Modelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariada

dc.contributor.advisorMazo Lopera, Mauricio Alejandro
dc.contributor.authorEscobar Arias, Jose Antonio
dc.date.accessioned2024-06-19T21:06:15Z
dc.date.available2024-06-19T21:06:15Z
dc.date.issued2024
dc.description.abstractEn este trabajo de investigación, se propone el desarrollo de un modelo de regresión lineal con respuesta multivariada asociado a la clase de distribuciones normal/independiente multivariadas. El objetivo principal es lograr el modelado de cuantiles marginales bajo la presencia de datos faltantes, teniendo en cuenta la asociación entre las variables del vector de respuesta. Se emplea un enfoque Bayesiano, aprovechando las herramientas que este ofrece, como también algoritmos (que serán descritos posteriormente) para llevar a cabo el proceso de imputación y aproximación de distribuciones posteriores. La validez del modelo se evalúa mediante estudios de simulación, que confirman el desempeño satisfactorio en el proceso de estimación de los parámetros. Además, se presenta una aplicación práctica del modelo a un conjunto de datos reales, proporcionando así una validación adicional de su utilidad y aplicabilidad en contextos empíricos. (Tomado de la fuente)spa
dc.description.abstractIn this research work, we propose the development of a multivariate linear regression model associated with the class of normal/independent multivariate distributions. The primary objective is to achieve modeling of marginal quantiles in the presence of missing data, considering the association among variables in the response vector. A Bayesian approach is employed, leveraging the tools offered by this approach, including algorithms (which will be described later) for imputation and posterior distribution calculations. The model's validity is assessed through simulation studies, confirming the satisfactory performance of parameters estimation. Additionally, a practical application of the model to a real dataset is presented, providing further validation of its utility and applicability in empirical contexts.eng
dc.description.curricularareaEstadística.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaModelado de Cuantilesspa
dc.format.extent94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86279
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbanto-Valle, C. A., Lachos, V. H., y Ghosh, P. (2012). A bayesian approach to term struc ture modeling using heavy-tailed distributions. Applied stochastic models in business and industry, 28 (5), 430–447.spa
dc.relation.referencesAndrews, D. F., y Mallows, C. L. (1974). Scale mixtures of normal distributions. Journal of the Royal Statistical Society: Series B (Methodological), 36 (1), 99–102.spa
dc.relation.referencesArellano-Valle, R., Galea-Rojas, M., y Zuazola, P. I. (2000). Bayesian sensitivity analysis in elliptical linear regression models. Journal of Statistical Planning and Inference, 86 (1), 175–199.spa
dc.relation.referencesArslan, O. (2008). An alternative multivariate skew-slash distribution. Statistics & Probability Letters, 78 (16), 2756–2761.spa
dc.relation.referencesArslan, O., y Gen¸c, A. ˙I. (2009). A generalization of the multivariate slash distribution. Journal of Statistical Planning and Inference, 139 (3), 1164–1170.spa
dc.relation.referencesAtkinson, A. C. (1981). Two graphical displays for outlying and influential observations in regression. Biometrika, 68 (1), 13–20.spa
dc.relation.referencesBartlett, M. S. (1934). Xx.—on the theory of statistical regression. Proceedings of the Royal Society of Edinburgh, 53 , 260–283.spa
dc.relation.referencesBeale, E. M., y Little, R. J. (1975). Missing values in multivariate analysis. Journal of the Royal Statistical Society Series B: Statistical Methodology, 37 (1), 129–145.spa
dc.relation.referencesBoris Choy, S., y Chan, J. S. (2008). Scale mixtures distributions in statistical modelling. Australian & New Zealand Journal of Statistics, 50 (2), 135–146.spa
dc.relation.referencesBox, G. E., y Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society Series B: Statistical Methodology, 26 (2), 211–243.spa
dc.relation.referencesBox, G. E., y Tiao, G. C. (1973). Bayesian inference in statistical analysis. John Wiley & Sons.spa
dc.relation.referencesBuchinsky, M. (1998). Recent advances in quantile regression models: a practical guideline for empirical research. Journal of human resources, 88–126.spa
dc.relation.referencesCarpenter, J. R., Bartlett, J. W., Morris, T. P., Wood, A. M., Quartagno, M., y Kenward, M. G. (2023). Multiple imputation and its application. John Wiley & Sons.spa
dc.relation.referencesChakraborty, B. (2003). On multivariate quantile regression. Journal of statistical planning and inference, 110 (1-2), 109–132.spa
dc.relation.referencesChen, G., y Luo, S. (2016). Robust bayesian hierarchical model using normal/independent distributions. Biometrical Journal, 58 (4), 831–851.spa
dc.relation.referencesDe la Cruz, R. (2014). Bayesian analysis for nonlinear mixed-effects models under heavy-tailed distributions. Pharmaceutical statistics, 13 (1), 81–93.spa
dc.relation.referencesDempster, A. P., Laird, N. M., y Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the royal statistical society: series B (methodological), 39 (1), 1–22.spa
dc.relation.referencesDe Santis, F., y Spezzaferri, F. (1999). Methods for default and robust bayesian model comparison: the fractional bayes factor approach. International Statistical Review, 67 (3), 267–286.spa
dc.relation.referencesDunnett, C. W., y Sobel, M. (1954). A bivariate generalization of student’s t-distribution, with tables for certain special cases. Biometrika, 41 (1-2), 153–169.spa
dc.relation.referencesFerrari, S. L., y Fumes, G. (2017). Box–cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101 , 321–344.spa
dc.relation.referencesGalarza Morales, C., Lachos Davila, V., Barbosa Cabral, C., y Castro Cepero, L. (2017). Robust quantile regression using a generalized class of skewed distributions. Stat, 6 (1), 113–130.spa
dc.relation.referencesGaray, A. M., Bolfarine, H., Lachos, V. H., y Cabral, C. R. (2015). Bayesian analysis of censored linear regression models with scale mixtures of normal distributions. Journal of Applied Statistics, 42 (12), 2694–2714.spa
dc.relation.referencesGelman, A., Carlin, J. B., Stern, H. S., y Rubin, D. B. (1995). Bayesian data analysis. Chapman and Hall/CRC.spa
dc.relation.referencesGen¸c, A. ˙I. (2007). A generalization of the univariate slash by a scale-mixtured exponential power distribution. Communications in Statistics—Simulation and Computation®, 36 (5), 937–947.spa
dc.relation.referencesG´omez, H. W., Quintana, F. A., y Torres, F. J. (2007). A new family of slash-distributions with elliptical contours. Statistics & probability letters, 77 (7), 717–725.spa
dc.relation.referencesHan, P., Kong, L., Zhao, J., y Zhou, X. (2019). A general framework for quantile estimation with incomplete data. Journal of the Royal Statistical Society Series B: Statistical Methodology, 81 (2), 305–333.spa
dc.relation.referencesHowarth, T., Ben Saad, H., y Heraganahally, S. S. (2023). The impact of lung function parameters on sleep among aboriginal australians–a polysomnography and spirometry relationship study. Nature and Science of Sleep, 449–464.spa
dc.relation.referencesHunter, D. R., y Lange, K. (2000). Quantile regression via an mm algorithm. Journal of Computational and Graphical Statistics, 9 (1), 60–77.spa
dc.relation.referencesKafadar, K. (2004). Slash distribution. Encyclopedia of statistical sciences, 12 .spa
dc.relation.referencesKibria, B. G., y Joarder, A. H. (2006). A short review of multivariate t-distribution. Journal of Statistical research, 40 (1), 59–72.spa
dc.relation.referencesKleinke, K., Fritsch, M., Stemmler, M., Reinecke, J., y L¨osel, F. (2021). Quantile regression based multiple imputation of missing values—an evaluation and application to corporal punishment data. Methodology, 17 (3), 205–230.spa
dc.relation.referencesKoenker, R. (2005). Quantile regression (Vol. 38). Cambridge university press.spa
dc.relation.referencesKoenker, R., y Bassett Jr, G. (1978). Regression quantiles. Econometrica: journal of the Econometric Society, 33–50.spa
dc.relation.referencesKotz, S., y Nadarajah, S. (2004). Multivariate t-distributions and their applications. Cambridge University Press.spa
dc.relation.referencesLachos, V. H., Bandyopadhyay, D., y Dey, D. K. (2011). Linear and nonlinear mixed-effects models for censored hiv viral loads using normal/independent distributions. Biometrics, 67 (4), 1594–1604.spa
dc.relation.referencesLange, K., y Sinsheimer, J. S. (1993). Normal/independent distributions and their applications in robust regression. Journal of Computational and Graphical Statistics, 2 (2), 175–198.spa
dc.relation.referencesLange, K. L., Little, R. J., y Taylor, J. M. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association, 84 (408), 881–896.spa
dc.relation.referencesLee, S. X., y McLachlan, G. J. (2014). Scale mixture distribution. Wiley StatsRef: Statistics Reference Online, 1–16.spa
dc.relation.referencesLi, K.-H. (1988). Imputation using markov chains. Journal of Statistical Computation and Simulation, 30 (1), 57–79.spa
dc.relation.referencesLin, P.-E. (1972). Some characterizations of the multivariate t distribution. Journal of Multivariate Analysis, 2 (3), 339–344.spa
dc.relation.referencesLittle, R. J. (1988). Robust estimation of the mean and covariance matrix from data with missing values. Journal of the Royal Statistical Society Series C: Applied Statistics, 37 (1), 23–38.spa
dc.relation.referencesLittle, R. J. A., y Rubin, D. B. (1987). Statistical analysis with missing data (First ed.). Hoboken, NJ : Wiley: Wiley Series in Probability and Statistics.spa
dc.relation.referencesLiu, C. (1993). Bartlett s decomposition of the posterior distribution of the covariance for normal monotone ignorable missing data. Journal of Multivariate Analysis, 46 (2), 198–206.spa
dc.relation.referencesLiu, C. (1994). Statistical analysis using the multivariate t distribution. Harvard University.spa
dc.relation.referencesLiu, C. (1995). Missing data imputation using the multivariate t distribution. Journal of multivariate analysis, 53 (1), 139–158.spa
dc.relation.referencesLiu, C. (1996). Bayesian robust multivariate linear regression with incomplete data. Journal of the American Statistical Association, 91 (435), 1219–1227.spa
dc.relation.referencesLiu, C. (1997). Ml estimation of the multivariate tdistribution and the em algorithm. Journal of Multivariate Analysis, 63 (2), 296–312.spa
dc.relation.referencesLiu, C., y Rubin, D. B. (1995). Ml estimation of the t distribution using em and its extensions, ecm and ecme. Statistica Sinica, 19–39.spa
dc.relation.referencesMeng, X.-L., y Rubin, D. B. (1993). Maximum likelihood estimation via the ecm algorithm: A general framework. Biometrika, 80 (2), 267–278.spa
dc.relation.referencesMontgomery, D. C., Peck, E. A., y Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons.spa
dc.relation.referencesMorán-Vásquez, R. A., y Ferrari, S. L. (2019). Box–cox elliptical distributions with application. Metrika, 82 (5), 547–571.spa
dc.relation.referencesMorán-Vásquez, R. A., Giraldo-Melo, A. D., y Mazo-Lopera, M. A. (2023). Quantile estimation using the log-skew-normal linear regression model with application to children’s weight data. Mathematics, 11 (17), 3736.spa
dc.relation.referencesMorán-Vásquez, R. A., Mazo-Lopera, M. A., y Ferrari, S. L. (2021). Quantile modeling through multivariate log-normal/independent linear regression models with application to newborn data. Biometrical Journal, 63 (6), 1290–1308.spa
dc.relation.referencesMorán-V´asquez, R. A., Roldán-Correa, A., y Nagar, D. K. (2023). Quantile-based multivariate log-normal distribution. Symmetry, 15 (8), 1513.spa
dc.relation.referencesPetrella, L., y Raponi, V. (2019). Joint estimation of conditional quantiles in multivariate li near regression models with an application to financial distress. Journal of Multivariate Analysis, 173 , 70–84.spa
dc.relation.referencesQuiroz, A. J., Nakamura, M., y P´erez, F. J. (1996). Estimation of a multivariate box-cox transformation to elliptical symmetry via the empirical characteristic function. Annals of the Institute of Statistical Mathematics, 48 , 687–709.spa
dc.relation.referencesRaghunathan, T. (2015). Missing data analysis in practice. CRC press.spa
dc.relation.referencesReyes, J., Gallardo, D. I., Bolfarine, H., y G´omez, H. W. (2019). A new class of slash-elliptical distributions. Communications in Statistics-Theory and Methods, 48 (12), 3105–3121.spa
dc.relation.referencesReyes, J., y Iriarte, Y. A. (2023). A new family of modified slash distributions with applications. Mathematics, 11 (13), 3018.spa
dc.relation.referencesRitter, C., y Tanner, M. A. (1992). Facilitating the gibbs sampler: the gibbs stopper and the griddy-gibbs sampler. Journal of the American Statistical Association, 87 (419), 861–868.spa
dc.relation.referencesRogers, W. H., y Tukey, J. W. (1972). Understanding some long-tailed symmetrical distributions. Statistica Neerlandica, 26 (3), 211–226.spa
dc.relation.referencesRosa, G., Padovani, C. R., y Gianola, D. (2003). Robust linear mixed models with normal/independent distributions and bayesian mcmc implementation. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 45 (5), 573–590.spa
dc.relation.referencesRoth, S., M’Pembele, R., Stroda, A., Voit, J., Lurati Buse, G., Sixt, S. U., . . . others (2022). Days alive and out of hospital after left ventricular assist device implantation. ESC Heart Failure, 9 (4), 2455–2463.spa
dc.relation.referencesRubin, D. B. (1976). Inference and missing data. Biometrika, 63 (3), 581–592.spa
dc.relation.referencesRubin, D. B. (1983). Iteratively reweighted least squares. Encyclopedia of statistical sciences, 6 .spa
dc.relation.referencesRubin, D. B., y Schafer, J. L. (1990). Efficiently creating multiple imputations for incomplete multivariate normal data. En Proceedings of the statistical computing section of the american statistical association (Vol. 83, p. 88).spa
dc.relation.referencesS´anchez, B., Lachos, H., y Labra, V. (2013). Likelihood based inference for quantile regression using the asymmetric laplace distribution. Journal of Statistical Computation and Simulation, 81 , 1565–1578.spa
dc.relation.referencesSchafer, J. L. (1997). Analysis of incomplete multivariate data. CRC press.spa
dc.relation.referencesSchmeiser, B. W., y Lal, R. (1980). Squeeze methods for generating gamma variates. Journal of the American Statistical Association, 75 (371), 679–682.spa
dc.relation.referencesStasinopoulos, M., Rigby, B., Voudouris, V., Akantziliotou, C., Enea, M., y Kiose, D. (2023). Package ‘gamlss’. Dist’2020Available online: http://www. gamlss. org (accessed on 16 July 2021).spa
dc.relation.referencesStudent. (1908). The probable error of a mean. Biometrika, 6 (1), 1–25.spa
dc.relation.referencesTang, Y. (2015). An efficient monotone data augmentation algorithm for bayesian analysis of incomplete longitudinal data. Statistics & Probability Letters, 104 , 146–152.spa
dc.relation.referencesTanner, M. A., y Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American statistical Association, 82 (398), 528–540.spa
dc.relation.referencesTian, Y., Tian, M., y Zhu, Q. (2014). Linear quantile regression based on em algorithm. Communications in Statistics-Theory and Methods, 43 (16), 3464–3484.spa
dc.relation.referencesVan Buuren, S. (2018). Flexible imputation of missing data. CRC press.spa
dc.relation.referencesVan Dyk, D. A., y Meng, X.-L. (2001). The art of data augmentation. Journal of Computational and Graphical Statistics, 10 (1), 1–50.spa
dc.relation.referencesVan Dyk, D. A., y Meng, X.-L. (2010). Cross-fertilizing strategies for better em mountain climbing and da field exploration: A graphical guide book.spa
dc.relation.referencesVanegas, L. H., y Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation.spa
dc.relation.referencesVerhasselt, A., Fl´orez, A. J., Van Keilegom, I., y Molenberghs, G. (2019). The impact of incomplete data on quantile regression for longitudinal data. FEB Research Report KBI 1906 .spa
dc.relation.referencesWang, C., Tian, M., y Tang, M.-L. (2022). Nonparametric quantile regression with missing data using local estimating equations. Journal of Nonparametric Statistics, 34 (1), 164–186.spa
dc.relation.referencesWang, J., y Genton, M. G. (2006). The multivariate skew-slash distribution. Journal of Statistical Planning and Inference, 136 (1), 209–220.spa
dc.relation.referencesWei, Y. (2008). An approach to multivariate covariate-dependent quantile contours with application to bivariate conditional growth charts. Journal of the American Statistical Association, 103 (481), 397–409.spa
dc.relation.referencesWHO. (2006). Who child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. World Health Organization.spa
dc.relation.referencesWHO. (2007). World health organization child growth standards: head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. World Health Organization.spa
dc.relation.referencesWichitaksorn, N., Choy, S. B., y Gerlach, R. (2014). A generalized class of skew distributions and associated robust quantile regression models. Canadian Journal of Statistics, 42 (4), 579–596.spa
dc.relation.referencesYu, K., y Moyeed, R. A. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54 (4), 437–447.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembModelos log-lineales
dc.subject.lembAnálisis de regresión
dc.subject.lembAnálisis multivariante
dc.subject.proposalAlgoritmo de Aumento de Datos Monótonos (MDA Algorithm)spa
dc.subject.proposaldistribuciónn normal/independiente multivariadaspa
dc.subject.proposaldistribución log-normal/independiente multivariadaspa
dc.subject.proposalmodelado de cuantilesspa
dc.subject.proposaldatos faltantesspa
dc.subject.proposalregresión lineal multivariadaspa
dc.subject.proposalMonotone Data Augmentation Algorithm (MDA Algorithm)eng
dc.subject.proposalmultivariate normal/independent distributioneng
dc.subject.proposalmultivariate log-normal/independent distributioneng
dc.subject.proposalquantile modelingeng
dc.subject.proposalmissing dataeng
dc.subject.proposalmultivariate linear regressioneng
dc.titleModelado de cuantiles marginales en presencia de datos faltantes mediante la clase de modelos de regresión con distribución normal/independiente multivariadaspa
dc.title.translatedModeling of marginal quantiles in the presence of missing data using the class of regression models with normal/independent multivariate distributioneng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1123415188.2024.pdf
Tamaño:
1.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: