Symbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computation

dc.contributor.advisorVinck Posada, Herbert
dc.contributor.advisorGonzález Osorio, Fabio Augusto
dc.contributor.authorVargas Calderón, Vladimir
dc.contributor.googlescholarVladimir Vargas-Calderón [SfLRhYcAAAAJ]spa
dc.contributor.orcidVladimir Vargas-Calderón [0000000154763300]spa
dc.contributor.researchgateVladimir Vargas-Calderón [Vladimir-Vargas-Calderon]spa
dc.contributor.researchgroupGrupo de Óptica E Información Cuánticaspa
dc.contributor.researchgroupSuperconductividad y Nanotecnologíaspa
dc.date.accessioned2023-07-26T19:20:31Z
dc.date.available2023-07-26T19:20:31Z
dc.date.issued2022-12-01
dc.descriptionilustraciones, diagramasspa
dc.description.abstractThis thesis explores the intersections between quantum computing, quantum physics and machine learning. In the three fields, estimating probability distributions plays a central role. In the case of quantum computing and quantum physics, a central object of study is the quantum state of a system, which encodes a probability dis- tribution (the converse is not true, however, as a quantum state is an object that is more general than a classical probability distribution). In the case of machine learning, most of supervised and unsupervised learning tasks can be seen as esti- mating probability distributions from a training data set, which then can be used to predict by sampling or evaluating such probability distribution. Due to the famous curse of dimensionality, both present in machine learning but also in the natural intractability of Hilbert spaces, it has been established that quantum theory and machine learning have a lot to give and learn from each other. The journey depicted in this thesis stems from quantum optics and its application to modelling quantum devices for quantum computation or simulation, such as quantum dots and their interaction with optical and acoustic cavities. Indeed, quan- tum computation has long been sought by the physics community and stands–in the collective imagination–as a “holy grail” to solve several problems in the indus- try and science. Of particular interest of mine is the study of quantum many-body problems themselves, which, in combination with quantum computing, establishes an interesting circular set of resources: quantum computation to study quantum systems that can be used for quantum computation. Unfortunately, the promise of the “holy grail” of quantum computation has not materialised to date (even though there are known applications which are expo- nentially faster than any classical algorithm, e.g. the famous Deutsch-Jozsa algo- rithm), which is why the best known approaches to studying quantum physics or quantum chemistry are still classical algorithms. In particular, there are machine learning models, known as neural quantum states, that can be used to study quan- tum many-body problems. Neural quantum states are an application of machine learning techniques for studying quantum physics. In this thesis, we show fruitful approaches to studying ground states, steady-states and closed dynamics of quan- tum systems through neural quantum states. This knowledge transfer does not only occur in one direction: quantum physics can also contribute to machine learning with quantum-inspired machine learning methods. In this thesis, we also present a framework that establishes an analogy between quantum state preparation and training, and also between quantum pro- jective measurements and prediction. Our approach condenses classical data into the quantum state of a system. We manage to show that arbitrary probability dis- tributions can be encoded in such a quantum state to arbitrary precision, given enough degrees of freedom of the quantum state. Moreover, we can condense ar- bitrarily large data sets into quantum states, which allow us to have gradient-free (actually, optimisation-free) training. This framework of ours was also put into action by implementing it on a real quantum computer for toy data sets. Finally, I also present applications of neural quantum states and quantum-inspired generative modelling to industry problems such as the famous travelling salesman problem, for which we propose a qudit-based Hamiltonian whose ground state en- codes its solution; and other problems such as the portfolio optimisation problem using tensor network generative models.eng
dc.description.abstractEsta tesis explora las intersecciones entre la computación cuántica, la física cuántica y el aprendizaje automático. En los tres campos, la estimación de distribuciones de probabilidad desempeña un papel central. En el caso de la computación cuántica y la física cuántica, un objeto de estudio central es el estado cuántico de un sistema, que codifica una distribución de probabilidad (sin embargo, lo contrario no es cierto, ya que un estado cuántico es un objeto más general que una distribución de probabilidad clásica). En el caso del aprendizaje automático, la mayoría de las tareas de aprendizaje supervisado y no supervisado pueden considerarse como la estimación de distribuciones de probabilidad a partir de un conjunto de datos de entrenamiento, que luego pueden utilizarse para predecir mediante el muestreo o la evaluación de dicha distribución de probabilidad. Debido a la famosa maldición de la dimensionalidad, presente tanto en el aprendizaje automático como en la intratabilidad natural de los espacios de Hilbert, se ha establecido que la teoría cuántica y el aprendizaje automático tienen mucho que dar y aprender la una de la otra. El viaje descrito en esta tesis parte de la óptica cuántica y su aplicación al modelado de dispositivos cuánticos para la computación o la simulación cuánticas, como los puntos cuánticos y su interacción con cavidades ópticas y acústicas. De hecho, la comunidad de físicos lleva mucho tiempo buscando la computación cuántica y se erige–en el imaginario colectivo–como un “santo grial” para resolver varios problemas de la industria y la ciencia. De particular interés para mı es el estudio de los problemas cuánticos de muchos cuerpos, que, en combinación con la computación cuántica, establece un interesante conjunto circular de recursos: computación cuántica para estudiar sistemas cuánticos que pueden utilizarse para la computación cuántica. Por desgracia, la promesa del “santo grial” de la computación cuántica no se ha materializado hasta la fecha (aunque se conocen aplicaciones exponencialmente más rápidas que cualquier algoritmo clásico, por ejemplo, el famoso algoritmo Deutsch-Jozsa), por lo que los enfoques más conocidos para estudiar la física o la química cuánticas siguen siendo los algoritmos clásicos. En particular, existen modelos de aprendizaje automático, conocidos como estados cuánticos neuronales, que pueden utilizarse para estudiar problemas cuánticos de muchos cuerpos. Los estados cuánticos neuronales son una aplicación de las técnicas de aprendizaje automático para estudiar la física cuántica. En esta tesis, mostramos enfoques fructíferos para estudiar estados básicos, estados estacionarios y dinámicas cerradas de sistemas cuánticos mediante estados cuánticos neuronales. Esta transferencia de conocimientos no solo se produce en una dirección: la física cuántica también puede contribuir al aprendizaje automático con métodos de aprendizaje automático inspirados en la cuántica. En esta tesis también presentamos un marco que establece una analogía entre la preparación del estado cuántico y el entrenamiento, y también entre las mediciones proyectivas cuánticas y la predicción. Nuestro enfoque condensa los datos clásicos en el estado cuántico de un sistema. Conseguimos demostrar que se pueden codificar distribuciones de probabilidad arbitrarias en dicho estado cuántico con una precisión arbitraria, dados suficientes grados de libertad del estado cuántico. Además, podemos condensar conjuntos de datos arbitrariamente grandes en estados cuánticos, lo que nos permite tener un entrenamiento sin gradiente (en realidad, sin optimización). Este marco nuestro también se puso en práctica implementándolo en un ordenador cuántico real para conjuntos de datos de juguete. Por último, también presento aplicaciones de los estados cuánticos neuronales y el modelado generativo de inspiración cuántica a problemas industriales como el famoso problema del viajante de comercio, para el que proponemos un Hamiltoniano basado en el qudit cuyo estado fundamental codifica su solución; y otros problemas como el de optimización de carteras mediante modelos generativos de redes tensoriales. (Texto tomado de la fuente)spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.format.extentix, 119 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84294
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.referencesAbbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., and Woerner, S. (2021). The power of quantum neural networks. Nature Computational Science, 1(6):403–409.spa
dc.relation.referencesAdambukulam, C., Sewani, V., Stemp, H., Asaad, S., Madzik, M., Morello, A., and Laucht, A. (2021). An ultra-stable 1.5 t permanent magnet assembly for qubit experiments at cryogenic temperatures. Review of Scientific Instruments, 92(8):085106.spa
dc.relation.referencesAkbay, M. A., Kalayci, C. B., and Polat, O. (2020). A parallel variable neighborhood search algorithm with quadratic programming for cardinality constrained port- folio optimization. Knowledge-Based Systems, 198:105944.spa
dc.relation.referencesAkiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna: A next- generation hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.spa
dc.relation.referencesAlbert, V. V. and Jiang, L. (2014). Symmetries and conserved quantities in lindblad master equations. Physical Review A, 89(2):022118.spa
dc.relation.referencesAlcazar, J., Vakili, M. G., Kalayci, C. B., and Perdomo-Ortiz, A. (2021). Geo: Enhanc- ing combinatorial optimization with classical and quantum generative models.spa
dc.relation.referencesAlhambra,A ́.M.(2022).Quantummany-bodysystemsinthermalequilibrium.spa
dc.relation.referencesAnschuetz, E. R. and Kiani, B. T. (2022). Beyond barren plateaus: Quantum varia- tional algorithms are swamped with traps.spa
dc.relation.referencesArute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G. S. L., Buell, D. A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney, W., Dunsworth, A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S., Harrigan, M. P., Hartmann, M. J., Ho, A., Hoffmann, M., Huang, T., Humble, T. S., Isakov, S. V., Jeffrey, E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P. V., Knysh, S., Korotkov, A., Kostritsa, F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandra`, S., McClean, J. R., McEwen, M., Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu, M. Y., Ostby, E., Petukhov, A., Platt, J. C., Quintana, C., Rieffel, E. G., Roushan, P., Rubin, N. C., Sank, D., Satzinger, K. J., Smelyanskiy, V., Sung, K. J., Trevithick, M. D., Vainsencher, A., Villalonga, B., White, T., Yao, Z. J., Yeh, P., Zalcman, A., Neven, H., and Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510.spa
dc.relation.referencesBallentine, L. E. (2014). Quantum mechanics: a modern development. World Scientific Publishing Company.spa
dc.relation.referencesBarenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N., Shor, P., Sleator, T., Smolin, J. A., and Weinfurter, H. (1995). Elementary gates for quan- tum computation. Phys. Rev. A, 52:3457–3467.spa
dc.relation.referencesBarison, S., Vicentini, F., Cirac, I., and Carleo, G. (2022). Variational dynamics as a ground-state problem on a quantum computer. arXiv preprint arXiv:2204.03454.spa
dc.relation.referencesBarker, J. A. and O’Reilly, E. P. (2000). Theoretical analysis of electron-hole align- ment in inas-gaas quantum dots. Phys. Rev. B, 61:13840–13851.spa
dc.relation.referencesBarontini, G., Labouvie, R., Stubenrauch, F., Vogler, A., Guarrera, V., and Ott, H. (2013). Controlling the dynamics of an open many-body quantum system with localized dissipation. Physical review letters, 110(3):035302.spa
dc.relation.referencesBarrett, T. D., Malyshev, A., and Lvovsky, A. I. (2022). Autoregressive neural- network wavefunctions for ab initio quantum chemistry. Nature Machine In- telligence, 4(4):351–358.spa
dc.relation.referencesBatrouni, G. G. and Scalettar, R. T. (1992). World-line quantum monte carlo algo- rithm for a one-dimensional bose model. Phys. Rev. B, 46:9051–9062.spa
dc.relation.referencesBatrouni, G. G., Scalettar, R. T., and Zimanyi, G. T. (1990). Quantum critical phe- nomena in one-dimensional bose systems. Phys. Rev. Lett., 65:1765–1768.spa
dc.relation.referencesBaumgartner, B. and Narnhofer, H. (2008). Analysis of quantum semigroups with gks–lindblad generators: Ii. general. Journal of Physics A: Mathematical and Theo- retical, 41(39):395303.spa
dc.relation.referencesBayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A. A., Forchel, A., Hawrylak, P., Fafard, S., Hinzer, K., Reinecke, T. L., Walck, S. N., Reithmaier, J. P., Klopf, F., and Scha ̈fer, F. (2002). Fine structure of neutral and charged excitons in self-assembled in(ga)as/(al)gaas quantum dots. Phys. Rev. B, 65:195315.spa
dc.relation.referencesBecca, F. and Sorella, S. (2017). Quantum Monte Carlo approaches for correlated systems. Cambridge University Press.spa
dc.relation.referencesBerg, E. v. d., Minev, Z. K., Kandala, A., and Temme, K. (2022). Probabilistic error cancellation with sparse pauli-lindblad models on noisy quantum processors. arXiv preprint arXiv:2201.09866.spa
dc.relation.referencesBergstra, J., Bardenet, R., Bengio, Y., and Ke ́gl, B. (2011). Algorithms for hyper- parameter optimization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K., editors, Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc.spa
dc.relation.referencesBharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen, H., Kottmann, J. S., Menke, T., Mok, W.-K., Sim, S., Kwek, L.-C., and Aspuru-Guzik, A. (2022). Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys., 94:015004.spa
dc.relation.referencesBin, Q., Lu ̈, X.-Y., Laussy, F. P., Nori, F., and Wu, Y. (2020). N-phonon bundle emission via the stokes process. Physical review letters, 124(5):053601.spa
dc.relation.referencesBir, G. L., Pikus, G. E., et al. (1974). Symmetry and strain-induced effects in semiconduc- tors, volume 484. Wiley New York.spa
dc.relation.referencesBishop, C. M. (2006). Pattern recognition and machine learning. Springer.spa
dc.relation.referencesBlackard, J. A. and Dean, D. J. (1999). Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from carto- graphic variables. Computers and Electronics in Agriculture, 24(3):131–151.spa
dc.relation.referencesBloch, F. (1946). Nuclear induction. Phys. Rev., 70:460–474.spa
dc.relation.referencesBogdanov, Y. I., Chernyavskiy, A. Y., Holevo, A., Lukichev, V. F., and Orlikovsky, A. A. (2013). Modeling of quantum noise and the quality of hardware com- ponents of quantum computers. In Orlikovsky, A. A., editor, International Con- ference Micro- and Nano-Electronics 2012, volume 8700, pages 404 – 415. Interna- tional Society for Optics and Photonics, SPIE.spa
dc.relation.referencesBradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Nec- ula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations of Python+NumPy programs.spa
dc.relation.referencesBreuer, H.-P., Petruccione, F., et al. (2002). The theory of open quantum systems. Oxford University Press on Demand.spa
dc.relation.referencesBrown, R. H. and Twiss, R. Q. (1956). Correlation between photons in two coherent beams of light. Nature, 177(4497):27–29.spa
dc.relation.referencesCaha, L., Landau, Z., and Nagaj, D. (2018). Clocks in feynman’s computer and kitaev’s local hamiltonian: Bias, gaps, idling, and pulse tuning. Phys. Rev. A, 97:062306.spa
dc.relation.referencesCarleo, G., Choo, K., Hofmann, D., Smith, J. E., Westerhout, T., Alet, F., Davis, E. J., Efthymiou, S., Glasser, I., Lin, S.-H., et al. (2019a). Netket: A machine learning toolkit for many-body quantum systems. SoftwareX, 10:100311.spa
dc.relation.referencesCarleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., and Zdeborova ́, L. (2019b). Machine learning and the physical sciences. Reviews of Modern Physics, 91(4):045002.spa
dc.relation.referencesCarleo, G. and Troyer, M. (2017). Solving the quantum many-body problem with artificial neural networks. Science, 355(6325):602–606. Carrasquilla, J. (2020). Machine learning for quantum matter. Advances in Physics: X, 5(1):1797528.spa
dc.relation.referencesCerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., Mc- Clean, J. R., Mitarai, K., Yuan, X., Cincio, L., and Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644.spa
dc.relation.referencesChang, T.-J., Meade, N., Beasley, J., and Sharaiha, Y. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers Operations Research, 27(13):1271– 1302.spa
dc.relation.referencesChatterjee, R. and Yu, T. (2017). Generalized coherent states, reproducing kernels, and quantum support vector machines. Quantum Information and Communica- tion, 17:1292.spa
dc.relation.referencesChen, A., Choo, K., Astrakhantsev, N., and Neupert, T. (2022). Neural network evolution strategy for solving quantum sign structures. Phys. Rev. Research, 4:L022026.spa
dc.relation.referencesCheng, J., Wang, Z., and Pollastri, G. (2008). A neural network approach to ordinal regression. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pages 1279–1284.spa
dc.relation.referencesCheng, S., Chen, J., and Wang, L. (2018). Information perspective to probabilistic modeling: Boltzmann machines versus born machines. Entropy, 20(8).spa
dc.relation.referencesChoo, K., Neupert, T., and Carleo, G. (2019). Two-dimensional frustrated J1 − J2 model studied with neural network quantum states. Phys. Rev. B, 100:125124.spa
dc.relation.referencesChow, J. M., Srinivasan, S. J., Magesan, E., Co ́rcoles, A. D., Abraham, D. W., Gam- betta, J. M., and Steffen, M. (2015). Characterizing a four-qubit planar lattice for arbitrary error detection. In Donkor, E., Pirich, A. R., and Hayduk, M., ed- itors, Quantum Information and Computation XIII, volume 9500, pages 315 – 323. International Society for Optics and Photonics, SPIE.spa
dc.relation.referencesCirac, J. I., Pe ́rez-Garc ́ıa, D., Schuch, N., and Verstraete, F. (2021). Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod. Phys., 93:045003.spa
dc.relation.referencesCrooker, S., Barrick, T., Hollingsworth, J., and Klimov, V. (2003). Multiple temper- ature regimes of radiative decay in cdse nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Applied Physics Letters, 82(17):2793–2795.spa
dc.relation.referencesCura, T. (2021). A rapidly converging artificial bee colony algorithm for portfolio optimization. Knowledge-Based Systems, 233:107505. Daley, A. J. (2014). Quantum trajectories and open many-body quantum systems. Advances in Physics, 63(2):77–149.spa
dc.relation.referencesDalibard, J., Castin, Y., and Mølmer, K. (1992). Wave-function approach to dissipa- tive processes in quantum optics. Phys. Rev. Lett., 68:580–583.spa
dc.relation.referencesDempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1–38.spa
dc.relation.referencesDeng, D.-L., Li, X., and Das Sarma, S. (2017). Quantum entanglement in neural network states. Phys. Rev. X, 7:021021.spa
dc.relation.referencesDeng, W.-Y., Zheng, Q.-H., Lian, S., Chen, L., and Wang, X. (2010). Ordinal extreme learning machine. Neurocomputing, 74(1):447–456. Artificial Brains.spa
dc.relation.referencesDeutsch, D. and Jozsa, R. (1992). Rapid solution of problems by quantum computa- tion. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553–558.spa
dc.relation.referencesDing, Z.-H., Cui, J.-M., Huang, Y.-F., Li, C.-F., Tu, T., and Guo, G.-C. (2019). Fast high-fidelity readout of a single trapped-ion qubit via machine-learning meth- ods. Phys. Rev. Applied, 12:014038.spa
dc.relation.referencesDogra, N., Landini, M., Kroeger, K., Hruby, L., Donner, T., and Esslinger, T. (2019). Dissipation-induced structural instability and chiral dynamics in a quantum gas. Science, 366(6472):1496–1499.spa
dc.relation.referencesDong, D., Wu, C., Chen, C., Qi, B., Petersen, I. R., and Nori, F. (2016). Learn- ing robust pulses for generating universal quantum gates. Scientific Reports, 6(1):36090.spa
dc.relation.referencesDua, D. and Graff, C. (2017). UCI machine learning repository.spa
dc.relation.referencesEisele, H., Lenz, A., Heitz, R., Timm, R., Da ̈hne, M., Temko, Y., Suzuki, T., and Jacobi, K. (2008). Change of inas/gaas quantum dot shape and composition during capping. Journal of Applied Physics, 104(12):124301.spa
dc.relation.referencesEjima, S., Fehske, H., and Gebhard, F. (2011). Dynamic properties of the one- dimensional bose-hubbard model. EPL (Europhysics Letters), 93(3):30002.spa
dc.relation.referencesEjima, S., Fehske, H., Gebhard, F., zu Mu ̈nster, K., Knap, M., Arrigoni, E., and von der Linden, W. (2012). Characterization of mott-insulating and superfluid phases in the one-dimensional bose-hubbard model. Phys. Rev. A, 85:053644.spa
dc.relation.referencesElstner, N. and Monien, H. (1999). Dynamics and thermodynamics of the bose- hubbard model. Phys. Rev. B, 59:12184–12187.spa
dc.relation.referencesEvans, D. E. (1976). Irreducible quantum dynamical semigroups. Preprint series: Pure mathematics http://urn. nb. no/URN: NBN: no-8076.spa
dc.relation.referencesFeynman, R. P. (1982). Simulating physics with computers. Int. J. Theor. Phys, 21(6/7).spa
dc.relation.referencesFeynman, R. P. (1985). Quantum mechanical computers. Optics News, 11(2):11–20.spa
dc.relation.referencesFeynman, R. P., Vernon, F. L., and Hellwarth, R. W. (1957). Geometrical representa- tion of the schro ̈dinger equation for solving maser problems. Journal of Applied Physics, 28(1):49–52.spa
dc.relation.referencesFine, A. (1973). Probability and the interpretation of quantum mechanics. The British Journal for the Philosophy of Science, 24(1):1–37.spa
dc.relation.referencesFisher, M. P., Weichman, P. B., Grinstein, G., and Fisher, D. S. (1989). Boson localiza- tion and the superfluid-insulator transition. Physical Review B, 40(1):546–570.spa
dc.relation.referencesFox, A. M., Fox, M., et al. (2006). Quantum optics: an introduction, volume 15. Oxford university press.spa
dc.relation.referencesFrey, B. J. (1998). Graphical Models for Machine Learning and Digital Communication. Adaptive Computation and Machine Learning. The MIT Press.spa
dc.relation.referencesFrey, P. W. and Slate, D. J. (1991). Letter recognition using holland-style adaptive classifiers. Machine Learning, 6(2):161–182.spa
dc.relation.referencesGambetta, J. M., Motzoi, F., Merkel, S. T., and Wilhelm, F. K. (2011). Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A, 83:012308.spa
dc.relation.referencesGent, I. P. and Walsh, T. (1996). The tsp phase transition. Artificial Intelligence, 88(1- 2):349–358.spa
dc.relation.referencesGerry, C., Knight, P., and Knight, P. L. (2005). Introductory quantum optics. Cambridge university press.spa
dc.relation.referencesGiamarchi, T. (2003). Quantum physics in one dimension, volume 121. Clarendon press.spa
dc.relation.referencesGini, C. (1912). Variabilita` e mutabilita`: contributo allo studio delle distribuzioni e delle relazioni statistiche.[Fasc. I.]. Tipogr. di P. Cuppini.spa
dc.relation.referencesGiuntini, R., Freytes, H., Park, D. K., Blank, C., Holik, F., Chow, K. L., and Sergioli, G. (2021). Quantum state discrimination for supervised classification.spa
dc.relation.referencesGlauber, R. J. (1963). The quantum theory of optical coherence. Phys. Rev., 130:2529– 2539.spa
dc.relation.referencesGonza ́lez, F. A., Gallego, A., Toledo-Corte ́s, S., and Vargas-Caldero ́n, V. (2021a). Learning with density matrices and random features. arXiv preprint arXiv:2102.04394.spa
dc.relation.referencesGonza ́lez, F. A., Vargas-Caldero ́n, V., and Vinck-Posada, H. (2021b). Classifi- cation with quantum measurements. Journal of the Physical Society of Japan, 90(4):044002.spa
dc.relation.referencesGoodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial networks.spa
dc.relation.referencesGorini, V., Kossakowski, A., and Sudarshan, E. C. G. (1976). Completely posi- tive dynamical semigroups of n-level systems. Journal of Mathematical Physics, 17(5):821–825.spa
dc.relation.referencesGreiner, M., Mandel, O., Rom, T., Altmeyer, A., Widera, A., Ha ̈nsch, T. W., and Bloch, I. (2003). Quantum phase transition from a superfluid to a Mott insulator in an ultracold gas of atoms. Physica B: Condensed Matter, 329-333:11–12.spa
dc.relation.referencesGuvenir, H. A. and Uysal, I. (2000). Bilkent university function approximation repos- itory.spa
dc.relation.referencesGuyon, I., Li, J., Mader, T., Pletscher, P. A., Schneider, G., and Uhr, M. (2007). Com- petitive baseline methods set new standards for the nips 2003 feature selection benchmark. Pattern Recognition Letters, 28(12):1438–1444.spa
dc.relation.referencesHan, Z.-Y., Wang, J., Fan, H., Wang, L., and Zhang, P. (2018). Unsupervised genera- tive modeling using matrix product states. Phys. Rev. X, 8:031012.spa
dc.relation.referencesHarrison, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management, 5(1):81–102.spa
dc.relation.referencesHartmann, M. J. and Carleo, G. (2019). Neural-network approach to dissipative quantum many-body dynamics. Phys. Rev. Lett., 122:250502.spa
dc.relation.referencesHastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.spa
dc.relation.referencesHastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97–109.spa
dc.relation.referencesHatano, N. and Petrosky, T. (2015). Eigenvalue problem of the liouvillian of open quantum systems. AIP Conference Proceedings, 1648(1):200005.spa
dc.relation.referencesHertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the theory of neural computation. Santa Fe Institute Studies in the Sciences of Complexity; Lecture Notes.spa
dc.relation.referencesHeyl, M. (2018). Dynamical quantum phase transitions: a review. Reports on Progress in Physics, 81(5):054001.spa
dc.relation.referencesHeyl, M., Polkovnikov, A., and Kehrein, S. (2013). Dynamical quantum phase tran- sitions in the transverse-field ising model. Phys. Rev. Lett., 110:135704.spa
dc.relation.referencesHibat-Allah, M., Ganahl, M., Hayward, L. E., Melko, R. G., and Carrasquilla, J. (2020). Recurrent neural network wave functions. Physical Review Research, 2(2):023358.spa
dc.relation.referencesHuang, Y. (2019). Approximating local properties by tensor network states with constant bond dimension.spa
dc.relation.referencesHull, J. (1994). A database for handwritten text recognition research. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 16(5):550–554. Jime ́nez-Orjuela, C., Vinck-Posada, H., and Villas-Boˆas, J. M. (2018). Polarization switch in an elliptical micropillar – quantum dot system induced by a magnetic field in faraday configuration. Physics Letters A, 382(44):3216–3219.spa
dc.relation.referencesJime ́nez-Orjuela, C., Vinck-Posada, H., and Villas-Boˆas, J. M. (2020a). Magnetic and temperature control in the emission of a quantum dot strongly coupled to a microcavity. Physica B: Condensed Matter, 592:412215.spa
dc.relation.referencesJime ́nez-Orjuela, C., Vinck-Posada, H., and Villas-Boˆas, J. M. (2020b). Strong cou- pling of two quantum dots with a microcavity in the presence of an external and tilted magnetic field. Physica B: Condensed Matter, 585:412070.spa
dc.relation.referencesJime ́nez-Orjuela, C. A., Vinck-Posada, H., and Villas-Boˆas, J. M. (2017). Dark exci- tons in a quantum-dot–cavity system under a tilted magnetic field. Phys. Rev. B, 96:125303.spa
dc.relation.referencesJohansson, J., Nation, P., and Nori, F. (2013). Qutip 2: A python framework for the dynamics of open quantum systems. Computer Physics Communications, 184(4):1234–1240.spa
dc.relation.referencesJonsson, B., Bauer, B., and Carleo, G. (2018). Neural-network states for the classical simulation of quantum computing.spa
dc.relation.referencesKalayci, C. B., Ertenlice, O., Akyer, H., and Aygoren, H. (2017). An artificial bee colony algorithm with feasibility enforcement and infeasibility toleration pro- cedures for cardinality constrained portfolio optimization. Expert Systems with Applications, 85:61–75.spa
dc.relation.referencesKalayci, C. B., Polat, O., and Akbay, M. A. (2020). An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm and Evolu- tionary Computation, 54:100662.spa
dc.relation.referencesKarras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2019). Ana- lyzing and improving the image quality of stylegan.spa
dc.relation.referencesKashurnikov, V. A., Krasavin, A. V., and Svistunov, B. V. (1996). Mott-insulator- superfluid-liquid transition in a one-dimensional bosonic hubbard model: Quantum monte carlo method. Journal of Experimental and Theoretical Physics Letters, 64(2):99–104.spa
dc.relation.referencesKastner, M. A. (2005). Prospects for quantum dot implementation of adiabatic quan- tum computers for intractable problems. Proceedings of the IEEE, 93(10):1765– 1771.spa
dc.relation.referencesKibler, D., Aha, D. W., and Albert, M. K. (1989). Instance-based prediction of real- valued attributes. Computational Intelligence, 5(2):51–57.spa
dc.relation.referencesKing, R. D., Hirst, J. D., and Sternberg, M. J. E. (1995). Comparison of artificial intelligence methods for modeling pharmaceutical qsars. Applied Artificial Intel- ligence, 9(2):213–233.spa
dc.relation.referencesKingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.spa
dc.relation.referencesKoller, W. and Dupuis, N. (2006). Variational cluster perturbation theory for bose- hubbard models. Journal of Physics: Condensed Matter, 18(41):9525–9540.spa
dc.relation.referencesKrizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.spa
dc.relation.referencesKrol, A. M., Sarkar, A., Ashraf, I., Al-Ars, Z., and Bertels, K. (2022). Efficient de- composition of unitary matrices in quantum circuit compilers. Applied Sciences, 12(2).spa
dc.relation.referencesKu ̈hner,T.D.andMonien,H.(1998).Phasesoftheone-dimensionalbose-hubbard model. Phys. Rev. B, 58:R14741–R14744.spa
dc.relation.referencesKu ̈hner,T.D.,White,S.R.,andMonien,H.(2000).One-dimensionalbose-hubbard model with nearest-neighbor interaction. Phys. Rev. B, 61:12474–12489.spa
dc.relation.referencesLabouvie, R., Santra, B., Heun, S., and Ott, H. (2016). Bistability in a driven- dissipative superfluid. Physical review letters, 116(23):235302.spa
dc.relation.referencesLarry, J. and Shibin, Q. (2005). Prediction for compound activity in large drug datasets using efficient machine learning approaches.spa
dc.relation.referencesLe Bellac, M. (2011). Quantum physics. Cambridge University Press.spa
dc.relation.referencesLe Boite ́, A., Orso, G., and Ciuti, C. (2013). Steady-state phases and tunneling- induced instabilities in the driven dissipative bose-hubbard model. Physical review letters, 110(23):233601.spa
dc.relation.referencesLeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551.spa
dc.relation.referencesLecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. Li, C.-K., Roberts, R., and Yin, X. (2013). Decomposition of unitary matrices and quantum gates. International Journal of Quantum Information, 11(01):1350015.spa
dc.relation.referencesLinares, M., Vinck-Posada, H., and Go ́mez, E. A. (2021). Magnetic control of biexci- tons in a quantum dot-cavity system. Physics Letters A, 409:127512.spa
dc.relation.referencesLindblad, G. (1976). On the generators of quantum dynamical semigroups. Commu- nications in Mathematical Physics, 48(2):119–130. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J., and Killoran, N. (2020). Quantum embed- dings for machine learning.spa
dc.relation.referencesLoshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization.spa
dc.relation.referencesLucas, A. (2014). Ising formulations of many np problems. Frontiers in Physics, 2:5. Luo, S. L. (2005). Quantum versus classical uncertainty. Theoretical and Mathematical Physics, 143(2):681–688.spa
dc.relation.referencesLwin, K. and Qu, R. (2013). A hybrid algorithm for constrained portfolio selection problems. Applied Intelligence, 39(2):251–266.spa
dc.relation.referencesMadsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F., Vincent, T., Bulmer, J. F. F., Miatto, F. M., Neuhaus, L., Helt, L. G., Collins, M. J., Lita, A. E., Gerrits, T., Nam, S. W., Vaidya, V. D., Menotti, M., Dhand, I., Vernon, Z., Quesada, N., and Lavoie, J. (2022). Quantum computational advantage with a programmable photonic processor. Nature, 606(7912):75–81.spa
dc.relation.referencesMangasarian, O. L., Street, W. N., and Wolberg, W. H. (1995). Breast cancer diagno- sis and prognosis via linear programming. Operations Research, 43(4):570–577.spa
dc.relation.referencesManzano, D. and Hurtado, P. (2018). Harnessing symmetry to control quantum transport. Advances in Physics, 67(1):1–67.spa
dc.relation.referencesMcBrian, K., Carleo, G., and Khatami, E. (2019). Ground state phase diagram of the one-dimensional bose-hubbard model from restricted boltzmann machines. In Journal of Physics: Conference Series, volume 1290, page 012005. IOP Publishing.spa
dc.relation.referencesMcClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., and Neven, H. (2018). Barren plateaus in quantum neural network training landscapes. Nature Com- munications, 9(1):4812.spa
dc.relation.referencesMcClean, J. R., Parkhill, J. A., and Aspuru-Guzik, A. (2013). Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics. Proceedings of the National Academy of Sciences, 110(41):E3901–E3909.spa
dc.relation.referencesMinamisawa, A., Iimura, R., and Kawahara, T. (2019). High-speed sparse ising model on fpga. In 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), pages 670–673. IEEE.spa
dc.relation.referencesMinganti, F., Biella, A., Bartolo, N., and Ciuti, C. (2018). Spectral theory of liouvil- lians for dissipative phase transitions. Physical Review A, 98(4):042118. Mitarai, K., Negoro, M., Kitagawa, M., and Fujii, K. (2018). Quantum circuit learn- ing. Phys. Rev. A, 98:032309.spa
dc.relation.referencesMollow, B. R. (1969). Power spectrum of light scattered by two-level systems. Phys. Rev., 188:1969–1975.spa
dc.relation.referencesMølmer, K., Castin, Y., and Dalibard, J. (1993). Monte carlo wave-function method in quantum optics. JOSA B, 10(3):524–538.spa
dc.relation.referencesMo ̈tto ̈nen, M., Vartiainen, J. J., Bergholm, V., and Salomaa, M. M. (2004). Quantum circuits for general multiqubit gates. Phys. Rev. Lett., 93:130502.spa
dc.relation.referencesMotzoi, F., Gambetta, J. M., Rebentrost, P., and Wilhelm, F. K. (2009). Simple pulses for elimination of leakage in weakly nonlinear qubits. Phys. Rev. Lett., 103:110501.spa
dc.relation.referencesMozafari, M., Jolai, F., and Tafazzoli, S. (2011). A new ipso-sa approach for car- dinality constrained portfolio optimization. International Journal of Industrial Engineering Computations, 2(2):249–262.spa
dc.relation.referencesMun ̃oz, C. S., Del Valle, E., Tudela, A. G., Mu ̈ller, K., Lichtmannecker, S., Kaniber, M., Tejedor, C., Finley, J., and Laussy, F. (2014). Emitters of n-photon bundles. Nature photonics, 8(7):550–555.spa
dc.relation.referencesNagy, A. and Savona, V. (2019). Variational quantum monte carlo method with a neural-network ansatz for open quantum systems. Physical review letters, 122(25):250501.spa
dc.relation.referencesNeumann, M., Kappe, F., Bracht, T. K., Cosacchi, M., Seidelmann, T., Axt, V. M., Weihs, G., and Reiter, D. E. (2021). Optical stark shift to control the dark exciton occupation of a quantum dot in a tilted magnetic field. Phys. Rev. B, 104:075428.spa
dc.relation.referencesNielsen, M. A. and Chuang, I. (2002). Quantum computation and quantum infor- mation.spa
dc.relation.referencesNomura, S., Segawa, Y., and Kobayashi, T. (1994). Confined excitons in a semicon- ductor quantum dot in a magnetic field. Phys. Rev. B, 49:13571–13582.spa
dc.relation.referencesPan, F., Chen, K., and Zhang, P. (2021). Solving the sampling problem of the sycamore quantum supremacy circuits. arXiv preprint arXiv:2111.03011.spa
dc.relation.referencesPascual Winter, M. F., Rozas, G., Fainstein, A., Jusserand, B., Perrin, B., Huynh, A., Vaccaro, P. O., and Saravanan, S. (2007). Selective optical generation of coherent acoustic nanocavity modes. Phys. Rev. Lett., 98:265501.spa
dc.relation.referencesPerea, J., Porras, D., and Tejedor, C. (2004). Dynamics of the excitations of a quan- tum dot in a microcavity. Physical Review B, 70(11):115304.spa
dc.relation.referencesPeruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru- Guzik, A., and O’Brien, J. L. (2014). A variational eigenvalue solver on a pho- tonic quantum processor. Nature Communications, 5(1):4213.spa
dc.relation.referencesPetrosky, T. (2010). Complex Spectral Representation of the Liouvillian and Kinetic Theory in Nonequilibrium Physics. Progress of Theoretical Physics, 123(3):395– 420.spa
dc.relation.referencesPetrosky, T. and Prigogine, I. (1996). The Liouville Space Extension of Quantum Me- chanics, pages 1–120. John Wiley & Sons, Ltd. Pikus, G. and Bir, G. (1971). Exchange interaction in excitons in semiconductors. Sov. Phys. JETP, 33(1):108–114.spa
dc.relation.referencesPincus, M. (1970). A monte carlo method for the approximate solution of certain types of constrained optimization problems. Operations Research, 18(6):1225– 1228.spa
dc.relation.referencesPino, M., Prior, J., and Clark, S. R. (2013). Capturing the re-entrant behavior of one-dimensional Bose-Hubbard model. Physica Status Solidi (B) Basic Research, 250(1):51–58.spa
dc.relation.referencesQuinlan, J. R. (1993). Combining instance-based and model-based learning. In Proceedings of the tenth international conference on machine learning, pages 236–243.spa
dc.relation.referencesRahimi, A. and Recht, B. (2008a). Random features for large-scale kernel machines. In Advances in neural information processing systems, pages 1177–1184.spa
dc.relation.referencesRahimi, A. and Recht, B. (2008b). Weighted sums of random kitchen sinks: Replac- ing minimization with randomization in learning. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems, volume 21, pages 1316–1323.spa
dc.relation.referencesRoth, C. and MacDonald, A. H. (2021). Group convolutional neural networks im- prove quantum state accuracy. arXiv preprint arXiv:2104.05085. Roy, V. (2020). Convergence diagnostics for markov chain monte carlo. Annual Review of Statistics and Its Application, 7(1):387–412.spa
dc.relation.referencesRudolph, M. S., Toussaint, N. B., Katabarwa, A., Johri, S., Peropadre, B., and Perdomo-Ortiz, A. (2022). Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys. Rev. X, 12:031010.spa
dc.relation.referencesSaito, H. (2017). Solving the bose–hubbard model with machine learning. Journal of the Physical Society of Japan, 86(9):093001.spa
dc.relation.referencesSchuld, M. (2021). Supervised quantum machine learning models are kernel meth- ods. Schuld, M. and Killoran, N. (2019). Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett., 122:040504.spa
dc.relation.referencesSchuld, M. and Petruccione, F. (2021). Quantum Models as Kernel Methods, pages 217–245. Springer International Publishing, Cham.spa
dc.relation.referencesSergioli, G., Militello, C., Rundo, L., Minafra, L., Torrisi, F., Russo, G., Chow, K. L., and Giuntini, R. (2021). A quantum-inspired classifier for clonogenic assay evaluations. Scientific Reports, 11(1):2830.spa
dc.relation.referencesSharir, O., Shashua, A., and Carleo, G. (2021). Neural tensor contractions and the expressive power of deep neural quantum states.spa
dc.relation.referencesShende, V. V., Bullock, S. S., and Markov, I. L. (2006). Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6):1000–1010.spa
dc.relation.referencesShor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2):303–332.spa
dc.relation.referencesSilver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144.spa
dc.relation.referencesSmelyanskiy, V. N., Rieffel, E. G., Knysh, S. I., Williams, C. P., Johnson, M. W., Thom, M. C., Macready, W. G., and Pudenz, K. L. (2012). A near-term quantum computing approach for hard computational problems in space exploration. arXiv preprint arXiv:1204.2821.spa
dc.relation.referencesSmolensky, P. (1986). Information Processing in Dynamical Systems: Foundations of Harmony Theory, page 194–281. MIT Press, Cambridge, MA, USA.spa
dc.relation.referencesSomeya, K., Ono, R., and Kawahara, T. (2016). Novel ising model using dimension- control for high-speed solver for ising machines. In 2016 14th IEEE International New Circuits and Systems Conference (NEWCAS), pages 1–4. IEEE.spa
dc.relation.referencesSorella, S., Casula, M., and Rocca, D. (2007). Weak binding between two aromatic rings: Feeling the van der waals attraction by quantum monte carlo methods. The Journal of Chemical Physics, 127(1):014105.spa
dc.relation.referencesSpohn, H. (1976). Approach to equilibrium for completely positive dynamical semi- groups of n-level systems. Reports on Mathematical Physics, 10(2):189–194.spa
dc.relation.referencesSteck, D. (2007). Quantum and Atom Optics.spa
dc.relation.referencesSteinbach, J., Garraway, B. M., and Knight, P. L. (1995). High-order unraveling of master equations for dissipative evolution. Phys. Rev. A, 51:3302–3308.spa
dc.relation.referencesTakagahara, T. (1993). Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Phys. Rev. B, 47:4569–4584.spa
dc.relation.referencesTakagahara, T. (2002). Theory of exciton dephasing in semiconductor quantum dots. In Semiconductor Quantum Dots, pages 353–388. Springer.spa
dc.relation.referencesTanahashi, K., Takayanagi, S., Motohashi, T., and Tanaka, S. (2019). Application of ising machines and a software development for ising machines. Journal of the Physical Society of Japan, 88(6):061010.spa
dc.relation.referencesTang, E. (2019). A quantum-inspired classical algorithm for recommendation sys- tems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 217–228, New York, NY, USA. Association for Computing Machinery.spa
dc.relation.referencesTay, B. A. and Petrosky, T. (2008). Biorthonormal eigenbasis of a markovian master equation for the quantum brownian motion. Journal of mathematical physics, 49(11):113301.spa
dc.relation.referencesThe GPyOpt authors (2016). GPyOpt: A bayesian optimization framework in python. http://github.com/SheffieldML/GPyOpt.spa
dc.relation.referencesTiwari, P. and Melucci, M. (2019). Towards a quantum-inspired binary classifier. IEEE Access, 7:42354–42372.spa
dc.relation.referencesTorlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., and Carleo, G. (2018). Neural-network quantum state tomography. Nature Physics, 14(5):447–450.spa
dc.relation.referencesTorlai, G. and Melko, R. G. (2018). Latent space purification via neural density operators. Phys. Rev. Lett., 120:240503.spa
dc.relation.referencesTreinish, M., Gambetta, J., Nation, P., Kassebaum, P., qiskit bot, Rodr ́ıguez, D. M., de la Puente Gonza ́lez, S., Hu, S., Krsulich, K., Zdanski, L., Yu, J., Garrison, J., Gacon, J., McKay, D., Gomez, J., Capelluto, L., Travis-S-IBM, Marques, M., Panigrahi, A., Lishman, J., lerongil, Rahman, R. I., Wood, S., Bello, L., Singh, D., Drew, Arbel, E., Schwarm, J., Daniel, J., and George, M. (2022). Qiskit/qiskit: Qiskit 0.34.2.spa
dc.relation.referencesUseche, D. H., Giraldo-Carvajal, A., Zuluaga-Bucheli, H. M., Jaramillo-Villegas, J. A., and Gonza ́lez, F. A. (2021). Quantum measurement classification with qudits. Quantum Information Processing, 21(1):12.spa
dc.relation.referencesVargas-Caldero ́n, V. (2018). Phonon-assisted tunnelling in double quantum dot molecules immersed in a microcavity. Research Gate.spa
dc.relation.referencesVargas-Caldero ́n, V., Gonza ́lez, F. A., and Vinck-Posada, H. (2022). Optimisation- free density estimation and classification with quantum circuits. Quantum Ma- chine Intelligence, 4(2):16. Vargas-Caldero ́n, V., Parra-A., N., Vinck-Posada, H., and Gonza ́lez, F. A. (2021). Many-qudit representation for the travelling salesman problem optimisation. Journal of the Physical Society of Japan, 90(11):114002.spa
dc.relation.referencesVargas-Caldero ́n, V. and Vinck-Posada, H. (2019). Phonon-assisted tunnelling in a double quantum dot molecule immersed in a cavity. Optik, 183:168–173.spa
dc.relation.referencesVargas-Caldero ́n, V. and Vinck-Posada, H. (2020). Light emission properties in a double quantum dot molecule immersed in a cavity: Phonon-assisted tunnel- ing. Physics Letters A, 384(3):126076.spa
dc.relation.referencesVargas-Caldero ́n, V., Vinck-Posada, H., and Gonza ́lez, F. A. (2020). Phase diagram reconstruction of the bose–hubbard model with a restricted boltzmann machine wavefunction. Journal of the Physical Society of Japan, 89(9):094002.spa
dc.relation.referencesVargas-Caldero ́n, V., Vinck-Posada, H., and Villas-Boas, J. M. (2022). Dark-exciton giant rabi oscillations with no external magnetic field. Phys. Rev. B, 106:035305.spa
dc.relation.referencesVargas-Caldero ́n, V., Vinck-Posada, H., and Gonza ́lez, F. A. (2022). An empirical study of quantum dynamics as a ground state problem with neural quantum states.spa
dc.relation.referencesVicentini, F., Biella, A., Regnault, N., and Ciuti, C. (2019). Variational neural- network ansatz for steady states in open quantum systems. Physical review letters, 122(25):250503.spa
dc.relation.referencesVicentini, F., Hofmann, D., Szabo ́, A., Wu, D., Roth, C., Giuliani, C., Pescia, G., Nys, J., Vargas-Calderon, V., Astrakhantsev, N., and Carleo, G. (2021). Netket 3: Machine learning toolbox for many-body quantum systems.spa
dc.relation.referencesVieijra, T. and Nys, J. (2021). Many-body quantum states with exact conservation of non-abelian and lattice symmetries through variational monte carlo. Phys. Rev. B, 104:045123.spa
dc.relation.referencesVivas,D.R.,Madron ̃ero,J.,Bucheli,V.,Go ́mez,L.O.,andReina,J.H.(2022).Neural- network quantum states: A systematic review.spa
dc.relation.referencesWarren, R. H. (2013). Adapting the traveling salesman problem to an adiabatic quantum computer. Quantum information processing, 12(4):1781–1785.spa
dc.relation.referencesWaugh, S. G. (1995). Extending and benchmarking Cascade-Correlation: extensions to the Cascade-Correlation architecture and benchmarking of feed-forward supervised artifi- cial neural networks. PhD thesis, University of Tasmania.spa
dc.relation.referencesWeiß, M. and Krenner, H. J. (2018). Interfacing quantum emitters with propagating surface acoustic waves. Journal of Physics D: Applied Physics, 51(37):373001.spa
dc.relation.referencesWigger,D.,Weiß,M.,Lienhart,M.,Mu ̈ller,K.,Finley,J.J.,Kuhn,T.,Krenner,H.J., and Machnikowski, P. (2021). Resonance-fluorescence spectral dynamics of an acoustically modulated quantum dot. Phys. Rev. Research, 3:033197.spa
dc.relation.referencesWilce, A. (2021). Quantum Logic and Probability Theory. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer- sity, Fall 2021 edition.spa
dc.relation.referencesWilliams, C. P. (2011). Quantum Gates, pages 51–122. Springer London, London. Woods, L. M., Reinecke, T. L., and Kotlyar, R. (2004). Hole spin relaxation in quan- tum dots. Phys. Rev. B, 69:125330.spa
dc.relation.referencesWright, L. G. and McMahon, P. L. (2020). The capacity of quantum neural net- works. In Conference on Lasers and Electro-Optics, page JM4G.5. Optica Publish- ing Group.spa
dc.relation.referencesWu, D., Rossi, R., and Carleo, G. (2021). Unbiased monte carlo cluster updates with autoregressive neural networks. Phys. Rev. Research, 3:L042024.spa
dc.relation.referencesWu, D., Wang, L., and Zhang, P. (2019). Solving statistical mechanics using varia- tional autoregressive networks. Phys. Rev. Lett., 122:080602.spa
dc.relation.referencesYang, X.-C., Yung, M.-H., and Wang, X. (2018). Neural-network-designed pulse sequences for robust control of singlet-triplet qubits. Phys. Rev. A, 97:042324.spa
dc.relation.referencesYoshioka, N. and Hamazaki, R. (2019). Constructing neural stationary states for open quantum many-body systems. Physical Review B, 99(21):214306.spa
dc.relation.referencesZahedinejad, E., Ghosh, J., and Sanders, B. C. (2016). Designing high-fidelity single-shot three-qubit gates: A machine-learning approach. Phys. Rev. Applied, 6:054005.spa
dc.relation.referencesZhao, T., De, S., Chen, B., Stokes, J., and Veerapaneni, S. (2021). Overcoming bar- riers to scalability in variational quantum monte carlo. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21, New York, NY, USA. Association for Computing Machinery.spa
dc.relation.referencesZhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X.-Y., Zhang, W.-J., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.-L., Lu, C.-Y., and Pan, J.-W. (2020). Quantum computational advantage using photons. Science, 370(6523):1460–1463.spa
dc.relation.referencesZhou, H.-Q., Oru ́s, R., and Vidal, G. (2008). Ground state fidelity from tensor network representations. Phys. Rev. Lett., 100:080601.spa
dc.relation.referencesZou, X. T. and Mandel, L. (1990). Photon-antibunching and sub-poissonian photon statistics. Phys. Rev. A, 41:475–476.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembFISICA CUANTICAspa
dc.subject.lembQuantum physicaleng
dc.subject.lembAPRENDIZAJE AUTOMATICO (INTELIGENCIA ARTIFICIAL)spa
dc.subject.proposalQuantum physicseng
dc.subject.proposalMachine learningeng
dc.subject.proposalData scienceeng
dc.subject.proposalQuantum computingeng
dc.subject.proposalFísica cuánticaspa
dc.subject.proposalCiencia de datosspa
dc.subject.proposalComputación cuánticaspa
dc.titleSymbiosis between quantum physics and machine learning: Applications in data science, many-body physics and quantum computationeng
dc.title.translatedSimbiosis entre la física cuántica y el machine learning: Aplicaciones en ciencia de datos, física de muchos cuerpos y computación cuánticaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019108908.pdf
Tamaño:
28.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: