Control con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricas

dc.contributor.advisorCortés Romero, John Alexanderspa
dc.contributor.authorRojas Cubides, Harvey Davidspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001405838spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=77yIc3cAAAAJ&hl=esspa
dc.contributor.orcid0000-0003-1451-4881spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Harvey-Rojasspa
dc.contributor.researchgroupElectrical Machines & Drives, Em&Dspa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=56032708600spa
dc.date.accessioned2024-04-15T20:06:38Z
dc.date.available2024-04-15T20:06:38Z
dc.date.issued2024-03
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa interconexión de microrredes (MGs) eléctricas permite mejorar la fiabilidad y la eficiencia de los sistemas de potencia basados en ese tipo de redes locales y autónomas. En este contexto, el enrutador de energía (ER) actúa como una interfaz multipuerto que controla y dirige el flujo de potencia entre las MGs. La gestión efectiva del intercambio de energía en el ER requiere sistemas de control robustos y de alto rendimiento en los convertidores de potencia del ER. En tal sentido, la regulación automática de la corriente y la potencia en cada puerto, así como del voltaje del bus DC interno, constituyen las necesidades fundamentales de control. Sin embargo, factores como los problemas de calidad de potencia en las MGs, la incertidumbre en los modelos, el acoplamiento entre los puertos y los cambios en la operación, introducen perturbaciones que afectan el funcionamiento del ER e imponen desafíos para el diseño de los controladores. En los últimos años, se han reportado aproximaciones al control del ER basadas principalmente en técnicas de tipo proporcional integral (PI) y proporcional resonante (PR). No obstante, dichas soluciones exhiben múltiples restricciones de robustez y desempeño. Este problema se presenta como resultado de la diversidad de perturbaciones existentes, sumada a las limitaciones técnicas de los métodos, tales como: naturaleza no lineal de los sistemas, las consideraciones de diseño, la dependencia del modelo matemático, la sintonización compleja y otros aspectos prácticos de implementación. A su vez, esta problemática trae consigo diferentes consecuencias que van desde una calidad reducida hasta el rezago en la masificación y la estandarización del ER. Como una alternativa para enfrentar la problemática anterior, esta tesis estudia los alcances del enfoque de control con rechazo activo de perturbaciones (ADRC) para un ER usado como interfaz entre MGs. Desde esta perspectiva, se hacen diferentes contribuciones al enfoque ADRC respaldadas por bases teóricas y validaciones experimentales. En primer lugar, se propone un marco de análisis para estudiar la robustez y el desempeño de las estrategias ADRC. Este análisis, efectuado en el dominio de la frecuencia, proporciona un enfoque adecuado para comparar distintos métodos de estimación de perturbaciones, considerando sus principios y relaciones de diseño. Esto, a su vez, facilita la articulación de especificaciones prácticas de control, como los márgenes de robustez, la exactitud de las estimaciones y la sensibilidad al ruido. Adicionalmente, el marco de análisis se aplica a esquemas ADRC con observadores de uno o varios niveles. Como segunda contribución, la tesis explora el análisis, diseño e implementación de esquemas ADRC multi-observador. En primer lugar, se propone un Observador Proporcional Integral Generalizado en cascada (CGPIO) para al control de corriente de los puertos del ER. En segundo lugar, se introduce una conexión en cascada de observadores de estado extendido de orden completo y reducido (CRESO) para el control del voltaje del bus DC del ER. Estos estimadores compuestos demuestran ser soluciones efectivas para mitigar los efectos del ruido de medición (CRESO) y abordar problemas numéricos en la implementación (CGPIO), que son comunes en el ADRC con estimadores de un solo nivel. La tercera contribución de esta tesis se centra en la aplicación y evaluación de las estrategias ADRC propuestas en un ER monofásico. A lo largo del documento, la evaluación se realiza mediante una metodología exhaustiva que abarca diversos escenarios representativos de operación. Se llevan a cabo comparaciones con otros métodos previamente reportados y se analizan múltiples métricas de calidad. Además, se proporcionan diferentes niveles de detalle, que van desde la regulación de la corriente y el voltaje DC en los puertos hasta el intercambio de energía en el ER a nivel de sistema. En términos de gestión de energía, se adopta un enfoque cooperativo con el objetivo de mejorar la operación del grupo de MGs. Los resultados obtenidos ofrecen una base sólida que respalda la eficacia y aplicabilidad de los esquemas de control propuestos. (Texto tomado de la fuente).spa
dc.description.abstractThe interconnection of electrical microgrids (MGs) enhances the reliability and efficiency of power systems based on such local and autonomous networks. In this context, the energy router (ER) serves as a multi-port interface that controls and directs power flow among the MGs. Effective management of energy exchange in the ER requires robust and high-performance control for the power converters of the ER. In this regard, automatic regulation of current and power at each port, as well as the internal DC bus voltage, constitutes fundamental control needs. However, factors such as power quality issues in the MGs, model uncertainties, port coupling, and operational changes introduce disturbances that impact the ER's performance, posing challenges for controller design. In recent years, control approaches for the ER have been reported, primarily based on Proportional-Integral (PI) and Proportional-Resonant (PR) techniques. However, these solutions exhibit multiple restrictions in terms of robustness and performance. This issue arises due to the diversity of existing disturbances, coupled with technical limitations of the methods, including nonlinearities, design considerations, dependence on mathematical models, complex tuning, and other practical implementation aspects. Moreover, these problems lead to consequences ranging from reduced quality to delays in the widespread adoption and standardization of ER. As an alternative to address the aforementioned challenges, this thesis explores the application of the Active Disturbance Rejection Control (ADRC) approach for an ER used as an interface between MGs. Within this scope, various contributions are made to the field of ADRC, supported by theoretical foundations and experimental validations. First, a framework for analyzing the robustness and performance of ADRC strategies is proposed. This analysis, conducted in the frequency domain, provides a suitable approach to compare different disturbance estimation methods, considering their principles and design relationships. This, in turn, facilitates the articulation of practical control specifications, such as robustness margins, estimation accuracy, and noise sensitivity. Additionally, the analysis framework is applied to ADRC schemes with single or multiple-level observers. As a second contribution, the thesis explores the analysis, design, and implementation of multi-observer ADRC schemes. Firstly, a Cascade Generalized Proportional Integral Observer (CGPIO) is proposed for the current control of ER ports. Secondly, a cascaded connection of full-order and reduced-order Extended State Observers (CRESO) is introduced for the control of the ER's DC bus voltage. These composite estimators prove to be effective solutions for mitigating the effects of measurement noise (CRESO) and addressing numerical issues in implementation (CGPIO), which are common drawbacks in single observer-based ADRC. The third contribution of this dissertation focuses on the application and evaluation of the proposed ADRC strategies in a single-phase ER. Throughout this document, the evaluation is carried out using a comprehensive methodology that encompasses various representative operating scenarios. Comparisons are made with other previously reported methods, and multiple quality metrics are analyzed. Additionally, different levels of detail are provided, ranging from the regulation of current and DC voltage at the ports to energy exchange within the ER at the system level. In terms of energy management, a cooperative approach is adopted with the aim of enhancing the operation of the MG group. The obtained results offer a solid foundation supporting the effectiveness and applicability of the proposed control schemes.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaAutomatización y controlspa
dc.description.sponsorshipEl ministerio de Ciencia, Tecnología e Innovación de Colombia (Minciencias) apoyó al autor de esta investigación a través de la beca de excelencia doctoral del bicentenario - Corte 1 (2020-2023).spa
dc.format.extentxxiii, 222 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85916
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesBanco Interamericano de Desarrollo (BID), "Smart Grids Colombia Visión 2030 - Mapa de ruta para la implementación de redes inteligentes en Colombia: Parte I," techreport Cooperación técnica ATN-KK-14254-CO (CO-T1337), Bogotá D. C., Colombia, 2016.spa
dc.relation.referencesJ. M. Guerrero, M. Chandorkar, T.-L. Lee, and P. C. Loh, "Advanced Control Architectures for Intelligent Microgrids—Part I: Decentralized and Hierarchical Control," IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1254–1262, 2013.spa
dc.relation.referencesE. Bullich-Massagué, F. Díaz-González, M. Aragués-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, "Microgrid clustering architectures," Applied Energy, vol. 212, pp. 340–361, 2018.spa
dc.relation.referencesL. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, "Review on Control of DC Microgrids and Multiple Microgrid Clusters," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 928–948, 2017.spa
dc.relation.referencesX. Zhou, L. Zhou, Y. Chen, J. M. Guerrero, A. Luo, W. Wu, and L. Yang, "A microgrid cluster structure and its autonomous coordination control strategy," International Journal of Electrical Power & Energy Systems, vol. 100, pp. 69–80, 2018.spa
dc.relation.referencesE. Hossain, E. Kabalci, R. Bayindir, and R. Perez, "Microgrid testbeds around the world: State of art," Energy Conversion and Management, vol. 86, pp. 132–153, 2014.spa
dc.relation.referencesS. K. Pandey, S. R. Mohanty, and N. Kishor, "A literature survey on load-frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, vol. 25, pp. 318–334, 2013.spa
dc.relation.referencesA. Ordoño, E. Unamuno, J. Barrena, and J. Paniagua, "Interlinking converters and their contribution to primary regulation: a review," International Journal of Electrical Power and Energy Systems, vol. 111, pp. 44–57, 2019.spa
dc.relation.referencesB. Liu, J. Chen, Y. Zhu, Y. Liu, and Y. Shi, "Distributed control strategy of a microgrid community with an energy router," IET Generation, Transmission and Distribution, vol. 12, no. 17, pp. 4009–4015, 2018.spa
dc.relation.referencesJ. M. Rodriguez-Bernuz, E. Prieto-Araujo, F. Girbau-Llistuella, A. Sumper, R. Villafafila-Robles, and J. A. Vidal-Clos, "Experimental validation of a single phase Intelligent Power Router," Sustainable Energy, Grids and Networks, vol. 4, pp. 1–15, 2015.spa
dc.relation.referencesY. Liu, Y. Fang, and J. Li, "Interconnecting Microgrids via the Energy Router with Smart Energy Management," Energies, vol. 10, no. 9, p. 1297, 2017.spa
dc.relation.referencesB. Long Liu, Y. Bing Zha, and T. Zhang, "Sliding mode control of solid state transformer using a three-level hysteresis function," Journal of Central South University, vol. 23, no. 8, pp. 2063–2074, 2016.spa
dc.relation.referencesG. Van den Broeck, J. Stuyts, and J. Driesen, "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, vol. 229, pp. 281–288, 2018.spa
dc.relation.referencesQ. Shafiee, T. Dragičević, J. C. Vasquez, and J. M. Guerrero, "Hierarchical control for multiple DC-microgrids clusters," IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 922–933, 2014.spa
dc.relation.referencesM. L. Herrera, S. A. Subramanyam, and X. Zhang, "Robust Control and Optimal Operation of Multiple Microgrids with Configurable Interconnections," in 2019 IEEE Green Technologies Conference (GreenTech), pp. 1–4, IEEE, 2019.spa
dc.relation.referencesY. Liu, J. Li, Y. Wu, and F. Zhou, "Coordinated Control of the Energy Router-Based Smart Home Energy Management System," Applied Sciences, vol. 7, no. 9, p. 943, 2017.spa
dc.relation.referencesI. Roasto, O. Husev, M. Najafzadeh, T. Jalakas, and J. Rodriguez, "Voltage Source Operation of the Energy-Router Based on Model Predictive Control," Energies, vol. 12, no. 10, p. 1892, 2019.spa
dc.relation.referencesY. Han, X. Ning, P. Yang, and L. Xu, "Review of Power Sharing, Voltage Restoration and Stabilization Techniques in Hierarchical Controlled DC Microgrids," IEEE Access, vol. 7, pp. 149202–149223, 2019.spa
dc.relation.referencesH. Hua, Y. Qin, H. Xu, C. Hao, and J. Cao, "Robust Control Method for DC Microgrids and Energy Routers to Improve Voltage Stability in Energy Internet," Energies, vol. 12, no. 9, p. 1622, 2019.spa
dc.relation.referencesC. Wang, X. Li, L. Guo, and Y. Li, "A nonlinear-disturbance-observer-based DC-Bus voltage control for a hybrid AC/DC microgrid," IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 6162–6177, 2014.spa
dc.relation.referencesM. A. Hossain, H. R. Pota, M. J. Hossain, and F. Blaabjerg, "Evolution of microgrids with converter-interfaced generations: Challenges and opportunities," International Journal of Electrical Power & Energy Systems, vol. 109, pp. 160–186, 2019.spa
dc.relation.referencesK. Nishimoto, Y. Kado, N.-m. Keiji Wada, and S. Member, "Implementation of Decoupling Power Flow Control System in Triple Active Bridge Converter Rated at 400 V, 10 kW, and 20 kHz," IEEJ Journal of Industry Applications, vol. 7, no. 5, pp. 410–415, 2018.spa
dc.relation.referencesB. Tharani and C. Nagarajan, "An AC–DC/DC–DC hybrid multi-port embedded energy router based steady-state power flow optimizing in power system using substantial transformative energy management strategy," Journal of Ambient Intelligence and Humanized Computing 2020 12:5, vol. 12, no. 5, pp. 5687–5707, 2020.spa
dc.relation.referencesD. M. Phan and H. H. Lee, "Interlinking Converter to Improve Power Quality in Hybrid AC-DC Microgrids with Nonlinear Loads," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1959–1968, 2019.spa
dc.relation.referencesF. Xiao, C. Tu, Q. Ge, K. Zhou, Q. Guo, and Z. Lan, "Ripple Voltage Suppression and Control Strategy for CHB-Based Solid-State Transformer," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 1104–1118, 2021.spa
dc.relation.referencesB. Liu, Y. Peng, J. Xu, C. Mao, D. Wang, and Q. Duan, "Design and Implementation of Multiport Energy Routers Toward Future Energy Internet," IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 1945–1957, 2021.spa
dc.relation.referencesX. Weng, Z. Zhao, K. Chen, L. Yuan, and Y. Jiang, "A Nonlinear Control Method for Bumpless Mode Transition in Noninverting Buck-Boost Converter," IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 2166–2178, 2021.spa
dc.relation.referencesF. Nejabatkhah and Y. W. Li, "Overview of Power Management Strategies of Hybrid AC/DC Microgrid," IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7072–7089, 2015.spa
dc.relation.referencesN. Vilhena, C. Roncero-Clemente, V. Delgado-Gomes, V. F. Pires, and J. F. Martins, "Energy router for SC: GC, SA and transition mode controls," IET Renewable Power Generation, vol. 14, no. 5, pp. 914–924, 2020.spa
dc.relation.referencesX. Zheng, T. Cui, Y. Jiang, and H. Cao, "Research on smooth switching and islanding detection technology for ER system," IET Renewable Power Generation, vol. 14, no. 3, pp. 466–474, 2020.spa
dc.relation.referencesG. Yao, T. Zhang, L. Zhou, Q. Li, and N. Jin, "An Alterable Structure Power Router with General AC and DC Port for Microgrid Applications," Energies, vol. 12, no. 9, p. 1815, 2019.spa
dc.relation.referencesY. Chen, P. Wang, Y. Elasser, and M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13210–13224, 2020.spa
dc.relation.referencesM. Hosseinzadeh and F. R. Salmasi, "Fault-Tolerant Supervisory Controller for a Hybrid AC/DC Micro-Grid," IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2809–2823, 2018.spa
dc.relation.referencesC. Tu, F. Xiao, Z. Lan, Q. Guo, and Z. Shuai, "Analysis and Control of a Novel Modular-Based Energy Router for DC Microgrid Cluster," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 1, pp. 331–342, 2019.spa
dc.relation.referencesP. H. Nguyen, W. L. Kling, and P. F. Ribeiro, "Smart power router: A flexible agent-based converter interface in active distribution networks," IEEE Transactions on Smart Grid, vol. 2, no. 3, pp. 487–495, 2011.spa
dc.relation.referencesV. Ramirez, R. Ortega, O. Bethoux, and A. Sánchez-Squella, "A dynamic router for microgrid applications: Theory and experimental results," Control Engineering Practice, vol. 27, no. 1, pp. 23–31, 2014.spa
dc.relation.referencesX. Gai, Y. Wang, R. Chen, and L. Zou, "Research on Hybrid Microgrid Based on Simultaneous AC and DC Distribution Network and Its Power Router," Energies, vol. 12, no. 6, p. 1077, 2019.spa
dc.relation.referencesJ. Ahmad, M. Tahir, and S. K. Mazumder, "Improved dynamic performance and hierarchical energy management of microgrids with energy routing," IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3218–3229, 2019.spa
dc.relation.referencesH. Hua, Y. Qin, J. Geng, C. Hao, and J. Cao, "Robust Mixed H2/H∞ Controller Design for Energy Routers in Energy Internet," Energies, vol. 12, no. 3, p. 340, 2019.spa
dc.relation.referencesH. Bueno-Contreras, G. A. Ramos, and R. Costa-Castelló, "Robust H∞ Design for Resonant Control in a CVCF Inverter Application over Load Uncertainties," Electronics, vol. 9, no. 1, p. 66, 2020.spa
dc.relation.referencesG. A. Ramos, R. I. Ruget, and R. Costa-Castello, "Robust Repetitive Control of Power Inverters for Standalone Operation in DG Systems," IEEE Transactions on Energy Conversion, vol. 35, no. 1, pp. 237–247, 2020.spa
dc.relation.referencesG. A. Ramos Fuentes, J. A. Cifuentes Quintero, and I. D. Melo Lagos, "High performance control of a three-phase PWM rectifier using odd harmonic high order repetitive control," Dyna, vol. 83, no. 198, pp. 27–36, 2016.spa
dc.relation.referencesM. A. Hannan, M. Faisal, P. J. Ker, L. H. Mun, K. Parvin, T. M. I. Mahlia, and F. Blaabjerg, "A review of internet of energy based building energy management systems: Issues and recommendations," IEEE Access, vol. 6, pp. 38997–39014, 2018.spa
dc.relation.referencesG. Ramos and R. Costa-Castelló, "Comparison of Different Repetitive Control Architectures: Synthesis and Comparison. Application to VSI Converters," Electronics, vol. 7, no. 12, p. 446, 2018.spa
dc.relation.referencesG. A. Ramos Fuentes, J. A. Cortés-Romero, Z. X. Zou, R. Costa-Castelló, and K. Zhou, "Power active filter control based on a resonant disturbance observer," IET Power Electronics, vol. 8, no. 4, pp. 554–564, 2015.spa
dc.relation.referencesM. R. Stanković, M. R. Rapaić, S. M. Manojlović, S. T. Mitrović, S. M. Simić, and M. Naumović, "Optimised active disturbance rejection motion control with resonant extended state observer," International Journal of Control, vol. 92, no. 8, pp. 1815–1826, 2019.spa
dc.relation.referencesH. Coral-Enriquez, S. Pulido-Guerrero, and J. Cortés-Romero, "Robust Disturbance Rejection Based Control with Extended-state Resonant Observer for Sway Reduction in Uncertain Tower-cranes," International Journal of Automation and Computing, vol. 16, no. 6, pp. 812–827, 2019.spa
dc.relation.referencesS. Chen, W. Bai, Y. Hu, Y. Huang, and Z. Gao, "On the conceptualization of total disturbance and its profound implications," Science China Information Sciences, vol. 63, no. 2, pp. 1–3, 2020.spa
dc.relation.referencesY. Huang and W. Xue, "Active disturbance rejection control: Methodology and theoretical analysis," ISA Transactions, vol. 53, no. 4, pp. 963–976, 2014.spa
dc.relation.referencesS. Li, J. Yang, W. H. Chen, and X. Chen, "Generalized extended state observer based control for systems with mismatched uncertainties," IEEE Transactions on Industrial Electronics, vol. 59, no. 12, pp. 4792–4802, 2012.spa
dc.relation.referencesZ. Gao, "Scaling and Bandwidth-Parameterization based Controller Tuning," in 2003 American Control Conference, 2003., pp. 4989–4996, 2003.spa
dc.relation.referencesH. Sira-Ramírez and E. W. Zurita-Bustamante, "On the equivalence between ADRC and Flat Filter based controllers: A frequency domain approach," Control Engineering Practice, vol. 107, p. 104656, 2021.spa
dc.relation.referencesW. Xue and Y. Huang, "Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems," ISA Transactions, vol. 58, no. 2014, pp. 133–154, 2015.spa
dc.relation.referencesJ. Cortés-Romero, H. Rojas-Cubides, H. Coral-Enriquez, H. Sira-Ramírez, and A. Luviano-Juárez, "Active Disturbance Rejection Approach for Robust Fault-Tolerant Control via Observer Assisted Sliding Mode Control," Mathematical Problems in Engineering, vol. 2013, pp. 1–12, 2013.spa
dc.relation.referencesR. W. Erickson and D. Maksimović, Fundamentals of Power Electronics. Springer, Boston, MA, 2 ed., 2001.spa
dc.relation.referencesK. Lakomy and R. Madonski, "Cascade extended state observer for active disturbance rejection control applications under measurement noise," ISA Transactions, vol. 109, pp. 1–10, 2021.spa
dc.relation.referencesK. Lakomy, R. Madonski, B. Dai, J. Yang, P. Kicki, M. Ansari, and S. Li, "Active Disturbance Rejection Control Design with Suppression of Sensor Noise Effects in Application to DC-DC Buck Power Converter," IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 816–824, 2022.spa
dc.relation.referencesH. Sun, R. Madonski, S. Li, Y. Zhang, and W. Xue, "Composite Control Design for Systems with Uncertainties and Noise Using Combined Extended State Observer and Kalman Filter," IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 4119–4128, 2022.spa
dc.relation.referencesJ. Cortés-Romero, G. A. Ramos, and H. Coral-Enriquez, "Generalized proportional integral control for periodic signals under active disturbance rejection approach.," ISA transactions, vol. 53, no. 6, pp. 1901–1909, 2014.spa
dc.relation.referencesH. Wang, T. Pan, H. Sira-Ramirez, and Z. Gao, "Flatness-Based Discrete Active Disturbance Rejection Control for the Flexible Transmission System," Journal of Control, Automation and Electrical Systems, vol. 32, pp. 1746–1757, 2021.spa
dc.relation.referencesH. Wang, T. Pan, H. Sira-Ramirez, and Z. Gao, "Active disturbance rejection control for discrete systems with zero dynamics," International Journal of Robust and Nonlinear Control, vol. 31, no. 11, pp. 5298–5311, 2021.spa
dc.relation.referencesB. Du, S. Wu, S. Han, and S. Cui, "Interturn Fault Diagnosis Strategy for Interior Permanent-Magnet Synchronous Motor of Electric Vehicles Based on Digital Signal Processor," IEEE Transactions on Industrial Electronics, vol. 63, no. 3, pp. 1694–1706, 2016.spa
dc.relation.referencesD. Huang, X. Hua, B. Mi, Y. Liu, and Z. Zhang, "Incipient fault diagnosis on active disturbance rejection control," Science China Information Sciences, vol. 65, no. 9, pp. 1–10, 2022.spa
dc.relation.referencesW. H. Chen, J. Yang, L. Guo, and S. Li, "Disturbance-Observer-Based Control and Related Methods - An Overview," IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 1083–1095, 2016.spa
dc.relation.referencesZ. Gao, "Active disturbance rejection control: From an enduring idea to an emerging technology," in 2015 10th International Workshop on Robot Motion and Control (RoMoCo), pp. 269–282, 2015.spa
dc.relation.referencesE. Sariyildiz, R. Oboe, and K. Ohnishi, "Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview," IEEE Transactions on Industrial Electronics, vol. 67, no. 3, pp. 2042–2053, 2020.spa
dc.relation.referencesH. Jin, J. Song, W. Lan, and Z. Gao, "On the characteristics of ADRC: a PID interpretation," Science China Information Sciences, vol. 63, no. 10, pp. 1–3, 2020.spa
dc.relation.referencesH. Rojas-Cubides, J. Cortés-Romero, H. Coral-Enriquez, and H. Rojas-Cubides, "Sliding mode control assisted by GPI observers for tracking tasks of a nonlinear multivariable Twin-Rotor aerodynamical system," Control Engineering Practice, vol. 88, pp. 1–15, 2019.spa
dc.relation.referencesQ. Zheng and Z. Gao, "Active disturbance rejection control: between the formulation in time and the understanding in frequency," Control Theory and Technology, vol. 14, no. 3, pp. 250–259, 2016.spa
dc.relation.referencesH. Sira-Ramírez, "From flatness, GPI observers, GPI control and flat filters to observer-based ADRC," Control Theory and Technology, vol. 16, pp. 249–260, 2018.spa
dc.relation.referencesS. Chen, W. Xue, and Y. Huang, “On active disturbance rejection control for nonlinear systems with multiple uncertainties and nonlinear measurement,” International Journal of Robust and Nonlinear Control, vol. 30, no. 8, pp. 3411–3435, 2020.spa
dc.relation.referencesD. Wu and K. Chen, “Frequency-domain analysis of nonlinear active disturbance rejection control via the describing function method,” IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3906–3914, 2013.spa
dc.relation.referencesX. Chang, Y. Li, W. Zhang, N. Wang, and W. Xue, “Active Disturbance Rejection Control for a Flywheel Energy Storage System,” IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 991–1001, 2015.spa
dc.relation.referencesW. Xue, R. Madonski, K. Lakomy, Z. Gao, and Y. Huang, “Add-On Module of Active Disturbance Rejection for Set-Point Tracking of Motion Control Systems,” IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 4028–4040, 2017.spa
dc.relation.referencesH. Coral-Enriquez, J. Cortés-Romero, and G. A. Ramos, “Robust Active Disturbance Rejection Control Approach to Maximize Energy Capture in Variable-Speed Wind Turbines,” Mathematical Problems in Engineering, vol. 2013, pp. 1–12, 2013.spa
dc.relation.referencesM. Srikanth and N. Yadaiah, “An AHP based optimized tuning of Modified Active Disturbance Rejection Control: An application to power system load frequency control problem,” ISA Transactions, vol. 81, pp. 286–305, 2018.spa
dc.relation.referencesH. Sira-Ramírez, C. López-Uribe, and M. Velasco-Villa, “Linear observer-based active disturbance rejection control of the omnidirectional mobile robot,” Asian Journal of Control, vol. 15, no. 1, pp. 51–63, 2013.spa
dc.relation.referencesB. Sun and Z. Gao, “A DSP-based active disturbance rejection control design for a 1-kW H-bridge DC-DC power converter,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1271–1277, 2005.spa
dc.relation.referencesS. Zhuo, A. Gaillard, L. Xu, D. Paire, and F. Gao, “Extended State Observer-Based Control of DC-DC Converters for Fuel Cell Application,” IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9925–9934, 2020.spa
dc.relation.referencesQ. Zheng and Z. Gao, “Active disturbance rejection control: some recent experimental and industrial case studies,” Control Theory and Technology, vol. 16, no. 4, pp. 301–313, 2018.spa
dc.relation.referencesP. Grelewicz, P. Nowak, J. Czeczot, and J. Musial, “Increment Count Method and Its PLC-Based Implementation for Autotuning of Reduced-Order ADRC with Smith Predictor,” IEEE Transactions on Industrial Electronics, vol. 68, no. 12, pp. 12554–12564, 2021.spa
dc.relation.referencesS. Li, J. Yang, W. H. Chen, and X. Chen, Disturbance Observer-Based Control Methods and Applications. CRC Press. Taylor & Francis Group, 2014.spa
dc.relation.referencesE. Sariyildiz and K. Ohnishi, “A guide to design disturbance observer,” Journal of Dynamic Systems, Measurement and Control, vol. 136, no. 2, p. 021011, 2014.spa
dc.relation.referencesH. Sira-Ramírez, E. W. Zurita-Bustamante, and C. Huang, “Equivalence Among Flat Filters, Dirty Derivative-Based PID Controllers, ADRC, and Integral Reconstructor-Based Sliding Mode Control,” IEEE Transactions on Control Systems Technology, vol. 28, no. 5, pp. 1696–1710, 2020.spa
dc.relation.referencesR. Madoński and P. Herman, “Survey on methods of increasing the efficiency of extended state disturbance observers,” ISA Transactions, vol. 56, pp. 18–27, 2015.spa
dc.relation.referencesB. Ahi and M. Haeri, “Linear Active Disturbance Rejection Control from the Practical Aspects,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 6, pp. 2909–2919, 2018.spa
dc.relation.referencesH. K. Khalil, “Cascade high-gain observers in output feedback control,” Automatica, vol. 80, pp. 110–118, 2017.spa
dc.relation.referencesWorld Economic Forum (WEF), “Fostering Effective Energy Transition. 2021 Edition Insight Report,” techreport, Apr. 2021.spa
dc.relation.referencesV. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. Shukla, A. Pirani, W. Moufouma-Okia, C. Pèan, R. Pidcock, S. Connors, J. Matthews, Y. Chen, X. Zhou, M. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, Global Warming of 1.5°C. Cambridge, UK and New York, NY, USA: Cambridge University Press, 2018.spa
dc.relation.referencesC. Defeuilley, “Energy transition and the future(s) of the electricity sector,” Utilities Policy, vol. 57, pp. 97–105, 2019.spa
dc.relation.referencesDepartamento Nacional de Planeación, Plan Nacional de Desarrollo 2018-2022: Pacto por Colombia, pacto por la equidad. Bogotá, D. C., Colombia: Departamento Nacional de Planeación, 2019.spa
dc.relation.referencesUnidad de Planeación Minero Energética (UPME), Plan Energético Nacional 2020-2050. UPME, 2020.spa
dc.relation.referencesI. Duque Márquez, D. Mesa Puyo, M. Lotero Robledo, and S. Sandoval Valderrama, Transición energética: un legado para el presente y el futuro de Colombia. Bogotá D. C., Colombia: Ministerio de Minas y Energía, 2021.spa
dc.relation.referencesAlcaldía Mayor de Bogotá D.C. and Colciencias, “Plan y Acuerdo Estratégico Distrital en Ciencia, Tecnología e Innovación,” Oct. 2016.spa
dc.relation.referencesCámara de Comercio de Bogotá, Plan Regional de Competitividad Bogotá y Cundinamarca 2010 – 2019. Bogotá, D. C., Colombia: Cámara de Comercio de Bogotá, 2010.spa
dc.relation.referencesConcejo de Bogotá D.C., “Acuerdo No. 761 de 2020. Por medio del cual se adopta el plan de desarrollo económico, social, ambiental y de obras públicas del distrito capital 2020-2024: un nuevo contrato social y ambiental para la Bogotá del siglo XXI,” 2020.spa
dc.relation.referencesD. Zuluaga, R. Castillo, and D. Mayorquín, Prospectiva Tecnológica de la Industria Electro Electrónica de Bogotá y Cundinamarca. Bogotá D. C., Colombia: CIDEI; ASESEL, 2015.spa
dc.relation.referencesWorld Economic Forum (WEF), “The Future of Electricity. New Technologies Transforming the Grid Edge,” techreport, Mar. 2017.spa
dc.relation.referencesM. L. Di Silvestre, S. Favuzza, E. Riva Sanseverino, and G. Zizzo, “How Decarbonization, Digitalization and Decentralization are changing key power infrastructures,” Renewable and Sustainable Energy Reviews, vol. 93, pp. 483–498, 2018.spa
dc.relation.referencesS. S. Reka and T. Dragicevic, “Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid,” Renewable and Sustainable Energy Reviews, vol. 91, pp. 90–108, 2018.spa
dc.relation.referencesA. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 402–411, 2018.spa
dc.relation.referencesS. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access, vol. 3, pp. 890–925, 2015.spa
dc.relation.referencesN. Shaukat, S. Ali, C. Mehmood, B. Khan, M. Jawad, U. Farid, Z. Ullah, S. Anwar, and M. Majid, “A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1453–1475, 2018.spa
dc.relation.referencesM. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked Microgrids: State-of-the-Art and Future Perspectives,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1238–1250, 2019.spa
dc.relation.referencesS. Thakar, V. A.S., and S. Doolla, “System reconfiguration in microgrids,” Sustainable Energy, Grids and Networks, vol. 17, p. 100191, 2019.spa
dc.relation.referencesD. Baimel, J. Belikov, J. M. Guerrero, and Y. Levron, “Dynamic Modeling of Networks, Microgrids, and Renewable Sources in the dq0 Reference Frame: A Survey,” IEEE Access, vol. 5, pp. 21323–21335, 2017.spa
dc.relation.referencesC. A. Macana, E. Mojica-Nava, H. R. Pota, J. M. Guerrero, and J. C. Vasquez, “A novel compact dq-reference frame model for inverter-based microgrids,” Electronics, vol. 8, no. 11, pp. 1–15, 2019.spa
dc.relation.referencesN. Pogaku, M. Prodanović, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625, 2007.spa
dc.relation.referencesJ. Schiffer, D. Zonetti, R. Ortega, A. M. Stanković, T. Sezi, and J. Raisch, “A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources,” Automatica, vol. 74, pp. 135–150, 2016.spa
dc.relation.referencesM. Ahmed, L. Meegahapola, A. Vahidnia, and M. Datta, “Stability and Control Aspects of Microgrid Architectures-A Comprehensive Review,” IEEE Access, vol. 8, pp. 144730–144766, 2020.spa
dc.relation.referencesT. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids - Part I: A Review of Control Strategies and Stabilization Techniques,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4876–4891, 2016.spa
dc.relation.referencesM. Gayatri, A. Parimi, and A. Pavan Kumar, “A review of reactive power compensation techniques in microgrids,” Renewable and Sustainable Energy Reviews, vol. 81, pp. 1030–1036, 2018.spa
dc.relation.referencesB. Mahamedi and J. E. Fletcher, “Trends in the protection of inverter-based microgrids,” IET Generation, Transmission and Distribution, vol. 13, no. 20, pp. 4511–4522, 2019.spa
dc.relation.referencesM. S. Mahmoud, N. M. Alyazidi, and M. I. Abouheaf, “Adaptive intelligent techniques for microgrid control systems: A survey,” International Journal of Electrical Power and Energy Systems, vol. 90, pp. 292–305, 2017.spa
dc.relation.referencesD. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.spa
dc.relation.referencesM. Roslan, M. Hannan, P. J. Ker, and M. Uddin, “Microgrid control methods toward achieving sustainable energy management,” Applied Energy, vol. 240, pp. 583–607, 2019.spa
dc.relation.referencesS. Sen and V. Kumar, “Microgrid control: A comprehensive survey,” Annual Reviews in Control, vol. 45, pp. 118–151, 2018.spa
dc.relation.referencesR. Zamora and A. K. Srivastava, “Multi-Layer Architecture for Voltage and Frequency Control in Networked Microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2076–2085, 2018.spa
dc.relation.referencesS. Sen and V. Kumar, “Microgrid modelling: A comprehensive survey,” Annual Reviews in Control, vol. 46, pp. 216–250, 2018.spa
dc.relation.referencesJ. J. Justo, F. Mwasilu, J. Lee, and J.-W. Jung, “AC-microgrids versus DC-microgrids with distributed energy resources: A review,” Renewable and Sustainable Energy Reviews, vol. 24, pp. 387–405, 2013.spa
dc.relation.referencesK. Rajesh, S. Dash, R. Rajagopal, and R. Sridhar, “A review on control of ac microgrid,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 814–819, 2017.spa
dc.relation.referencesT. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids - Part II: A Review of Power Architectures, Applications, and Standardization Issues,” IEEE Transactions on Power Electronics, vol. 31, no. 5, pp. 3528–3549, 2016.spa
dc.relation.referencesE. Planas, J. Andreu, J. I. Gárate, I. Martínez De Alegría, and E. Ibarra, “AC and DC technology in microgrids: A review,” Renewable and Sustainable Energy Reviews, vol. 43, pp. 726–749, 2015.spa
dc.relation.referencesN. Eghtedarpour and E. Farjah, “Power control and management in a Hybrid AC/DC microgrid,” IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1494–1505, 2014.spa
dc.relation.referencesP. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Hybrid AC-DC microgrids with energy storages and progressive energy flow tuning,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1533–1543, 2013.spa
dc.relation.referencesS. Mirsaeidi, X. Dong, and D. M. Said, “Towards hybrid AC/DC microgrids: Critical analysis and classification of protection strategies,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 97–103, 2018.spa
dc.relation.referencesS. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and active distribution networks. Renewable energy series 6, The Institution of Engineering and Technology, 2009.spa
dc.relation.referencesIEEE Standards Association, “IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003) - IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces,” 2018.spa
dc.relation.referencesG. Liu, M. R. Starke, B. Ollis, and Y. Xue, “Networked microgrids scoping study,” techreport ORNL/TM-2016/294, Oak Ridge National Labroratory, 2016.spa
dc.relation.referencesJ. He, X. Wu, X. Wu, Y. Xu, and J. M. Guerrero, “Small-Signal Stability Analysis and Optimal Parameters Design of Microgrid Clusters,” IEEE Access, vol. 7, pp. 36896–36909, 2019.spa
dc.relation.referencesY. Li, P. Zhang, and P. B. Luh, “Formal Analysis of Networked Microgrids Dynamics,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3418–3427, 2018.spa
dc.relation.referencesM. S. Golsorkhi, D. J. Hill, and H. R. Karshenas, “Distributed voltage control and power management of networked microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1892–1902, 2018.spa
dc.relation.referencesA. Hussain, V. H. Bui, and H. M. Kim, “Resilience-Oriented Optimal Operation of Networked Hybrid Microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 204–215, 2019.spa
dc.relation.referencesW. Yuan, J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng, “Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2817–2826, 2016.spa
dc.relation.referencesA. Parisio, C. Wiezorek, T. Kyntääja, J. Elo, K. Strunz, and K. H. Johansson, “Cooperative MPC-Based Energy Management for Networked Microgrids,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 3066–3074, 2017.spa
dc.relation.referencesA. M. Jadhav, N. R. Patne, and J. M. Guerrero, “A Novel Approach to Neighborhood Fair Energy Trading in a Distribution Network of Multiple Microgrid Clusters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1520–1531, 2019.spa
dc.relation.referencesY. Zhou, J. Wu, C. Long, and W. Ming, “State-of-the-Art Analysis and Perspectives for Peer-to-Peer Energy Trading,” Engineering, vol. 6, no. 7, pp. 739–753, 2020.spa
dc.relation.referencesY. Li, P. Dong, M. Liu, and G. Yang, “A distributed coordination control based on finite-time consensus algorithm for a cluster of dc microgrids,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2205–2215, 2019.spa
dc.relation.referencesM. Nasir, Z. Jin, H. A. Khan, N. A. Zaffar, J. C. Vasquez, and J. M. Guerrero, “A Decentralized Control Architecture Applied to DC Nanogrid Clusters for Rural Electrification in Developing Regions,” IEEE Transactions on Power Electronics, vol. 34, no. 2, pp. 1773–1785, 2019.spa
dc.relation.referencesP. Wu, W. Huang, N. Tai, and S. Liang, “A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection,” Applied Energy, vol. 210, pp. 1002–1016, 2018.spa
dc.relation.referencesY. Liu, X. Chen, Y. Wu, K. Yang, J. Zhu, and B. Li, “Enabling the Smart and Flexible Management of Energy Prosumers via the Energy Router with Parallel Operation Mode,” IEEE Access, vol. 8, pp. 35038–35047, 2020.spa
dc.relation.referencesB. Liu, W. Wu, C. Zhou, C. Mao, D. Wang, Q. Duan, and G. Sha, “An AC-DC Hybrid Multi-Port Energy Router with Coordinated Control and Energy Management Strategies,” IEEE Access, vol. 7, pp. 109069–109082, 2019.spa
dc.relation.referencesT. Wu, C. Zhao, and Y. J. Zhang, “Distributed AC-DC Optimal Power Dispatch of VSC-Based Energy Routers in Smart Microgrids,” IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 4457–4470, 2021.spa
dc.relation.referencesY. Li, Y. Peng, and X. Wang, “Seamless switching power sharing control method in a hybrid DC-AC microgrid by the isolated two-stage converter based on SST,” IET Power Electronics, vol. 14, no. 7, pp. 1384–1396, 2021.spa
dc.relation.referencesN. L. Díaz, F. Guinjoan, G. Velasco-Quesada, A. C. Luna, and J. M. Guerrero, “Fuzzy-based cooperative interaction between stand-alone microgrids interconnected through VSC-based multiterminal converter,” International Journal of Electrical Power and Energy Systems, vol. 152, p. 109226, 2023.spa
dc.relation.referencesY. Xiong and Y. Ye, “Physical Interpretations of Grid Voltage Full Feedforward for Grid-Tied Inverter,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 267–271, 2019.spa
dc.relation.referencesR. P. Kandula, A. Iyer, R. Moghe, J. E. Hernandez, and D. Divan, “Power router for meshed systems based on a fractionally rated back-to-back converter,” IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5172–5180, 2014.spa
dc.relation.referencesM. McDonough, “Integration of Inductively Coupled Power Transfer and Hybrid Energy Storage System: A Multiport Power Electronics Interface for Battery-Powered Electric Vehicles,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6423–6433, 2015.spa
dc.relation.referencesZ. Lan, J. Wang, J. Zeng, D. He, F. Xiao, and F. Jiang, “Constant Frequency Control Strategy of Microgrids by Coordinating Energy Router and Energy Storage System,” Mathematical Problems in Engineering, vol. 2020, pp. 1–8, 2020.spa
dc.relation.referencesG. Zhao, C. Jiang, and J. Liu, “Research on the System and Control Strategy of an AC-DC Hybrid Single-Phase Electric Energy Router,” Electronics, vol. 8, no. 9, p. 970, 2019.spa
dc.relation.referencesY. Liu, Y. Li, H. Liang, J. He, and H. Cui, “Energy Routing Control Strategy for Integrated Microgrids Including Photovoltaic, Battery-Energy Storage and Electric Vehicles,” Energies, vol. 12, no. 2, p. 302, 2019.spa
dc.relation.referencesK. Huang, Y. Li, X. Zhang, L. Liu, Y. Zhu, and X. Meng, “Research on power control strategy of household-level electric power router based on hybrid energy storage droop control,” Protection and Control of Modern Power Systems, vol. 6, no. 1, pp. 1–13, 2021.spa
dc.relation.referencesH. Guo, F. Wang, L. Zhang, and J. Luo, “A Hierarchical Optimization Strategy of the Energy Router-Based Energy Internet,” IEEE Transactions on Power Systems, vol. 34, no. 6, pp. 4177–4185, 2019.spa
dc.relation.referencesS. Zhang, W. Pei, H. Xiao, Y. Yang, H. Ye, and L. Kong, “Enhancing the survival time of multiple islanding microgrids through composable modular energy router after natural disasters,” Applied Energy, vol. 270, p. 115138, 2020.spa
dc.relation.referencesW. Chen and T. Li, “Distributed Economic Dispatch for Energy Internet Based on Multiagent Consensus Control,” IEEE Transactions on Automatic Control, vol. 66, no. 1, pp. 137–152, 2021.spa
dc.relation.referencesR. Bickel and M. Tomizuka, “Passivity-based versus disturbance observer based robot control: Equivalence and stability,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 121, no. 1, pp. 41–47, 1999.spa
dc.relation.referencesE. Schrijver and J. Van Dijk, “Disturbance observers for rigid mechanical systems: Equivalence, stability, and design,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 124, no. 4, pp. 539–548, 2002.spa
dc.relation.referencesB. K. Kim, H. T. Choi, W. K. Chung, and I. H. Suh, “Analysis and design of robust motion controllers in the unified framework,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 124, no. 2, pp. 313–321, 2002.spa
dc.relation.referencesR. Garrido and J. L. Luna, “On the equivalence between PD+DOB and PID controllers applied to servo drives,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 95–100, 2018.spa
dc.relation.referencesF. M. M. Rahman, V. Pirsto, J. Kukkola, M. Hinkkanen, D. Perez-Estevez, and J. Doval-Gandoy, “Equivalence of the Integrator-Based and Disturbance-Observer-Based State-Space Current Controllers for Grid Converters,” IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 4966–4976, 2021.spa
dc.relation.referencesS. Jung and J. W. Lee, “Similarity Analysis between a Nonmodel-Based Disturbance Observer and a Time-Delayed Controller for Robot Manipulators in Cartesian Space,” IEEE Access, vol. 9, pp. 122299–122307, 2021.spa
dc.relation.referencesJ. Su, L. Wang, and J. N. Yun, “A design of disturbance observer in standard h∞ control framework,” International Journal of Robust and Nonlinear Control, vol. 25, no. 16, pp. 2894–2910, 2015.spa
dc.relation.referencesH. T. Seo, S. Kim, and K. S. Kim, “An H∞ Design of Disturbance Observer for a Class of Linear Time-invariant Single-input/Single-output Systems,” International Journal of Control, Automation and Systems, vol. 18, no. 7, pp. 1662–1670, 2020.spa
dc.relation.referencesS. Ahmad and A. Ali, “Unified Disturbance-Estimation-Based Control and Equivalence with IMC and PID: Case Study on a DC-DC Boost Converter,” IEEE Transactions on Industrial Electronics, vol. 68, no. 6, pp. 5122–5132, 2021.spa
dc.relation.referencesP. Lin, X.-M. Sun, and Z. Fei, “A generalized interpretation of three types of disturbance-based controllers for perturbed integral systems in frequency domain,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1328–1332, 2021.spa
dc.relation.referencesR. Zhou, C. Fu, and W. Tan, “Implementation of linear controllers via active disturbance rejection control structure,” IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6217–6226, 2021.spa
dc.relation.referencesG. Tian and Z. Gao, “Frequency response analysis of active disturbance rejection based control system,” in 2007 IEEE International Conference on Control Applications, pp. 1595–1599, IEEE, 2007.spa
dc.relation.referencesC. Huang and Q. Zheng, “Frequency response analysis of linear active disturbance rejection control,” Sensors and Transducers, vol. 157, no. 10, pp. 346–354, 2013.spa
dc.relation.referencesW. Xue and Y. Huang, “On frequency-domain analysis of ADRC for uncertain system,” in 2013 American Control Conference, pp. 6637–6642, 2013.spa
dc.relation.referencesS. Zhong and Y. Huang, “Comparison of the phase margins of different ADRC designs,” in 2019 Chinese Control Conference (CCC), pp. 1280–1285, IEEE, 2019.spa
dc.relation.referencesH. Jin, L. Liu, W. Lan, and J. Zeng, “On stability and robustness of linear active disturbance rejection control: A small gain theorem approach,” in 2017 36th Chinese Control Conference (CCC), pp. 3242–3247, IEEE, 2017.spa
dc.relation.referencesJ. Li, X. Qi, Y. Xia, F. Pu, and K. Chang, “Frequency domain stability analysis of nonlinear active disturbance rejection control system,” ISA Transactions, vol. 56, pp. 188–195, 2015.spa
dc.relation.referencesJ. Li, Y. Xia, X. Qi, and P. Zhao, “Robust absolute stability analysis for interval nonlinear active disturbance rejection based control system,” ISA Transactions, vol. 69, pp. 122–130, 2017.spa
dc.relation.referencesX. Qi, J. Li, Y. Xia, and Z. Gao, “On the Robust Stability of Active Disturbance Rejection Control for SISO Systems,” Circuits, Systems, and Signal Processing, vol. 36, pp. 65–81, 2017.spa
dc.relation.referencesS. Skogestad and I. Postlethwaite, Multivariable Feedback control. Analysis and design. Wiley, 2nd ed., 2005.spa
dc.relation.referencesP. Seiler, A. Packard, and P. Gahinet, “An introduction to disk margins [lecture notes],” IEEE Control Systems Magazine, vol. 40, no. 5, pp. 78–95, 2020.spa
dc.relation.referencesD. Graham and R. C. Lathrop, “The synthesis of .optimum”transient response: Criteria and standard forms,” Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry, vol. 72, no. 5, pp. 273–288, 1953.spa
dc.relation.referencesA. H. Marshax, D. E. Johnson, and J. R. Johnson, “A Bessel Rational Filter,” IEEE Transactions on Circuits and Systems, vol. 21, no. 6, pp. 797–799, 1974.spa
dc.relation.referencesH. Yang, Y. Zhang, J. Liang, J. Liu, N. Zhang, and P. D. Walker, “Robust Deadbeat Predictive Power Control with a Discrete-Time Disturbance Observer for PWM Rectifiers under Unbalanced Grid Conditions,” IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 287–300, 2018.spa
dc.relation.referencesS. Ahmad and A. Ali, “On Active Disturbance Rejection Control in Presence of Measurement Noise,” IEEE Transactions on Industrial Electronics, vol. 69, no. 11, pp. 11600 – 11610, 2022.spa
dc.relation.referencesM. Elkayam, S. Kolesnik, and A. Kuperman, “Guidelines to Classical Frequency-Domain Disturbance Observer Redesign for Enhanced Rejection of Periodic Uncertainties and Disturbances,” IEEE Transactions on Power Electronics, vol. 34, no. 4, pp. 3986–3995, 2019.spa
dc.relation.referencesR. Madonski, M. Stankovic, A. Ferdjali, S. Shao, and Z. Gao, “General ADRC Design for Systems with Periodic Disturbances of Unknown and Varying Frequencies,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 143, no. 1, p. 011006, 2021.spa
dc.relation.referencesL. Li, W. W. Huang, X. Wang, Y. L. Chen, and L. M. Zhu, “Periodic-Disturbance Observer Using Spectrum-Selection Filtering Scheme for Cross-Coupling Suppression in Atomic Force Microscopy,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 3, pp. 2037–2048, 2023.spa
dc.relation.referencesK. Nie, W. Xue, C. Zhang, and Y. Mao, “Disturbance observer-based repetitive control with application to optoelectronic precision positioning system,” Journal of the Franklin Institute, vol. 358, no. 16, pp. 8443–8469, 2021.spa
dc.relation.referencesQ. Meng and Z. Hou, “Active Disturbance Rejection Based Repetitive Learning Control With Applications in Power Inverters,” IEEE Transactions on Control Systems Technology, vol. 29, no. 5, pp. 2038–2048, 2021.spa
dc.relation.referencesL. Zhou, L. Cheng, J. She, and Z. Zhang, “Generalized extended state observer-based repetitive control for systems with mismatched disturbances,” International Journal of Robust and Nonlinear Control, vol. 29, no. 11, pp. 3777–3792, 2019.spa
dc.relation.referencesM. Tian, B. Wang, Y. Yu, Q. Dong, and D. Xu, “Discrete-Time Repetitive Control-Based ADRC for Current Loop Disturbances Suppression of PMSM Drives,” IEEE Transactions on Industrial Informatics, vol. 18, no. 5, pp. 3138–3149, 2022.spa
dc.relation.referencesM. R. Stanković, R. Madonski, S. Shao, and D. Mikluc, “On dealing with harmonic uncertainties in the class of active disturbance rejection controllers,” International Journal of Control, vol. 94, no. 10, pp. 2795–2810, 2021.spa
dc.relation.referencesH. D. Rojas and J. Cortés-Romero, “On the equivalence between Generalized Proportional Integral Observer and Disturbance Observer,” ISA Transactions, vol. 133, pp. 397–411, 2023.spa
dc.relation.referencesB. Guo, S. Bacha, M. Alamir, and J. Pouget, “A phase-locked loop using ESO-based loop filter for grid-connected converter: performance analysis,” Control Theory and Technology, vol. 19, pp. 49–63, 2021.spa
dc.relation.referencesZ. Li, T. Zheng, Y. Wang, and C. Yang, “A Hierarchical Coordinative Control Strategy for Solid State Transformer Based DC Microgrids,” Applied Sciences, vol. 10, no. 19, p. 6853, 2020.spa
dc.relation.referencesB. Guo, S. Bacha, M. Alamir, A. Hably, and C. Boudinet, “Generalized Integrator-Extended State Observer with Applications to Grid-Connected Converters in the Presence of Disturbances,” IEEE Transactions on Control Systems Technology, vol. 29, no. 2, pp. 744–755, 2021.spa
dc.relation.referencesP. Lin, Y. Shi, and X. M. Sun, “A Classes of Nonlinear Active Disturbance Rejection Loop Filters for Phase-Locked Loop,” IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1920–1928, 2022.spa
dc.relation.referencesS. Chen and Z. Chen, “On Active Disturbance Rejection Control for a Class of Uncertain Systems with Measurement Uncertainty,” IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1475–1485, 2021.spa
dc.relation.referencesR. Teodorescu, F. Blaabjerg, M. Liserre, and P. C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proceedings - Electric Power Applications, vol. 153, no. 5, pp. 750–762, 2006.spa
dc.relation.referencesM. Castilla, J. Miret, J. Matas, L. G. D. Vicuña, and J. M. Guerrero, “Resonant Harmonic Compensator for Photovoltaic Inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2724–2733, 2008.spa
dc.relation.referencesJ. Han, “From PID to Active Disturbance Rejection Control,” IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900–906, 2009.spa
dc.relation.referencesJ. H. Ahrens and H. K. Khalil, “High-gain observers in the presence of measurement noise: A switched-gain approach,” Automatica, vol. 45, no. 4, pp. 936–943, 2009.spa
dc.relation.referencesA. A. Prasov and H. K. Khalil, “A nonlinear high-gain observer for systems with measurement noise in a feedback control framework,” IEEE Transactions on Automatic Control, vol. 58, no. 3, pp. 569–580, 2013.spa
dc.relation.referencesS. Battilotti, “Robust observer design under measurement noise with gain adaptation and saturated estimates,” Automatica, vol. 81, pp. 75–86, 2017.spa
dc.relation.referencesH. K. Khalil and S. Priess, “Analysis of the Use of Low-Pass Filters with High-Gain Observers,” IFAC-PapersOnLine, vol. 49, no. 18, pp. 488–492, 2016.spa
dc.relation.referencesY. Wu, A. Isidori, and L. Marconi, “Achieving Almost Feedback-Linearization via Low-Power Extended Observer,” IEEE Control Systems Letters, vol. 4, no. 4, pp. 1030–1035, 2020.spa
dc.relation.referencesY. Du, W. Cao, and J. She, “Analysis and Design of Active Disturbance Rejection Control With an Improved Extended State Observer for Systems With Measurement Noise,” IEEE Transactions on Industrial Electronics, vol. 70, no. 1, pp. 855–865, 2023.spa
dc.relation.referencesY. Liu, G. Liu, S. Zheng, and H. Li, “A modified active disturbance rejection control strategy based on cascade structure with enhanced robustness,” ISA Transactions, vol. 129, pp. 525–534, 2022.spa
dc.relation.referencesS. Chen, Y. Huang, and Z.-l. Zhao, “The necessary and sufficient condition for the uncertain control gain in active disturbance rejection control,” arXiv, no.2006.11731, pp. 1–8, 2020.spa
dc.relation.referencesJ. Yang, H. Cui, S. Li, and A. Zolotas, “Optimized Active Disturbance Rejection Control for DC-DC Buck Converters With Uncertainties Using a Reduced-Order GPI Observer,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 2, pp. 832–841, 2018.spa
dc.relation.referencesG. A. Ramos and R. Costa-Castelló, “Power factor correction and harmonic compensation using second-order odd-harmonic repetitive control,” IET Control Theory and Applications, vol. 6, no. 11, pp. 1633–1644, 2012.spa
dc.relation.referencesR. Costa-Castelló, R. Griñó, R. Cardoner Parpal, and E. Fossas, “High-performance control of a single-phase shunt active filter,” IEEE Transactions on Control Systems Technology, vol. 17, no. 6, pp. 1318–1329, 2009.spa
dc.relation.referencesM. Chen and G. A. Rincón-Mora, “Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 504–511, 2006.spa
dc.relation.referencesT. Kim and W. Qiao, “A hybrid battery model capable of capturing dynamic circuit characteristics and nonlinear capacity effects,” IEEE Transactions on Energy Conversion, vol. 26, no. 4, pp. 1172–1180, 2011.spa
dc.relation.referencesD. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Autonomous active power control for islanded AC microgrids with photovoltaic generation and energy storage system,” IEEE Transactions on Energy Conversion, vol. 29, no. 4, pp. 882–892, 2014.spa
dc.relation.referencesR. M. Santos Filho, P. F. Seixas, P. C. Cortizo, L. A. Torres, and A. F. Souza, “Comparison of three single-phase PLL algorithms for UPS applications,” IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 2923–2932, 2008.spa
dc.relation.referencesS. Golestan, M. Monfared, F. D. Freijedo, and J. M. Guerrero, “Dynamics assessment of advanced single-phase PLL structures,” IEEE Transactions on Industrial Electronics, vol. 60, no. 6, pp. 2167–2177, 2013.spa
dc.relation.referencesJ. Xu, H. Qian, Y. Hu, S. Bian, and S. Xie, “Overview of SOGI-Based Single-Phase Phase-Locked Loops for Grid Synchronization under Complex Grid Conditions,” IEEE Access, vol. 9, pp. 39275–39291, 2021.spa
dc.relation.referencesH. Rojas-Cubides, J. Cortés-Romero, and J. Arcos-Legarda, “Data-driven disturbance observer-based control: an active disturbance rejection approach,” Control Theory and Technology, vol. 19, pp. 80–93, 2021.spa
dc.relation.referencesH. D. Rojas, J. Cortés-Romero, and H. E. Rojas, “Active disturbance rejection control assisted by a cascade connection of repetitive and data-driven observers,” in 2023 IEEE 6th Colombian Conference on Automatic Control (CCAC), pp. 1–6, IEEE, 2023.spa
dc.relation.referencesH. D. Rojas, H. E. Rojas, and J. Cortés-Romero, “Fault diagnosis based on algebraic identification assisted by extended state observers,” Nonlinear Dynamics, vol. 107, no. 1, pp. 871–888, 2022.spa
dc.relation.referencesF. O. Resende, N. J. Gil, and J. A. Lopes, “Service restoration on distribution systems using Multi-MicroGrids,” European Transactions on Electrical Power, vol. 21, no. 2, pp. 1327–1342, 2011.spa
dc.relation.referencesA. G. Madureira, J. C. Pereira, N. J. Gil, J. A. Lopes, G. N. Korres, and N. D. Hatziargyriou, “Advanced control and management functionalities for multi-microgrids,” European Transactions on Electrical Power, vol. 21, no. 2, pp. 1159–1177, 2011.spa
dc.relation.referencesY. Wang, B. Ren, and Q. C. Zhong, “Robust Power Flow Control of Grid-Connected Inverters,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6887–6897, 2016.spa
dc.relation.referencesY. Wang, B. Ren, and Q. C. Zhong, “Robust Power Flow Control of Grid-Connected Inverters,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6887–6897, 2016.spa
dc.relation.referencesS. A. Arefifar, M. Ordonez, and Y. A. R. I. Mohamed, “Energy Management in Multi-Microgrid Systems - Development and Assessment,” IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 910–922, 2017.spa
dc.relation.referencesA. Ouammi, H. Dagdougui, L. Dessaint, and R. Sacile, “Coordinated Model Predictive-Based Power Flows Control in a Cooperative Network of Smart Microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 5, pp. 2233–2244, 2015.spa
dc.relation.referencesI. U. Nutkani, P. C. Loh, and F. Blaabjerg, “Power flow control of intertied ac microgrids,” IET Power Electronics, vol. 6, no. 7, pp. 1329–1338, 2013.spa
dc.relation.referencesL. Che, M. Shahidehpour, A. Alabdulwahab, and Y. Al-Turki, “Hierarchical coordination of a community microgrid with AC and DC microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 3042–3051, 2015.spa
dc.relation.referencesP. Tian, X. Xiao, K. Wang, and R. Ding, “A Hierarchical Energy Management System Based on Hierarchical Optimization for Microgrid Community Economic Operation,” IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2230–2241, 2016.spa
dc.relation.referencesA. Werth, N. Kitamura, and K. Tanaka, “Conceptual Study for Open Energy Systems: Distributed Energy Network Using Interconnected DC Nanogrids,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1621–1630, 2015.spa
dc.relation.referencesE. Unamuno and J. A. Barrena, “Hybrid ac/dc microgrids—Part II: Review and classification of control strategies,” Renewable and Sustainable Energy Reviews, vol. 52, pp. 1123–1134, 2015.spa
dc.relation.referencesM. Liserre, Z. X. Zou, and G. Buticchi, “Analysis and stabilization of a smart transformer-fed grid,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1325–1335, 2017.spa
dc.relation.referencesG. Wang, X. Wang, and J. Lv, “An Improved Harmonic Suppression Control Strategy for the Hybrid Microgrid Bidirectional AC/DC Converter,” IEEE Access, vol. 8, pp. 220422–220436, 2020.spa
dc.relation.referencesF. Nejabatkhah, Y. W. Li, and H. Tian, “Power quality control of smart hybrid AC/DC microgrids: An overview,” IEEE Access, vol. 7, pp. 52295–52318, 2019.spa
dc.relation.referencesL. Ferreira Costa, G. De Carne, G. Buticchi, and M. Liserre, “The Smart Transformer: A solid-state transformer tailored to provide ancillary services to the distribution grid,” IEEE Power Electronics Magazine, vol. 4, no. 2, pp. 56–67, 2017.spa
dc.relation.referencesR. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 821–834, 2010.spa
dc.relation.referencesM. Liserre, G. Buticchi, M. Andresen, G. De Carne, L. F. Costa, and Z. X. Zou, “The Smart Transformer: Impact on the Electric Grid and Technology Challenges,” IEEE Industrial Electronics Magazine, vol. 10, no. 2, pp. 46–58, 2016.spa
dc.relation.referencesJ. Sun, L. Yuan, Q. Gu, and Z. Zhao, “Startup Strategy with Constant Peak Transformer Current for Solid-State Transformer in Distribution Network,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1740–1751, 2019.spa
dc.relation.referencesH. J. Yoo, T. T. Nguyen, and H. M. Kim, “Multi-frequency control in a stand-alone multi-microgrid system using a back-to-back converter,” Energies, vol. 10, no. 6, p. 822, 2017.spa
dc.relation.referencesI. U. Nutkani, P. C. Loh, P. Wang, T. K. Jet, and F. Blaabjerg, “Intertied ac-ac microgrids with autonomous power import and export,” International Journal of Electrical Power and Energy Systems, vol. 65, pp. 385–393, 2015.spa
dc.relation.referencesD. Chen, Y. Xu, and A. Q. Huang, “Integration of DC Microgrids as Virtual Synchronous Machines into the AC Grid,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7455–7466, 2017.spa
dc.relation.referencesT. Zhou and B. Francois, “Energy management and power control of a hybrid active wind generator for distributed power generation and grid integration,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 95–104, 2011.spa
dc.relation.referencesM. Kumar, S. C. Srivastava, and S. N. Singh, “Control Strategies of a DC Microgrid for Grid Connected and Islanded Operations,” IEEE Transactions on Smart Grid, vol. 6, no. 4, pp. 1588–1601, 2015.spa
dc.relation.referencesH. Zhang, J. Zhou, Q. Sun, J. M. Guerrero, and D. Ma, “Data-Driven Control for Interlinked AC/DC Microgrids Via Model-Free Adaptive Control and Dual-Droop Control,” IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 557–571, 2017.spa
dc.relation.referencesA. A. A. Radwan and Y. A. R. I. Mohamed, “Networked control and power management of AC/DC hybrid microgrids,” IEEE Systems Journal, vol. 11, no. 3, pp. 1662–1673, 2017.spa
dc.relation.referencesM. Baharizadeh, H. R. Karshenas, and J. M. Guerrero, “An improved power control strategy for hybrid AC-DC microgrids,” International Journal of Electrical Power and Energy Systems, vol. 95, pp. 364–373, 2018.spa
dc.relation.referencesH. Xiao, A. Luo, Z. Shuai, G. Jin, and Y. Huang, “An improved control method for multiple bidirectional power converters in hybrid AC/DC microgrid,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 340–347, 2016.spa
dc.relation.referencesX. Lu, J. M. Guerrero, K. Sun, J. C. Vasquez, R. Teodorescu, and L. Huang, “Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 683–692, 2014.spa
dc.relation.referencesY. Xia, Y. Peng, P. Yang, M. Yu, and W. Wei, “Distributed Coordination Control for Multiple Bidirectional Power Converters in a Hybrid AC/DC Microgrid,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4949–4959, 2017.spa
dc.relation.referencesP. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid,” IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1374–1382, 2013.spa
dc.relation.referencesD. R. Aryani and H. Song, “Coordination control strategy for AC/DC hybrid microgrids in stand-alone mode,” Energies, vol. 9, no. 6, p. 469, 2016.spa
dc.relation.referencesF. Wang, J. L. Duarte, and M. A. M. Hendrix, “Grid-Interfacing Converter Systems With Enhanced Voltage Quality for Microgrid Application—Concept and Implementation,” IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3501–3513, 2011.spa
dc.relation.referencesP. G. Khorasani, M. Joorabian, and S. G. Seifossadat, “Smart grid realization with introducing unified power quality conditioner integrated with DC microgrid,” Electric Power Systems Research, vol. 151, pp. 68–85, 2017.spa
dc.relation.referencesP. Sanjeev, N. P. Padhy, and P. Agarwal, “Autonomous Power Control and Management between Standalone DC Microgrids,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 2941–2950, 2018.spa
dc.relation.referencesU. Vuyyuru, S. Maiti, and C. Chakraborty, “Active Power Flow Control Between DC Microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5712–5723, 2019.spa
dc.relation.referencesC. Samende, F. Gao, S. M. Bhagavathy, and M. McCulloch, “Decentralized Voltage Control for Efficient Power Exchange in Interconnected DC Clusters,” IEEE Transactions on Sustainable Energy, vol. 12, no. 1, pp. 103–115, 2021.spa
dc.relation.referencesR. Haghmaram, F. Sedaghati, and R. Ghafarpour, “Power exchange among microgrids using modular-isolated bidirectional DC–DC converter,” Electrical Engineering, vol. 99, no. 1, pp. 441–454, 2017.spa
dc.relation.referencesS. Konar and A. Ghosh, “Interconnection of islanded DC microgrids,” in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1–5, IEEE, 2015.spa
dc.relation.referencesM. Kumar, S. C. Srivastava, S. N. Singh, and M. Ramamoorty, “Development of a control strategy for interconnection of islanded direct current microgrids,” IET Renewable Power Generation, vol. 9, no. 3, pp. 284–296, 2015.spa
dc.relation.referencesJ. W. Kolar, T. Friedli, J. Rodriguez, and P. W. Wheeler, “Review of three-phase PWM AC-AC converter topologies,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 4988–5006, 2011.spa
dc.relation.referencesR. Majumder, “A hybrid microgrid with dc connection at back to back converters,” IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 251–259, 2014.spa
dc.relation.referencesY. Xu, J. Zhang, W. Wang, A. Juneja, and S. Bhattacharya, “Energy router: Architectures and functionalities toward energy internet,” in 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 31–36, IEEE, 2011.spa
dc.relation.referencesX. Yu, X. She, X. Zhou, and A. Q. Huang, “Power management for DC microgrid enabled by solid-state transformer,” IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 954–965, 2014.spa
dc.relation.referencesX. She, A. Q. Huang, S. Lukic, and M. E. Baran, “On integration of solid-state transformer with zonal DC microgrid,” IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 975–985, 2012.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalControl con rechazo activo de perturbaciones (ADRC)spa
dc.subject.proposalEnrutador de energíaspa
dc.subject.proposalInterconexión de microrredesspa
dc.subject.proposalObservador en cascadaspa
dc.subject.proposalObservador de estado extendido (ESO)spa
dc.subject.proposalObservador proporcional integral generalizado (GPIO)spa
dc.subject.proposalAnálisis de robustez y desempeñospa
dc.subject.proposalActive disturbance rejection control (ADRC)eng
dc.subject.proposalEnergy routereng
dc.subject.proposalMicrogrid interconnectioneng
dc.subject.proposalCascade observereng
dc.subject.proposalExtended estate observer (ESO)eng
dc.subject.proposalGeneralized proportional integral observer (GPIO)eng
dc.subject.proposalRobustness and performance analysiseng
dc.subject.wikidataGPIOspa
dc.subject.wikidataGeneral Purpose Input/Outputeng
dc.subject.wikidataRuido (física)spa
dc.subject.wikidatanoiseeng
dc.subject.wikidataSistema de suministro eléctricospa
dc.subject.wikidatatransmission of electricityeng
dc.titleControl con rechazo activo de perturbaciones para un enrutador de energía usado en la interconexión de microrredes eléctricasspa
dc.title.translatedActive disturbance rejection control of an energy router used in microgrid interconnectioneng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80073076.2024.pdf
Tamaño:
35.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: