Regularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabética

dc.contributor.advisorVilla Garzón, Fernán Alonso
dc.contributor.authorRamírez Sánchez, Juan David
dc.date.accessioned2022-08-17T21:54:35Z
dc.date.available2022-08-17T21:54:35Z
dc.date.issued2022-02-28
dc.descriptionIlustracionesspa
dc.description.abstractLa retinopatía diabética (RD) es una patología retiniana causada por la diabetes, y es una de las principales causas de ceguera en todo el mundo; su detección temprana es primordial con el fin de prevenir su avance en el paciente. Existen diversos métodos para el diagnóstico temprano, entre estos, se ha evidenciado que las redes neuronales convolucionales (CNN – Convolucional Neural Networks) son adecuadas para el análisis de este fenómeno, contribuyendo con el diagnóstico temprano de esta enfermedad. Además, se han empleado técnicas de aprendizaje profundo (DL – Deep Learning), los modelos planteados en la literatura se centran en las etapas de preprocesamiento, extracción y selección de características de la imagen; sin embargo, estos modelos pueden adolecer de sobreajuste (Overfitting) y no se ha considerado el uso de técnicas de regularización para controlarlo. Entonces, en el presente trabajo, se ha propuesto desde un punto de vista conceptual y experimental, la selección de cinco técnicas de regularización sobre cinco modelos de aprendizaje profundo preentrenados y mediante el análisis de métricas (precisión, Recall, F1 score) se determina una técnica de regularización de redes neuronales artificiales que mejora la capacidad de generalización para la clasificación de imágenes de retinopatía diabética. (Texto tomado de la fuente)spa
dc.description.abstractDiabetic retinopathy (DR) is a retinal pathology caused by diabetes, and is one of the main causes of blindness worldwide; Its early detection is essential in order to prevent its progression in the patient. There are various methods for early diagnosis, among these, it has been shown that convolutional neural networks (CNN) are suitable for the analysis of this phenomenon, contributing to the early diagnosis of this disease. In addition, deep learning techniques (DL – Deep Learning) have been used, the models proposed in the literature focus on the stages of preprocessing, extraction and selection of image features; however, these models may suffer from overfitting and the use of regularization techniques to control it has not been considered. So, in the present work, it has been proposed from a conceptual and experimental point of view, the selection of five regularization techniques on five pretrained deep learning models and through the analysis of metrics (precision, Recall, F1 score) a Artificial neural network regularization technique that improves the generalization capacity for the classification of diabetic retinopathy images. it is an abbreviated presentation. A maximum length of 250 words should be used. It is recommended that this summary be analytical, that is, that it be complete, with quantitative and qualitative information, generally including the following aspects: objectives, design, place and circumstances, patients (or objective of the study), intervention, measurements and main results, and conclusions. At the end of the summary, keywords taken from the text should be used, which allow the retrieval of informationeng
dc.description.curricularareaÁrea Curricular de Ingeniería de Sistemas e Informáticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Analíticaspa
dc.description.researchareaInteligencia Artificialspa
dc.format.extentxviii, 95 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81945
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de la Computación y la Decisiónspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Analíticaspa
dc.relation.referencesAbdelmaksoud, E., El-Sappagh, S., Barakat, S., Abuhmed, T., & Elmogy, M. (2021). Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. IEEE Access, 9, 15939-15960. https://doi.org/10.1109/ACCESS.2021.3052870spa
dc.relation.referencesAgustin, T., & Sunyoto, A. (2020). Optimization Convolutional Neural Network for Classification Diabetic Retinopathy Severity. 2020 3rd International Conference on Information and Communications Technology (ICOIACT), 66-71. https://doi.org/10.1109/ICOIACT50329.2020.9332087spa
dc.relation.referencesAlyoubi, W. L., Shalash, W. M., & Abulkhair, M. F. (2020). Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 20, 100377. https://doi.org/10.1016/j.imu.2020.100377spa
dc.relation.referencesAPTOS 2019 Blindness Detection. (s. f.). Recuperado 28 de febrero de 2022, de https://kaggle.com/c/aptos2019-blindness-detectionspa
dc.relation.referencesBarhate, N., Bhave, S., Bhise, R., Sutar, R. G., & Karia, D. C. (2020). Reducing Overfitting in Diabetic Retinopathy Detection using Transfer Learning. 2020 IEEE 5th International Conference on Computing Communication and Automation (ICCCA), 298-301. https://doi.org/10.1109/ICCCA49541.2020.9250772spa
dc.relation.referencesBenzamin, A., & Chakraborty, C. (2018). Detection of Hard Exudates in Retinal Fundus Images Using Deep Learning. 2018 Joint 7th International Conference on Informatics, Electronics Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision Pattern Recognition (icIVPR), 465-469. https://doi.org/10.1109/ICIEV.2018.8641016spa
dc.relation.referencesChetoui, M., Akhloufi, M. A., & Kardouchi, M. (2018). Diabetic Retinopathy Detection Using Machine Learning and Texture Features. 2018 IEEE Canadian Conference on Electrical Computer Engineering (CCECE), 1-4. https://doi.org/10.1109/CCECE.2018.8447809spa
dc.relation.referencesChudzik, P., Majumdar, S., Calivá, F., Al-Diri, B., & Hunter, A. (2018). Microaneurysm detection using fully convolutional neural networks. Computer Methods and Programs in Biomedicine, 158, 185-192. https://doi.org/10.1016/j.cmpb.2018.02.016spa
dc.relation.referencesDas, S., Kharbanda, K., M, S., Raman, R., & D, E. D. (2021). Deep learning architecture based on segmented fundus image features for classification of diabetic retinopathy. Biomedical Signal Processing and Control, 68, 102600. https://doi.org/10.1016/j.bspc.2021.102600spa
dc.relation.referencesDiabetic Retinopathy 224x224 Gaussian Filtered. (s. f.). Recuperado 28 de febrero de 2022, de https://kaggle.com/sovitrath/diabetic-retinopathy-224x224-gaussian-filteredspa
dc.relation.referencesFong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., Ferris, F. L., & Klein, R. (2004). Retinopathy in Diabetes. Diabetes Care, 27(suppl 1), s84-s87. https://doi.org/10.2337/diacare.27.2007.S84spa
dc.relation.referencesGaldran, A., Dolz, J., Chakor, H., Lombaert, H., & Ayed, I. B. (2020). Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye Fundus Images. arXiv:2010.00291 [cs]. http://arxiv.org/abs/2010.00291spa
dc.relation.referencesHemanth, D. J., Deperlioglu, O., & Kose, U. (2020). An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network. Neural Computing and Applications, 32(3), 707-721. https://doi.org/10.1007/s00521-018-03974-0spa
dc.relation.referencesKeras: The Python deep learning API. (s. f.). Recuperado 14 de febrero de 2022, de https://keras.io/spa
dc.relation.referencesKumar, S., Adarsh, A., Kumar, B., & Singh, A. K. (2020). An automated early diabetic retinopathy detection through improved blood vessel and optic disc segmentation. Optics & Laser Technology, 121, 105815. https://doi.org/10.1016/j.optlastec.2019.105815spa
dc.relation.referencesLahmiri, S. (2020). Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina. Biomedical Signal Processing and Control, 60, 101978. https://doi.org/10.1016/j.bspc.2020.101978spa
dc.relation.referencesLois, N., Cook, J. A., Wang, A., Aldington, S., Mistry, H., Maredza, M., McAuley, D., Aslam, T., Bailey, C., Chong, V., Ganchi, F., Scanlon, P., Sivaprasad, S., Steel, D. H., Styles, C., Azuara-Blanco, A., Prior, L., Waugh, N., Saad, A., … Chong, V. (2021). Evaluation of a New Model of Care for People with Complications of Diabetic Retinopathy: The EMERALD Study. Ophthalmology, 128(4), 561-573. https://doi.org/10.1016/j.ophtha.2020.10.030spa
dc.relation.referencesLokuarachchi, D., Gunarathna, K., Muthumal, L., & Gamage, T. (2019). Automated Detection of Exudates in Retinal Images. 2019 IEEE 15th International Colloquium on Signal Processing Its Applications (CSPA), 43-47. https://doi.org/10.1109/CSPA.2019.8696052spa
dc.relation.referencesLyu, K., Li, Y., & Zhang, Z. (2020). Attention-Aware Multi-Task Convolutional Neural Networks. IEEE Transactions on Image Processing, 29, 1867-1878. https://doi.org/10.1109/TIP.2019.2944522spa
dc.relation.referencesMajumder, S., & Kehtarnavaz, N. (2021). Multitasking Deep Learning Model for Detection of Five Stages of Diabetic Retinopathy. arXiv:2103.04207 [cs, eess]. http://arxiv.org/abs/2103.04207spa
dc.relation.referencesMathews, M. R., & Anzar, S. M. (s. f.). A comprehensive review on automated systems for severity grading of diabetic retinopathy and macular edema. International Journal of Imaging Systems and Technology, n/a(n/a). https://doi.org/10.1002/ima.22574spa
dc.relation.referencesPires, R., Avila, S., Wainer, J., Valle, E., Abramoff, M. D., & Rocha, A. (2019). A data-driven approach to referable diabetic retinopathy detection. Artificial Intelligence in Medicine, 96, 93-106. https://doi.org/10.1016/j.artmed.2019.03.009spa
dc.relation.referencesPratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., & Zheng, Y. (2016). Convolutional Neural Networks for Diabetic Retinopathy. Procedia Computer Science, 90, 200-205. https://doi.org/10.1016/j.procs.2016.07.014spa
dc.relation.referencesRao, M., Zhu, M., & Wang, T. (2020). Conversion and Implementation of State-of-the-Art Deep Learning Algorithms for the Classification of Diabetic Retinopathy. arXiv:2010.11692 [cs]. http://arxiv.org/abs/2010.11692spa
dc.relation.referencesReed, R., & MarksII, R. J. (1999). Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks. MIT Pressspa
dc.relation.referencesShah, P., Mishra, D. K., Shanmugam, M. P., Doshi, B., Jayaraj, H., & Ramanjulu, R. (2020). Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy – Artificial intelligence versus clinician for screening. Indian Journal of Ophthalmology, 68(2), 398-405. https://doi.org/10.4103/ijo.IJO_966_19spa
dc.relation.referencesSri, R. M., Jyothirmai, J., & Swetha, D. (s. f.). Analysis of Retinal Blood Vessel Segmentation in different types of Diabetic Retinopathy. 8(2), 4.spa
dc.relation.referencesZhang, W., Zhong, J., Yang, S., Gao, Z., Hu, J., Chen, Y., & Yi, Z. (2019). Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge-Based Systems, 175, 12-25. https://doi.org/10.1016/j.knosys.2019.03.016spa
dc.relation.referencesZhu, J., Zhang, E., & Rio-Tsonis, K. D. (2012). Eye Anatomy. En ELS. American Cancer Society. https://doi.org/10.1002/9780470015902.a0000108.pub2spa
dc.relation.referencesjdramirezs. (2022). Regularizaci-n_de_redes_neuronales_artificiales_para_la_clasificacion_de_imagenes_de_retinopatia [Jupyter Notebook]. https://github.com/jdramirezs/Regularizaci-n_de_redes_neuronales_artificiales_para_la_clasificacion_de_imagenes_de_retinopatia (Original work published 2022)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::003 - Sistemasspa
dc.subject.lembRedes neuronales (Computadoers)
dc.subject.lembAprendizaje automático (Inteligencia artificial)
dc.subject.lembProcesamiento de imágenes
dc.subject.proposalRetinopatía Diabéticaspa
dc.subject.proposalRedes Neuronales Convolucionalesspa
dc.subject.proposalSobreajustespa
dc.subject.proposalTécnicas de regularizaciónspa
dc.subject.proposalDiabetic retinopathyeng
dc.subject.proposalConvolutional Neural Networkseng
dc.subject.proposalOverfittingeng
dc.subject.proposalTransfer learningeng
dc.subject.proposalRegularization techniqueseng
dc.subject.proposalTensorfloweng
dc.subject.proposalKeraseng
dc.titleRegularización de redes neuronales artificiales para la clasificación de imágenes de retinopatía diabéticaspa
dc.title.translatedRegularization of artificial neural networks for image classification of diabetic retinopathyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1128430332.2021.pdf
Tamaño:
1.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Analítica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: