Monitoreo de perfiles para respuesta discreta agregada

dc.contributor.advisorVargas Navas, José Albertospa
dc.contributor.authorMorales Ospina, Victor Hugospa
dc.date.accessioned2020-10-19T17:36:45Zspa
dc.date.available2020-10-19T17:36:45Zspa
dc.date.issued2020-08-21spa
dc.description.abstractThe temporary aggregation of data is a procedure that occurs frequently in various areas and for different reasons, among which are a better handling of high-frequency data or simplicity in the monitoring processes. Many aggregation procedures are done on discrete data, and in particular, on counting data based on exposed populations that do not change over time, so in such cases, process monitoring can be done properly through its average. The effect that the aggregation of this type of observations has on the monitoring of the processes, has been studied by some authors, however, the effect of the aggregation of counting data when the sizes of the exposed populations vary over time, not it has been studied so far. These types of situations are very common, for example, in health surveillance, where populations of people exposed to a certain adverse event generally vary over time. The records that are obtained from this type of situation, correspond mostly to univariate counting data. However, there are other applications that generate multivariate counting data that depend on a covariate, such as when in a certain time interval, the number of cases of cancer deaths discriminated according to the age of the patients is counted. In this case, the records obtained correspond to vectors of counts that depend on the age covariate. In this situation, the covariate is a factor whose values do not change from one observation interval to another. However, in some cases this assumption is not true, which generates data with a special characteristic that must be taken into account. This dissertation studies the effect of the aggregation of counting data (univariate and multivariate), when the size of the exposed populations changes over time. In addition, a methodology is introduced to aggregate and monitor processes that generate this type of data. This methodology allows to keep the rate of adverse events constant, regardless of the level of aggregation used. Through simulation processes and the use of real data, we determine the effect that aggregation has on the monitoring of this type of process. At the end of the document the conclusions of our study are presented, as well as ideas for future research.spa
dc.description.abstractLa agregación temporal de datos es un procedimiento que ocurre con frecuencia en diversas áreas y por distintas razones, entre las que se encuentran un mejor manejo de datos de alta frecuencia o simplicidad en los procesos de monitoreo. Muchos procedimientos de agregación se hacen sobre datos discretos, y en particular, sobre datos de conteo obtenidos a partir de poblaciones expuestas que no cambian en el tiempo, por lo que en tales casos, el monitoreo del proceso puede hacerse adecuadamente a través de la media de éste. El efecto que la agregación de este tipo de observaciones tiene sobre el monitoreo de los procesos, ha sido estudiado por algunos autores, sin embargo, el efecto de la agregación de datos de conteo cuando los tamaños de las poblaciones expuestas varían en el tiempo, no ha sido estudiado aún. Este tipo de situaciones son muy comunes, por ejemplo, en vigilancia de la salud, donde las poblaciones de personas expuestas a un determinado evento adverso, generalmente varían en el tiempo. Los registros que se obtienen a partir de este tipo de situaciones, corresponden en su gran mayoría, a datos de conteo univariados. Sin embargo, existen otras aplicaciones que generan datos de conteo multivariados que dependen de una covariable, como por ejemplo, cuando en un determinado intervalo de tiempo se cuenta el número de casos de muertes por cáncer discriminadas de acuerdo con la edad de los pacientes. En este caso los registros que se obtienen corresponden a vectores de conteos que depende de la covariable edad. En esta situación la covariable es un factor cuyos valores no cambian de un intervalo de observación a otro. Sin embargo, en algunos casos este supuesto sobre la covariable no puede asumirse, lo que genera datos con una característica especial que debe ser tenida en cuenta. En esta disertación se estudia el efecto de la agregación de datos de conteo (univariados y multivariados), cuando el tamaño de las poblaciones expuestas cambia en el tiempo. Además, se introduce una metodología para agregar y monitorear procesos que generan este tipo de datos. Esta metodología permite mantener constante la tasa de ocurrencias del evento de interés, independientemente del nivel de agregación utilizado. A través de procesos de simulación y del uso de datos reales, determinamos el efecto que la agregación tiene en el monitoreo de este tipo de procesos. Al final del documento se presentan las conclusiones de nuestro estudio, así como ideas para futuras investigaciones.spa
dc.description.additionalLínea de investigación: Control Estadístico de Procesosspa
dc.description.degreelevelDoctoradospa
dc.format.extent75spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78546
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.referencesM Aguilera, Estimacion penalizada con datos funcionales, Universidad de Granada (2009), Master thesis.spa
dc.relation.referencesA Amiri, M Koosha, and J Azhdari, Profile monitoring for Poisson responses, International Conference on Industrial Engineering and Engineering Management(IEEM), 2011 IEEM International conference (2011), 1481-1484.spa
dc.relation.referencesS Askoy, C Weihs, and R Haralick, Feature normalization and likelihood-based similarity measures for image retrieval, Tech. report, University of Washington, 2000.spa
dc.relation.referencesD Ayma, Smooth generalized linear models for aggregated data, Universidad Carlos III de Madrid (2016), Doctoral thesis.spa
dc.relation.referencesH. S Burkom, Y Elbert, A Feldman, and J Lin, Role of data aggregation in biosurveillance detection strategies with applications from essence, Morbidity and mortality weekly report 53 (2004), 67-73.spa
dc.relation.referencesC Camarda, Mortalitysmooth: An r package for smoothing Poisson counts with p-splines, Journal of Statistical Software, 50 (2012), no. 1, 1-24.spa
dc.relation.referencesD Ding, F Tsung, and J Li, Ordinal profile monitoring with random explanatory variables, International Journal of Production Research 55 (2017), no. 3, 736-749.spa
dc.relation.referencesY Dong, A Hedayat, and B Sinha, Surveillance strategies for detecting changepoint in incidence rate based on exponentially weighted moving average methods, Journal of the American Statistical Association 103 (2008), no. 482, 843-853.spa
dc.relation.referencesA Dubrawski and X Zhang, The role of data aggregation in public health and food safety surveillance, Biosurveillance: Methods and Case Studies (2010), 161-179.spa
dc.relation.referencesM Durban, Metodos de suavizado eficiente con p-splines, Simposio Internacional de Estadistica (2015), Armenia-Colombia.spa
dc.relation.referencesPHC Eilers and BD Marx, Flexible smoothing with b-splines and penalties, Statistical Science 11 (1996), 89-121.spa
dc.relation.referencesR Fraiman and G Muniz, Trimmed means for functional data, Test 10 (2001), no. 2, 419-440.spa
dc.relation.referencesF. F Gan, Design of optimal exponential CUSUM control charts, Journal of Quality Technology 26 (1994), no. 2, 109-124.spa
dc.relation.referencesM Gaston, T Leon, and F Mallor, Functional data analysis for non homogeneous Poisson processes, Proceedings - Winter Simulation Conference (2008), 337-343.spa
dc.relation.referencesP Hackl and J Ledolter, A control chart based on ranks, Journal of Quality Technology 23 (1991), no. 2, 117-124.spa
dc.relation.referencesC Hamurkaroglu, M Mert, and Y Saykan, Nonparametric control charts based on Mahalanobis depth, Quality control and applied statistics 33 (2004), 57-67.spa
dc.relation.referencesR Hogg, J McKean, and A Craig, Introduction to Mathematical Statistics, Pearson, 2005.spa
dc.relation.referencesL Kang and S Albin, On-line monitoring when the process yields a linear profile, Journal of Quality Technology 43 (2000), 196-208.spa
dc.relation.referencesA Kunoth, G Sangalli, and Stefano Serra Capizzano, Splines and PDEs: from approximation theory to numerical linear algebra, Springer, 2017.spa
dc.relation.referencesZ Li, Y Dai, and Z Wang, Multivariate change point control chart based on data depth for phase I analysis, Communications in Statistics - Simulation and Computation 43 (2014), no. 6, 1490-1507.spa
dc.relation.referencesS Lopez and J Romo, On the concept of depth for functional data, Journal of the American Statistical Association 104 (2009), no. 486, 718-734.spa
dc.relation.referencesM Mahmoud and WH Woodall, Phase I analysis of linear profiles with calibration applications, Technometrics 46 (2004), 380-391.spa
dc.relation.referencesM.R. Maleki, A Amiri, A.R Taheriyoun, and P Castagliola, Phase I monitoring and change point estimation of autocorrelated Poisson regression profiles, Communications in statistics-Theory and Methods 47 (2018), no. 24, 5885-5903.spa
dc.relation.referencesA Messaoud, C Weihs, and F Hering, Nonparametric multivariate control chart based on data depth, Tech. report, Universitat Dortmund, 2004.spa
dc.relation.referencesV.H Morales and J.A Vargas, The effect of aggregating multivariate count data using Poisson profiles, Communications in Statistics - Simulation and Computation (2019), DOI: 10.1080/03610918.2019.1699570.spa
dc.relation.referencesN Mostajeran, N Iranpanah, and R Noorossana, A new bootstrap based algorithm for Hotelling's T2 multivariate control chart, Journal of Sciences, Islamic Republic of Iran 27 (2016), no. 3, 269-278.spa
dc.relation.referencesN. N. Narisetty and V. N Nair, Extremal depth for functional data and applications, Journal of the American Statistical Association 111 (2016), no. 516, 1705-1714.spa
dc.relation.referencesR Noorossana, Saghaei A, and Amiri A, Statistical analysis of profile monitoring, John Wiley & Sons, Inc., 2011.spa
dc.relation.referencesR Noorossana, S Fatemi, and Y Zerehsaz, Phase II monitoring of simple linear profiles with random explanatory variables, The International Journal of Advanced Manufacturing Technology 76 (2015), 779-787.spa
dc.relation.referencesT Optiz, P Tramini, and N Molinari, Spline regression for zero-inflated models, JP Journal of Biostatistics 9 (2013), 53-66.spa
dc.relation.referencesP Phaladiganon, S King, V Chen, J Baeg, and S Park, Bootstrap-based T2 multivariate control chart, Communications in statistics-Simulation and Computation 40 (2011), no. 5, 645-662.spa
dc.relation.referencesD Qi, Z Wang, X Xi, and Z Li, Phase II monitoring of generalized linear profiles using weighted likelihood ratio charts, Computers & Industrial Engineering 94 (2016), 178-187.spa
dc.relation.referencesP Qiu and C Zou, Control chart for monitoring nonparametrics profiles with arbitrary design, Statistica Sinica 20 (2010), 1655-1682.spa
dc.relation.referencesM. R Reynolds and Z. G Stoumbos, A general approach to modeling CUSUM charts for a proportion, IIE Transactions 32 (2000), no. 6, 515-535.spa
dc.relation.referencesM R Reynolds and Z G Stoumbos, Control charts and the efficient allocation of sampling resources, Technometrics 46 (2004), no. 2, 200-214.spa
dc.relation.referencesM.R Reynolds and Z. G Stoumbos, Should observations be grouped for effective process monitoring? Journal of Quality Technology 36 (2004), no. 4, 343-366.spa
dc.relation.referencesA. G Ryan and W. H Woodall, Control charts for Poisson count data with varying sample sizes, Journal of Quality Technology 42 (2010), no. 3, 260-275.spa
dc.relation.referencesA Schuh, W. H Woodall, and J. A Camelio, The effect of aggregating data when monitoring a Poisson process, Quality control and applied statistics 45 (2013), no. 3, 260-272.spa
dc.relation.referencesA Shabbak and H Midi, An improvement of the hotelling statistic in monitoring multivariate quality characteristics, Mathematical Problems in Engineering (2012).spa
dc.relation.referencesY Shang, F Tsung, and C Zou, Profile monitoring with binary data and random predictors, Journal of Quality Technology 43 (2011), 196-208.spa
dc.relation.referencesX Shen, C Zou, F Tsung, and W Jiang, Monitoring Poisson count data with probability control limits when sample sizes are time varying, Naval Research Logistics (NRL) 60 (2013), no. 8, 625-636.spa
dc.relation.referencesJ Williams, W.H Woodall, and J.B Birch, Statistical monitoring of nonlinear product and process quality profiles, Quality and Reliability Engineering International 23 (2007), 925-941.spa
dc.relation.referencesWei Xu, Interval-valued data regression, PhD dissertation, University of Georgia, 2010.spa
dc.relation.referencesM. J. Zhao, A. R. Driscoll, S. Sengupta, N. T. Stevens, R. D. Fricker Jr, and W. H. Woodall, The effect of data aggregation level in social network monitoring., Submitted for publication (2018).spa
dc.relation.referencesC Zou, P Qiu, and D Hawkins, Nonparametric control chart for monitoring profiles using the change point formulation, Statistica Sinica 19 (2009), 1337-1357.spa
dc.relation.referencesC Zou, F Tsung, and Z Wang, Monitoring general linear profiles using multivariate EWMA schemes, Technometrics 49 (2007), 395-408.spa
dc.relation.referencesI. M Zwetsloot and W. H Woodall, A review of some sampling and aggregation strategies for basic statistical process monitoring, Journal of Quality Technology (2019), 1481-1484, DOI: 10.1080/00224065.2019.1611354.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalAggregatingeng
dc.subject.proposalAgregaciónspa
dc.subject.proposalConteosspa
dc.subject.proposalCounteng
dc.subject.proposalPoblación expuestaspa
dc.subject.proposalExposed populationeng
dc.subject.proposalAggregation leveleng
dc.subject.proposalNivel de agregaciónspa
dc.subject.proposalEstadísticaspa
dc.subject.proposalStatisticseng
dc.titleMonitoreo de perfiles para respuesta discreta agregadaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
78714078_2020.pdf
Tamaño:
797.17 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: