |
dc.subject.proposal | TCP/IP stack | eng |
dc.subject.proposal | Modelo TCP/IP | spa |
dc.title | Smart Grids: Una estrategia de conectividad para sus aplicaciones basada en la tecnología Ethernet | spa |
dc.title.translated | SMART GRIDS: A connectivity strategy for the applications based on the Ethernet technology | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053838217.2021.pdf
- Tamaño:
- 3.19 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: