Evaluación del aporte de fuentes al material particulado en la zona urbana de la localidad de Fontibón, Bogotá teniendo en cuenta la caracterización química en diferentes distribuciones de tamaño

dc.contributor.advisorRojas, Néstor Yesidspa
dc.contributor.authorBurbano Ardila, Kelly Johanaspa
dc.contributor.researchgroupCalidad del Airespa
dc.date.accessioned2020-10-08T21:26:39Zspa
dc.date.available2020-10-08T21:26:39Zspa
dc.date.issued2017-08-02spa
dc.description.abstractEl material particulado es el contaminante que más afecta la calidad del aire en las ciudades colombianas, debido a que es el contaminante que más frecuentemente excede las normas establecidas para proteger la salud de la población. Algunas investigaciones han determinado la contribución de diversas fuentes al PM10 en algunos puntos de la ciudad de Bogotá. Sin embargo, no se conocen estudios locales de especiación química para la determinación de la contribución de fuentes en diversos tamaños de partícula de manera simultánea. El propósito del presente trabajo es hacer esta determinación. Se utilizó un impactador de cascada Andersen de ocho etapas en un punto de la ciudad en dos periodos comprendidos entre marzo hasta junio y el otro periodo entre noviembre y diciembre del año 2018, con el fin de obtener la distribución de tamaño del material particulado y captar masa suficiente para determinar su composición química en diferentes intervalos de tamaño. Posteriormente, se estimó la contribución de diversas fuentes al material particulado en dichos intervalos de tamaño. Para la caracterización química fueron cuantificados OC, EC y algunos iones solubles en agua: Cl-, NO3-, SO42-, C2O42-, NO2-, Br-, F-, CHOO-, MSA-, PO43-, Na+, NH4+, K+, Mg+2, Ca2+. La distribución del tamaño de la masa de partículas fue bimodal, con un modo grueso entre 5.1± 1.4µm de diámetro aerodinámico y un modo de acumulación entre 0.9± 2.7µm. Aproximadamente, el 60% de la masa de las partículas finas (PM2.1) consiste en especies carbonáceas, siendo el EC el principal constituyente. La mayor parte de las especies medidas tienen una distribución bimodal, con un pico prominente en el modo grueso, excepto el nitrato, nitrito, metanosulfonato y el amonio, que presentaron un modo dominante de acumulación. Los iones bromuro y fluoruro se presentaron en concentraciones no detectables. En general el anión predominante fue el sulfato para todas las etapas. Para los cationes fueron el calcio y el sodio. Las principales fuentes de la zona para la fracción gruesa son el polvo o abrasión mecánica > combustión de carbón. En el caso del modo acumulación y PM2.5 las principales fuentes son: combustión de carbón > emisiones vehiculares a diésel > combustión de biomasa > emisiones vehiculares a gasolina.spa
dc.description.abstractParticulate matter is the most harmful pollutant to air quality in Colombian cities since it is the one that most frequently exceeds the limit values established to protect the health of population. Some research studies have determined the contribution of various sources to PM10 and PM2.5 in some parts of the city. However, there have been no local chemical speciation studies for the determination of the contribution of sources in various particle sizes simultaneously. This work aims to better understand the distribution of ambient aerosols in Bogota by characterizing particles in several size fractions. Particulate matter samples were collected using an eight-stage cascade impactor in two sampling periods in the year 2018. The size distribution of the particulate material was obtained, and enough mass was collected to determine its chemical composition in different size ranges. Subsequently, the contribution of various sources to the particulate matter in these size ranges was estimated. The chemical composition was quantified OC, EC and ions (Cl-, NO3-, SO42-, C2O42-, NO2-, Br-, F-, CHOO-, MSA-, PO43-, Na+, NH4+, K+, Mg+2, Ca2+). The mean mass size distribution was bimodal, with the coarse mode at 5.1± 1.4µm and the accumulation mode at 0.9± 2.7µm and its largest fraction was in the coarse mode >2.1 μm (52% of total particle mass). Most of the mass (60%) of fine particles (PM2.1) consists of carbonaceous species, with EC being the main constituent. Most species measured have a bimodal distribution, with a prominent peak in the coarse mode, except for nitrate, nitrite, methanesulphonate and ammonium, which showed a dominant accumulation mode. Bromide and fluoride ions were present in undetectable concentrations. The main source in the area for the coarse fraction is dust or mechanical abrasion. In the case of the fine fraction they are associated with a primary origin, specifically fresh and local vehicle sources that use diesel fuel and gasoline, coal burning, and biomass combustion.spa
dc.description.additionalLínea de Investigación: Calidad del Airespa
dc.description.degreelevelMaestríaspa
dc.description.projectDeterminación de las fuentes de emisión de material particulado a partir de la caracterización química y distribución de tamañospa
dc.description.sponsorshipUniversidad Nacional de Colombiaspa
dc.format.extent197spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78532
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAgency for Toxic Substances and Disease Registry. (2012). Standards and regulations for polycyclic aromatic hydrocarbons (PAH). Retrieved from https://www.atsdr.cdc.gov/csem/csem.%0Aasp?csem=13&po=8spa
dc.relation.referencesAguiar Gil, D., Gómez Peláez, L. M., Álvarez Jaramillo, T., Correa Ohoa, M. A., & Saldarriaga Molina, J. C. (2020). Evaluating the impact of PM2.5 atmospheric pollution on population mortality in an urbanized valley in the American tropics. Atmospheric Environment, 117343. https://doi.org/10.1016/j.atmosenv.2020.117343spa
dc.relation.referencesAlvarado, G. M. (2006). Estimación del aporte de diferentes fuentes a la contaminación atmosférica por partículas en Santiago, mediante un modelo de balance de masas de elementos químicos. Universidad de Chile.spa
dc.relation.referencesAlves, C. A., Oliveira, C., Martins, N., Mirante, F., Caseiro, A., Pio, C., … Camões, F. (2016). Road tunnel, roadside, and urban background measurements of aliphatic compounds in size-segregated particulate matter. Atmospheric Research, 168, 139–148. https://doi.org/10.1016/j.atmosres.2015.09.007spa
dc.relation.referencesAnlauf, K., Li, S.-M., Leaitch, R., Brook, J., Hayden, K., Toom-Sauntry, D., & Wiebe, A. (2006). Ionic composition and size characteristics of particles in the Lower Fraser Valley: Pacific 2001 field study. Atmospheric Environment, 40(15), 2662–2675. https://doi.org/https://doi.org/10.1016/j.atmosenv.2005.12.027spa
dc.relation.referencesBaklanov, A., Molina, L. T., & Gauss, M. (2016). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249. https://doi.org/10.1016/j.atmosenv.2015.11.059spa
dc.relation.referencesBelis, C. A., Larsen, B. R., Amato, F., El Haddad, I., Favez, O., Harrison, R. M., … Viana, M. (2014). European guide on air pollution source apportionment with receptor models. https://doi.org/10.2788/9307spa
dc.relation.referencesBell, M. L., Cifuentes, L. A., Davis, D. L., Cushing, E., Gusman Telles, A., & Gouveia, N. (2011). Environmental health indicators and a case study of air pollution in latin american cities. Environmental Resarch, 111, 57–66.spa
dc.relation.referencesBourotte, C., Forti, M. C., Taniguchi, S., Bícego, M. C., & Lotufo, P. A. (2005). A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil. Atmospheric Environment, 39(21), 3799–3811. https://doi.org/10.1016/j.atmosenv.2005.02.054spa
dc.relation.referencesByambaa, B., Yang, L., Matsuki, A., Nagato, E. G., Gankhuyag, K., Chuluunpurev, B., & Banzragch, L. (2019). Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City , Mongolia. Environmental Research and Public Health, 16. https://doi.org/10.3390/ijerph16030442spa
dc.relation.referencesCao, J. J., Lee, S. C., Ho, K. F., Fung, K., Chow, J. C., & Watson, J. G. (2006). Characterization of Roadside Fine Particulate Carbon and its Eight Fractions in Hong Kong. Aerosol and Air Quality Research, 6(2),spa
dc.relation.referencesCastañeda, D., & Mendez, J. (2018). Estimación De La Relación Entre Material Particulado Pm10 Atmosférico Y El Susceptible De Resuspensión En Algunas Vías De Bogotá. (Universidad de la Salle). Retrieved from https://pdfs.semanticscholar.org/782b/c6d17926deba7e0c70c94c2ee879abcfbe5a.pdfspa
dc.relation.referencesCastro, L. M., Pio, C. A., Harrison, R. M., & Smith, D. J. T. (1999). Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmospheric Environment, 33(17), 2771–2781. https://doi.org/10.1016/S1352-2310(98)00331-8spa
dc.relation.referencesCheng, S., Lang, J., Zhou, Y., Wang, G., & Chen, D. (2013). A new monitoring-simulation-source apportionment approach for investigating the vehicular emission contribution to the PM2.5 pollution in Beijing, China. Atmospheric Environment, 79, 308–316. https://doi.org/https://doi.org/10.1016/j.atmosenv.2013.06.043spa
dc.relation.referencesCheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., … Hao, J. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89–90, 212–221.spa
dc.relation.referencesChiang, H. L., & Lin, Y. H. (2005). Mass-size distributions of particulate sulfate, nitrate, and ammonium in a particulate matter nonattainment region in southern Taiwan. Journal of the Air and Waste Management Association, 55(4), 502–509. https://doi.org/10.1080/10473289.2005.10464640spa
dc.relation.referencesChow, J.C., Watson, J. G., Lu, Z., Lowenthal, D. H., Frazier, C. A., Solomon, P. A., … and Magliano, K. (1996). Descriptive Analysis of PM2.5 and PM10 at Regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment, 30(2079–2112).spa
dc.relation.referencesChow, Judith C., Lowenthal, D. H., Chen, L. W. A., Wang, X., & Watson, J. G. (2015). Mass reconstruction methods for PM2.5: a review. Air Quality, Atmosphere and Health, 8(3), 243–263. https://doi.org/10.1007/s11869-015-0338-3spa
dc.relation.referencesChow, Judith C, Watson, J. G., Frank, N., & Homolya, J. (1998). Guideline on speciated particulate monitoring. Desert Research Institute, (August), 291. Retrieved from epa.gov/ttnamti1/files/ambient/pm25/spec/drispec.pdfspa
dc.relation.referencesCortés, J., Cobo, M., González, C. M., Gómez, C. D., Abalos, M., & Aristizábal, B. H. (2016). Environmental variation of PCDD/Fs and dl-PCBs in two tropical Andean Colombian cities using passive samplers. Science of the Total Environment, 568, 614–623. https://doi.org/10.1016/j.scitotenv.2016.02.094spa
dc.relation.referencesCrilley, L. R., Lucarelli, F., Bloss, W. J., Harrison, R. M., Beddows, D. C., Calzolai, G., … Vecchi, R. (2017). Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environmental Pollution, 220, 766–778. https://doi.org/10.1016/j.envpol.2016.06.002spa
dc.relation.referencesCuellar, Y., Buitrago-Tello, R., & Belalcazar-Ceron, L. C. (2016). Life cycle emissions from a bus rapid transit system and comparison with other modes of passenger transportation. Ciencia, Tecnología y Futuro., 6(3), 123–134.spa
dc.relation.referencesDao, X., Wang, Z., Lv, Y., Teng, E., Zhang, L., & Wang, C. (2014). Chemical characteristics of water-soluble ions in particulate matter in three metropolitan areas in the North China Plain. PLoS ONE, 9(12), 1–16. https://doi.org/10.1371/journal.pone.0113831spa
dc.relation.referencesDeng, Q., Ou, C., Chen, J., & Xiang, Y. (2018). Particle deposition in tracheobronchial airways of an infant, child and adult. Science of the Total Environment, 612, 339–346. https://doi.org/10.1016/j.scitotenv.2017.08.240spa
dc.relation.referencesDepartamento Nacional de Planeación. (2018). Calidad del aire una prioridad de politica pública en Colombia. Retrieved from https://colaboracion.dnp.gov.co/CDT/Prensa/Presentación Calidad del Aire 15_02_2018.pdfspa
dc.relation.referencesDeshmukh, D. K., Deb, M. K., Tsai, Y. I., & Mkoma, S. L. (2010). Atmospheric ionic species in PM2.5 and PM1 aerosols in the ambient air of eastern central India. Journal of Atmospheric Chemistry, 66(1–2), 81–100. https://doi.org/10.1007/s10874-011-9194-1spa
dc.relation.referencesDeshmukh, D. K., Kawamura, K., & Deb, M. K. (2016). Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. Chemosphere, 161, 27–42. https://doi.org/10.1016/j.chemosphere.2016.06.107spa
dc.relation.referencesDeutsch, F., Vankerkom, J., Janssen, L., Lefebre, F., Mensink, C., Fierens, F., … Roekens, E. (2008). Extension of the EUROS integrated air quality model to fine particulate matter by coupling to CACM/MADRID 2. Environmental Modeling and Assessment, 13(3), 431–437. https://doi.org/10.1007/s10666-007-9100-zspa
dc.relation.referencesDing, L., Chan, T. W., Ke, F., & Wang, D. K. W. (2014). Characterization of chemical composition and concentration of fine particulate matter during a transit strike in Ottawa, Canada. Atmospheric Environment, 89, 433–442. https://doi.org/10.1016/j.atmosenv.2014.02.013spa
dc.relation.referencesDing, X. X., Kong, L. D., Du, C. T., Zhanzakova, A., Fu, H. B., Tang, X. F., … Cheng, T. T.(2017). Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai. Atmospheric Environment, 167, 625–641. https://doi.org/10.1016/j.atmosenv.2017.08.043spa
dc.relation.referencesElmes, M., & Gasparon, M. (2017). Sampling and single particle analysis for the chemical characterisation of fine atmospheric particulates: A review. Journal of Environmental Management, 202, 137–150. https://doi.org/10.1016/j.jenvman.2017.06.067spa
dc.relation.referencesEngel-cox, J., Thi, N., Oanh, K., Donkelaar, A. Van, Martin, R. V, & Zell, E. (2013). Toward the next generation of air quality monitoring : Particulate Matter. Atmospheric Environment, 80, 584–590. https://doi.org/http://dx.doi.org/10.1016/j.atmosenv.2013.08.016spa
dc.relation.referencesFlynn, S. J., Tong, Z. B., Yang, R. Y., Kamiya, H., Yu, A. B., & Chan, H. K. (2015). Computational fluid dynamics (CFD) investigation of the gas-solid flow and performance of Andersen cascade impactor. Powder Technology, 285, 128–137. https://doi.org/10.1016/j.powtec.2015.03.039spa
dc.relation.referencesFomba, K. W., Müller, K., Van Pinxteren, D., Poulain, L., Van Pinxteren, M., & Herrmann, H. (2014). Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011. Atmospheric Chemistry and Physics, 14(17), 8883–8904. https://doi.org/10.5194/acp-14-8883-2014spa
dc.relation.referencesFomba, Khanneh Wadinga, van Pinxteren, D., Müller, K., Spindler, G., & Herrmann, H. (2018). Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmospheric Environment, 176(December 2017), 60–70. https://doi.org/10.1016/j.atmosenv.2017.12.024spa
dc.relation.referencesFranco, J. F., Gidhagen, L., Morales, R., & Behrentz, E. (2019). Towards a better understanding of urban air quality management capabilities in Latin America. 102(April), 43–53.spa
dc.relation.referencesGao, Y., Lee, S. C., Huang, Y., Chow, J. C., & Watson, J. G. (2016). Chemical characterization and source apportionment of size-resolved particles in Hong Kong sub-urban area. Atmospheric Research, 170, 112–122. https://doi.org/10.1016/j.atmosres.2015.11.015spa
dc.relation.referencesGarcía-Avila, P., & Rojas, N. Y. (2016). Análisis del origen de PM 10 y PM 2.5 en Bogotá usando gráficos polares. Mutis. Editorial UTADEO, 6(2), 47–58. https://doi.org/10.21789/22561498.1150spa
dc.relation.referencesGarcía Lozada, H. M. (2009). EVALUACIÓN DEL RIESGO POR EMISIONES DE PARTÍCULAS EN FUENTES ESTACIONARIAS DE COMBUSTIÓN. ESTUDIO DE CASO: BOGOTÁ: 2006. Ingeniería e Investigación, 29, 153–154. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-56092009000300028&lng=en&tlng=es.spa
dc.relation.referencesGarcia Villgas, N., & Parra Garcés, D. M. (2017). ANÁLISIS PRELIMINAR DE LA CARACTERIZACIÓN Y CONTRIBUCIÓN DE FUENTES DE MATERIAL PARTICULADO -PM10 EN EL AIRE AMBIENTE DE BOGOTÁ. Mutis.spa
dc.relation.referencesGenga, A., Ielpo, P., Siciliano, T., & Siciliano, M. (2017). Carbonaceous particles and aerosol mass closure in PM2.5 collected in a port city. Atmospheric Research, 183, 245–254. https://doi.org/10.1016/j.atmosres.2016.08.022spa
dc.relation.referencesGolly, B., Waked, A., Weber, S., Samake, A., Jacob, V., Conil, S., … Jaffrezo, J. L. (2018). Organic markers and OC source apportionment for seasonal variations of PM2.5 at 5 rural sites in France. Atmospheric Environment, 198, 142–157. https://doi.org/10.1016/j.atmosenv.2018.10.027spa
dc.relation.referencesGuerrero, F., Alvarez-Ospina, H., Retama, A., López-Medina, A., Castro, T., & Salcedo, D. (2017). Seasonal changes in the PM 1 chemical composition north of Mexico City. Atmosfera, 30(3), 243–258. https://doi.org/10.20937/ATM.2017.30.03.05spa
dc.relation.referencesHan, Y. M., Chen, L. W. A., Huang, R. J., Chow, J. C., Watson, J. G., Ni, H. Y., … Cao, J. J. (2016). Carbonaceous aerosols in megacity Xi’an, China: Implications of thermal/optical protocols comparison. Atmospheric Environment, 132, 58–68. https://doi.org/10.1016/j.atmosenv.2016.02.023spa
dc.relation.referencesHarrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in. Environmental Science & Technology, 30(3), 825–832. https://doi.org/10.1021/es950252dspa
dc.relation.referencesHassanien, M. A., & Abdel-Latif, N. M. (2008). Polycyclic aromatic hydrocarbons in road dust over Greater Cairo, Egypt. Journal of Hazardous Materials, 151(1), 247–254. https://doi.org/10.1016/j.jhazmat.2007.05.079spa
dc.relation.referencesHernandez, L. A., & Jimenez, R. (2016). Caracterización de la Contaminación por Material Particulado en Bogotá mediante Fotometría Solar (Universidad Nacional de Colombia.Sede Bogotá). Retrieved from http://www.bdigital.unal.edu.co/56063/1/80164122.2017.pdfspa
dc.relation.referencesHerner, J. D., Ying, Q., Aw, J., Gao, O., Chang, D. P. Y., & Kleeman, M. J. (2006). Dominant Mechanisms that Shape the Airborne Particle Size and Composition Distribution in Central California. Aerosol Science and Technology, 40(10), 827–844. https://doi.org/https://doi.org/10.1080/02786820600728668spa
dc.relation.referencesHuang, X.-F., & Yu, J. Z. (2008). Size distributions of elemental carbon in a coastal urban atmosphere in South China: characteristics, evolution processes, and implications for the mixing state. Atmospheric Chemistry and Physics Discussions, 7(4), 10743–10766. https://doi.org/10.5194/acpd-7-10743-2007spa
dc.relation.referencesHuang, X., Yu, J. Z., He, L., & Yuan, Z. (2006). Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China : Size distribution characteristics , sources , and formation mechanisms. Geophysical Research, 111, 1–11. https://doi.org/10.1029/2006JD007408spa
dc.relation.referencesIPCC. (2014). Climate change 2014. Synthesis report. Versión inglés. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmentalspa
dc.relation.referencesIQAir. (2018). 2018 World Air Quality Report PM2.5 Ranking. 22.spa
dc.relation.referencesJacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821), 695–697. https://doi.org/10.1038/35055518spa
dc.relation.referencesJaved, W., Wexler, A. S., Murtaza, G., Ahmad, H. R., & Basra, S. M. A. (2015). Spatial, temporal and size distribution of particulate matter and its chemical constituents in Faisalabad, Pakistan. Atmosfera. https://doi.org/10.20937/ATM.2015.28.02.03spa
dc.relation.referencesJia, S., Zhang, Q., Sarkar, S., Mao, J., Hang, J., Chen, W., … Zhou, S. (2020). Size-segregated deposition of atmospheric elemental carbon (EC) in the human respiratory system: A case study of the Pearl River Delta, China. Science of the Total Environment, 708, 134932. https://doi.org/10.1016/j.scitotenv.2019.134932spa
dc.relation.referencesJohansson, L. S., Tullin, C., Leckner, B., & Sjövall, P. (2003). Particle emissions from biomass combustion in small combustors. Biomass and Bioenergy, 25(4), 435–446. https://doi.org/10.1016/S0961-9534(03)00036-9spa
dc.relation.referencesJohn, W., Wall, S. M., Ondo, J. L., & Winklmayr, W. (1990). Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment, 24(9), 2349–2359. https://doi.org/https://doi.org/10.1016/0960-1686(90)90327-Jspa
dc.relation.referencesKaneyasu, N., Yoshikado, H., Mizuno, T., Sakamoto, K., & Soufuku, M. (1999). Chemical forms and sources of extremely high nitrate and chloride in winter aerosol pollution in the Kanto Plain of Japan. Atmospheric Environment, 33(11), 1754–1756.spa
dc.relation.referencesKaragulian, F., Belis, C. A., Francisco, C., Dora, C., Prüss-ustün, A. M., Bonjour, S., … Amann, M. (2015). Contributions to cities ’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. https://doi.org/http://dx.doi.org/10.1016/j.atmosenv.2015.08.087spa
dc.relation.referencesKaranasiou, A. A., Sitaras, I. E., Siskos, P. A., & Eleftheriadis, K. (2007). Size distribution and sources of trace metals and n-alkanes in the Athens urban aerosol during summer. Atmospheric Environment, 41(11), 2368–2381. https://doi.org/10.1016/j.atmosenv.2006.11.006spa
dc.relation.referencesKaupp, H., & McLachlan, M. S. (2000). Distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAH) within the full size range of atmospheric particles. Atmospheric Environment, 34(1), 73–83. https://doi.org/10.1016/S1352-2310(99)00298-8spa
dc.relation.referencesKelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526. https://doi.org/10.1016/j.atmosenv.2012.06.039spa
dc.relation.referencesKeshtkar, H., & Ashbaugh, L. L. (2007). Size distribution of polycyclic aromatic hydrocarbon particulate emission factors from agricultural burning. Atmospheric Environment, 41(13), 2729–2739. https://doi.org/10.1016/j.atmosenv.2006.11.043spa
dc.relation.referencesKim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005spa
dc.relation.referencesLan, Z. J., Chen, D. L., Li, X., Huang, X. F., He, L. Y., Deng, Y. G., … Hu, M. (2011). Modal characteristics of carbonaceous aerosol size distribution in an urban atmosphere of South China. Atmospheric Research, 100(1), 51–60. https://doi.org/10.1016/j.atmosres.2010.12.022spa
dc.relation.referencesLee, J. Y., Lane, D. A., Heo, J. B., Yi, S. M., & Kim, Y. P. (2012). Quantification and seasonal pattern of atmospheric reaction products of gas phase PAHs in PM2.5. Atmospheric Environment, 55, 17–25. https://doi.org/10.1016/j.atmosenv.2012.03.007spa
dc.relation.referencesLeoni, C., Pokorná, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y., … Hopke, P. K. (2018). Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environmental Pollution, 234, 145–154. https://doi.org/10.1016/j.envpol.2017.10.097spa
dc.relation.referencesLi, J., Chen, H., Li, X., Wang, M., Zhang, X., Cao, J., … Yao, M. (2019). Differing toxicity of ambient particulate matter ( PM ) in global cities. 212(October 2018), 305–315.spa
dc.relation.referencesLi, Q., Yang, Z., Li, X., Ding, S., & Du, F. (2019). Seasonal characteristics of sulfate and nitrate in size-segregated particles in ammonia-poor and-rich atmospheres in Chengdu, Southwest China. Aerosol and Air Quality Research, 19(12), 2697–2706. https://doi.org/10.4209/aaqr.2019.07.0368spa
dc.relation.referencesLippmann, M., Chen, L.-C., Gordon, T., Ito, K., & Thurston, G. D. (2013). National Particle Component Toxicity (NPACT) Initiative: integrated epidemiologic and toxicologic studies of the health effects of particulate matter components. In Research report (Health Effects Institute). Boston, Massachusettsspa
dc.relation.referencesLiu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., & Wang, Y. (2017). Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere, 183, 119–131. https://doi.org/10.1016/j.chemosphere.2017.05.095spa
dc.relation.referencesLong, S., Zeng, J., Li, Y., Bao, L., Cao, L., Liu, K., … Zhao, Y. (2014). Characteristics of secondary inorganic aerosol and sulfate species in size-fractionated aerosol particles in Shanghai. Journal of Environmental Sciences (China), 26(5), 1040–1051. https://doi.org/10.1016/S1001-0742(13)60521-5spa
dc.relation.referencesMajoral, C., Le Pape, A., Diot, P., & Vecellio, L. (2006). Comparison of various methods for processing cascade impactor data. Aerosol Science and Technology, 40(9), 672–682. https://doi.org/10.1080/02786820600796582spa
dc.relation.referencesMalandrino, M., Casazza, M., Abollino, O., Minero, C., & Maurino, V. (2016). Size resolved metal distribution in the PM matter of the city of Turin (Italy). Chemosphere, 147, 477–489. https://doi.org/10.1016/j.chemosphere.2015.12.089spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo sostenible. Resolución No 2254 (2017). , (2017).spa
dc.relation.referencesMohamed, G. E. T. (2012). Physical and Chemical Composition of Particulate Pollutants in an Urban Area of Cardiff , Wales. Retrieved from https://repository.cardiffmet.ac.uk/handle/10369/4738spa
dc.relation.referencesMontoya Zubiria, A. F., & Moreno Melo, J. A. (2009). EVALUACIÓN DE LA COMPOSICIÓN DE METALES PESADOS EN DIFERENTES FUENTES EN LA CIUDAD DE BOGOTÁ Y SU ASOCIACIÓN FRENTE A LA CALIDAD DE AIRE. Universidad de la Sallespa
dc.relation.referencesMoreno Melo, J. A., & Montoya Zubiria, A. F. (2009). EVALUACIÓN DE LA COMPOSICIÓN DE METALES PESADOS EN DIFERENTES FUENTES EN LA CIUDAD DE BOGOTÁ Y SU ASOCIACIÓN FRENTE A LA CALIDAD DE AIRE. Universidad de la Salle.spa
dc.relation.referencesMoustafa, M., Mohamed, A., Ahmed, A. R., & Nazmy, H. (2014). Mass size distributions of elemental aerosols in industrial area. Journal of Advanced Research, 6(6), 827–832. https://doi.org/10.1016/j.jare.2014.06.006spa
dc.relation.referencesMüller, K., Spindler, G., Van Pinxteren, D., Gnauk, T., Iinuma, Y., Brüggemann, E., & Herrmann, H. (2012). Ultrafine and fine particles in the atmosphere - Sampling, chemical characterization and sources. Chemie-Ingenieur-Technik, 84(7), 1130–1136. https://doi.org/10.1002/cite.201100208spa
dc.relation.referencesMuránszky, G., Ovari, M., Virág, I., Csiba, P., Dobai, R., & Záray, G. (2011). Chemical characterization of PM10 fractions of urban aerosol. Microchemical Journal, 98(1), 1–10. https://doi.org/10.1016/j.microc.2010.10.002spa
dc.relation.referencesMurillo-Tovar, M., Barradas-Gimate, A., Arias-Montoya, M., & Saldarriaga-Noreña, H. (2018). Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2.5 in Guadalajara, Mexico: Environmental Levels, Health Risks and Possible Sources. Environments, 5(5), 62. https://doi.org/10.3390/environments5050062spa
dc.relation.referencesNeusiiss, C., Pelzing, M., Plewka, A., & Herrmann, H. (2000). A new analytical approach for size-resolved speciation of organic compounds in atmospheric aerosol particles : results. 105, 4513–4527spa
dc.relation.referencesNy, M. T., & Lee, B. K. (2011). Size distribution of airborne particulate matter and associated metallic elements in an urban area of an industrial city in Korea. Aerosol and Air Quality Research, 11(6), 643–653. https://doi.org/10.4209/aaqr.2010.10.0090spa
dc.relation.referencesOberdörster, G., Stone, V., & Donaldson, K. (2007). Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 1(1), 2–25. https://doi.org/10.1080/17435390701314761spa
dc.relation.referencesONU. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Asamblea General, 15900, 40. Retrieved from http://www.un.org/ga/search/view_doc.asp?symbol=A/70/L.1&Lang=Sspa
dc.relation.referencesPachon, J. E. (2017). Medición y predicción de emisiones de especies contaminantes y sus impactos en la atmósfera. 80. Retrieved from https://escuela-ids.itm.edu.co/calidad-del-aire/Memorias-EIDS/4-Presentacion-profesor-JORGE-EDUARDO-PACHON-QUINCHE.pdfspa
dc.relation.referencesPachon, J. E., Behrentz, E., & Rojas, N. Y. (2007). Challenges in Bogota air quality: Policies and technology. 100th Annual Conference and Exhibition of the Air and Waste Management Association 2007, ACE 2007, 1, 325–329. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0 44649117423&partnerID=40&md5=23c32c879728fe1e7df7c48f9242de3spa
dc.relation.referencesPachon, J. E., & Fundación Gas Natural Fenosa (Naturgy). (2018). Caso 7. La experiencia en Bogotá. In F. G. N. Fenosa (Ed.), La calidad del aire en las ciudades (Primera Ed, pp. 267–288). Madrid, España: Naturgy Energy Group S.Aspa
dc.relation.referencesPachon, J. E., Russell, A. G., Sarmiento, H., & Galvis, B. R. (2008). Identification of secondary aerosol formation in Bogota: a preliminary study. Proceedings of 101st AWMA Annual Conference. Portland, USA.spa
dc.relation.referencesPachón, J. E., & Vela, H. S. (2008). Análisis espacio-temporal de la concentración de metales pesados en la localidad de Puente Aranda de Bogotá-Colombia Heavy metal determination and source emission identification in an industrial location of Bogotá-Colombia. Marzo Rev. Fac. Ing. Univ. Antioquia N.°, 43, 120–133.spa
dc.relation.referencesPachon, J., Weber, R. J., Zhang, X., Mulholland, J. A., & Russell, A. G. (2013). Revising the use of potassium (K) in the source apportionment of PM 2.5. Atmospheric Pollution Research, 4(1), 14–21. https://doi.org/10.5094/APR.2013.002spa
dc.relation.referencesPark, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., … Park, K. (2018). Differential toxicities of fine particulate matters from various sources. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-35398-0spa
dc.relation.referencesPaw-Armart, I., & Yoshizumi, K. (2013). Size Distributions of Atmospheric Aerosol Compositions in Saitama, Japan. Open Journal of Air Pollution, 02(01), 1–6. https://doi.org/10.4236/ojap.2013.21001spa
dc.relation.referencesPeñaloza P, N. E., & Rojas, N. Y. (2010). DISTRIBUCIÓN ESPACIAL Y TEMPORAL DEL INVENTARIO DE EMISIONES PROVENIENTES DE LAS FUENTES MÓVILES Y FIJAS DE LA CIUDAD DE BOGOTÁ, D.C. Universidad Nacional de Colombia.spa
dc.relation.referencesPennanen, A. S., Sillanpää, M., Hillamo, R., Quass, U., John, A. C., Branis, M., … Salonen, R. O. (2007). Performance of a high-volume cascade impactor in six European urban environments: Mass measurement and chemical characterization of size-segregated particulate samples. Science of the Total Environment, 374(2–3), 297–310. https://doi.org/10.1016/j.scitotenv.2007.01.002spa
dc.relation.referencesPereira, G. M., De Oliveira Alves, N., Caumo, S. E. S., Soares, S., Teinilä, K., Custódio, D., … Vasconcellos, P. C. (2017). Chemical composition of aerosol in São Paulo, Brazil: influence of the transport of pollutants. Air Quality, Atmosphere and Health, 10(4), 457–468. https://doi.org/10.1007/s11869-016-0437-9spa
dc.relation.referencesPio, C., Cerqueira, M., Harrison, R. M., Nunes, T., Mirante, F., Alves, C., … Matos, M. (2011). OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmospheric Environment, 45(34), 6121–6132. https://doi.org/10.1016/j.atmosenv.2011.08.045spa
dc.relation.referencesPokorná, P., Hovorka, J., Klán, M., & Hopke, P. K. (2015). Source apportionment of size resolved particulate matter at a European air pollution hot spot. Science of the Total Environment, 502, 172–183. https://doi.org/10.1016/j.scitotenv.2014.09.021spa
dc.relation.referencesPooltawee, J., Pimpunchat, B., & Junyapoon, S. (2017). Size distribution, characterization and risk assessment of particle-bound polycyclic aromatic hydrocarbons during haze periods in Phayao Province, northern Thailand. Air Quality, Atmosphere and Health, 10(9), 1097–1112. https://doi.org/10.1007/s11869-017-0497-5spa
dc.relation.referencesQuerol, X. (2018). Contaminación y calidad del aire urbano. Unas primeras cuestiones de partida. In Fundación Gas Natural Fenosa (Ed.), La calidad del aire en las ciudades (Fundación, pp. 15–28).spa
dc.relation.referencesQuerol, X., Alastuey, A., Ruiz, C. R., Artiñano, B., Hansson, H. C., Harrison, R. M., … Schneider, J. (2004). Speciation and origin of PM10 and PM2.5 in selected European cities. Atmospheric Environment, 38(38), 6547–6555. https://doi.org/10.1016/j.atmosenv.2004.08.037spa
dc.relation.referencesRamírez, O., Sánchez de la Campa, A. M., Amato, F., Catacolí, R. A., Rojas, N. Y., & de la Rosa, J. (2018). Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045spa
dc.relation.referencesRamírez, O., Sánchez de la Campa, A. M., & de la Rosa, J. (2018). Characteristics and temporal variations of organic and elemental carbon aerosols in a high–altitude, tropical Latin American megacity. Atmospheric Research, 210(April), 110–122. https://doi.org/10.1016/j.atmosres.2018.04.006spa
dc.relation.referencesRivera, J., & Behrentz, E. (2009). Identificación de fuentes de contaminación por material partuclado en Bogotá. Universidad de los Andes.spa
dc.relation.referencesRobinson, A. L., Subramanian, R., Donahue, N. M., Bernando - Bricker, A., & Rogge, W. F. (2006). Source Apportionment of Molecular Markers and Organic Aerosols. 1 . Polycyclic Aromatic Hydrocarbons and Methodology for Data Visualization. Environmental Science & Technology, 40, 7803–7810.spa
dc.relation.referencesRojas, N. Y. (2007). Aire y problemas ambientales en Bogotá. Observatorio Ambeintal de Bogotá, 98–124.spa
dc.relation.referencesRuiz, C. F. (2006). Caracterización Del Material Particulado En Las Principales Vías Del Transporte Público Las Principales Vías Del Transporte Público.spa
dc.relation.referencesSaffari, A., Daher, N., Shafer, M. M., Schauer, J. J., & Sioutas, C. (2013). Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environmental Pollution, 181, 14–23. https://doi.org/10.1016/j.envpol.2013.06.001spa
dc.relation.referencesSecretaria de Ambiente Quito. (2011). Informe Anual 2011. Calidad del aire Quito.spa
dc.relation.referencesSecretaría del Medio Ambiente de la Ciudad México. (2017). Calidad del aire en la Ciudad de Méxicospa
dc.relation.referencesSecretaría Distrital de Ambiente Bogotá. (2019). Informe Anual de Calidad de Aire 2018.spa
dc.relation.referencesSecretaria Distrital de Ambiente de Bogotá. (2010). Plan decenal de descontaminación del aire de Bogotá. Retrieved from http://ambientebogota.gov.co/plan-decenal-dedescontaminacion-%0Adel-aire-para-bogota.spa
dc.relation.referencesSecretaria Distrital de Ambiente de Bogotá. (2017). Red de monitoreo de calidad del aire de Bogotá. Retrieved from http://ambientebogota.gov.co/red-de-calidad-delaire.spa
dc.relation.referencesSecretaria Distritral de Ambiente. (2018a). Informe Mensual de Calidad del Aire de Bogotá. Marzo 2018spa
dc.relation.referencesSecretaria Distritral de Ambiente. (2018b). Informe Mensual de Calidad del Aire de Bogotá. Mayo 2018.spa
dc.relation.referencesSefair, J. A., Espinosa, M., Behrentz, E., & Medaglia, A. L. (2019). Optimization model for urban air quality policy design: A case study in Latin America. Computers, Environment and Urban Systems, 78(March), 101385. https://doi.org/10.1016/j.compenvurbsys.2019.101385spa
dc.relation.referencesSeinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: From air pollution to climate change (Willey, Ed.).spa
dc.relation.referencesShah, S. D., Cocker, D. R., Miller, J. W., & Norbeck, J. M. (2004). Emission Rates of Particulate Matter and Elemental and Organic Carbon from In-Use Diesel Engines. Environmental Science & Technology, 38(9). https://doi.org/10.1021/es0350583spa
dc.relation.referencesSicre, M. ., J.C, M., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). ALIPHATIC AND AROMATIC HYDROCARBONS IN DIFFERENT SIZED AEROSOLS OVER THE MEDITERRANEAN SEA: OCCURRENCE AND ORIGIN. Atmospheric Environment (1967), 21(10), 2247–2259. https://doi.org/https://doi.org/10.1016/0004-6981(87)90356-8spa
dc.relation.referencesSingh, A., Rastogi, N., Patel, A., & Singh, D. (2016). Seasonality in size-segregated ionic composition of ambient particulate pollutants over the Indo-Gangetic Plain: Source apportionment using PMF. Environmental Pollution, 219, 906–915. https://doi.org/10.1016/j.envpol.2016.09.010spa
dc.relation.referencesSpindler, G., Brüggemann, E., Gnauk, T., Grüner, A., Müller, K., & Herrmann, H. (2010). A four-year size-segregated characterization study of particles PM10, PM2.5 and PM1 depending on air mass origin at Melpitz. Atmospheric Environment, 44(2), 164–173. https://doi.org/10.1016/j.atmosenv.2009.10.015spa
dc.relation.referencesSpindler, Gerald, Rodger, A., Poulain, L., Muller, K., Birmili, W., Tuch, T., … Herrmann, H. (2014). OC and EC analyzed in PM by thermographic or thermo-optical method : A two year comparison for the central European site. Retrieved February 23, 2020, from Soot Aerosols- Workshop on Measurement methods and Perspectives. website: https://www.wmo-gaw-wcc-aerosol-physics.org/files/Spindler.pdspa
dc.relation.referencesStröher, G. L., Poppi, N. R., Raposo, J. L., & Gomes de Souza, J. B. (2007). Determination of polycyclic aromatic hydrocarbons by gas chromatography - ion trap tandem mass spectrometry and source identifications by methods of diagnostic ratio in the ambient air of Campo Grande, Brazil. Microchemical Journal, 86(1), 112–118. https://doi.org/10.1016/j.microc.2006.12.003spa
dc.relation.referencesTao, Y., Yin, Z., Ye, X., Ma, Z., & Chen, J. (2014). Size distribution of water-soluble inorganic ions in urban aerosols in Shanghai. Atmospheric Pollution Research, 5(4), 639–647. https://doi.org/10.5094/APR.2014.073spa
dc.relation.referencesTian, S. L., Pan, Y. P., & Wang, Y. S. (2016). Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes. Atmospheric Chemistry and Physics, 16(1), 1–19. https://doi.org/10.5194/acp-16-1-2016spa
dc.relation.referencesTisch Environmental, I. (1999). OPERATIONS MANUAL. Model 20-800 Ambient Cascade Impactor. 7610(877), 26.spa
dc.relation.referencesTurpin, B. J., & Lim, H. (2001). Species Contributions to PM2 . 5 Mass Concentrations : Revisiting Common Assumptions for Estimating Organic Mass Species Contributions to PM2 . 5 Mass Concentrations : Revisiting Common Assumptions for Estimating Organic Mass. 6826.spa
dc.relation.referencesVan Drooge, B. L., Prats, R. M., Reche, C., Minguillón, M. C., Querol, X., Grimalt, J. O., & Moreno, T. (2018). Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona. Science of the Total Environment, 642, 148–154. https://doi.org/10.1016/j.scitotenv.2018.06.032spa
dc.relation.referencesVan Pinxteren, D., Brüggemann, E., Gnauk, T., Iinuma, Y., Müller, K., Nowak, A., … Herrmann, H. (2009). Size and time resolved chemical particle characterization during carebeijing-2006: Different pollution regimes and diurnal profiles. Journal of Geophysical Research Atmospheres, 114(9). https://doi.org/10.1029/2008JD010890spa
dc.relation.referencesVargas, F. A., & Rojas, N. Y. (2010, August). Composición química y reconstrucción másica del material particulado suspendido en el aire de Bogotá Chemical composition and mass closure for airborne particulate matter in Bogotá. Ingeniería E Investigación. Repositorio Institucional Universidad Nacional de Colombia. Bdigital., 30(2), 105–115.spa
dc.relation.referencesVargas, F. A., Rojas, N. Y., Pachon, J. E., & Russell, A. G. (2012). PM10 characterization and source apportionment at two residential areas in Bogota. Atmospheric Pollution Research, 3(1), 72–80. https://doi.org/10.5094/APR.2012.006spa
dc.relation.referencesVasconcellos, P. C., Souza, D. Z., Ávila, S. G., Araújo, M. P., Naoto, E., Nascimento, K. H., … Behrentz, E. (2011). Comparative study of the atmospheric chemical composition of three South American cities. Atmospheric Environment, 45(32), 5770–5777. https://doi.org/10.1016/j.atmosenv.2011.07.018spa
dc.relation.referencesVecchi, R., Bernardoni, V., Valentini, S., Piazzalunga, A., Fermo, P., & Valli, G. (2018). Assessment of light extinction at a European polluted urban area during wintertime: Impact of PM1 composition and sources. Environmental Pollution, 233, 679–689. https://doi.org/10.1016/j.envpol.2017.10.059spa
dc.relation.referencesViana Rodriguez, M. del M. (2003). NIVELES, COMPOSICIÓN Y ORIGEN DEL MATERIAL PARTICULADO ATMOSFÉRICO EN LOS SECTORES NORTE Y ESTE DE LA PENÍNSULA IBÉRICA Y CANARIAS (Universitat de Barcelona). Retrieved from http://digital.csic.es/bitstream/10261/27476/1/Viana_Rodriguez_1.pdfspa
dc.relation.referencesVillalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2015). Science of the Total Environment Chemical speciation and source apportionment of fi ne particulate matter. Science of the Total Environment, The, 512–513, 133–142. https://doi.org/10.1016/j.scitotenv.2015.01.006spa
dc.relation.referencesVillalobos, A. M., Barraza, F., & Schauer, J. J. (2017). Wood burning pollution in southern Chile : PM 2.5 source apportionment using CMB and molecular markers *. Environmental Pollution, 225, 514–523. https://doi.org/10.1016/j.envpol.2017.02.069spa
dc.relation.referencesWan, X., Kang, S., Xin, J., Liu, B., Wen, T., Wang, P., … Cong, Z. (2016). Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau. Atmospheric Research, 174–175, 142–150. https://doi.org/10.1016/j.atmosres.2016.02.005spa
dc.relation.referencesWang, H. L., Zhu, B., An, J. L., Duan, Q., Zou, J. N., & Shen, L. J. (2014). Size distribution and characterization of OC and EC in atmospheric aerosols during the Asian youth games of Nanjing, China. Environmental Science, 35.spa
dc.relation.referencesWang, H., Zhu, B., Shen, L., Xu, H., An, J., Xue, G., & Cao, J. (2015). Water-soluble ions in atmospheric aerosols measured in five sites in the Yangtze River Delta, China: Size-fractionated, seasonal variations and sources. Atmospheric Environment, 123, 370–379. https://doi.org/10.1016/j.atmosenv.2015.05.070spa
dc.relation.referencesWang, Jiao, Zhang, J. sheng, Liu, Z. jun, Wu, J. hui, Zhang, Y. fen, Feng, Y. chang, … Zhou, L. dong. (2017). Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China. Atmospheric Research, 187, 138–146. https://doi.org/10.1016/j.atmosres.2016.12.004spa
dc.relation.referencesWang, Jiao, Zhou, M., Liu, B. shuang, Wu, J. hui, Peng, X., Zhang, Y. fen, … Zhu, T. (2016). Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin. Environmental Pollution, 219, 982–992. https://doi.org/10.1016/j.envpol.2016.10.069spa
dc.relation.referencesWang, Jingzhi, Hang Ho, S. S., Huang, R., Gao, M., Liu, S., Zhao, S., … Han, Y. (2016). Characterization of parent and oxygenated-polycyclic aromatic hydrocarbons (PAHs) in Xi’an, China during heating period: An investigation of spatial distribution and transformation. Chemosphere, 159(97), 367–377. https://doi.org/10.1016/j.chemosphere.2016.06.033spa
dc.relation.referencesWatson, J. G., Chow, J. C., & Houck, J. E. (2001). PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere, 43(8), 1141–1151. https://doi.org/https://doi.org/10.1016/S0045-6535(00)00171-5spa
dc.relation.referencesWedding, J. B., McFarland, A. R., & Cermak, J. E. (1977). Large Particle Collection Characteristics of Ambient Aerosol Samplers. Environmental Science and Technology, 11(4), 387–390. https://doi.org/10.1021/es60127a005spa
dc.relation.referencesWhitby, K. T. (1978). The physical characteristics of sulfur aerosols. Atmospheric Environment, 12, 153–159. https://doi.org/https://doi.org/10.1016/0004-6981(78)90196-8spa
dc.relation.referencesWorld Health Organization (WHO). (2000). Air Quality Guidelines for Europe. Second Edition. Copenhagen.spa
dc.relation.referencesWorld Health Organization (WHO). (2005). Air quality guidelines for particles matter, ozone, nitrogen dioxide and sulfur dioxide. Air Quality Guidelines. https://doi.org/https://doi.org/10.1016/j.atmosenv.2spa
dc.relation.referencesWorld Health Organization (WHO). (2007). Health Effects of Ambient Particulate Matter. Journal of the Korean Medical Association, 50(2), 175. https://doi.org/10.5124/jkma.2007.50.2.175spa
dc.relation.referencesWorld Health Organization (WHO). (2014). Health relevance of particulate matter from various sources. Beilstein Journal of Nanotechnology, 5(1), 1590–1602. https://doi.org/EUR/07/5067587spa
dc.relation.referencesWorld Health Organization (WHO). (2016). Ambient air pollution: A global assessment of exposure and burden of disease.spa
dc.relation.referencesWorld Health Organization (WHO). (2018a). Air pollution and child health: Prescribing clean air. Retrieved from https://www.who.int/ceh/publications/air-pollution-child-health/en/spa
dc.relation.referencesWorld Health Organization (WHO). (2018b). Ambient (outdoor) air quality database, by country and city. Retrieved from https://www.who.int/airpollution/data/cities/en/spa
dc.relation.referencesWu, T., & Boor, B. E. (2020). Urban Aerosol Size Distributions: A Global Perspective. Atmospheric Chemistry and Physics, (March). https://doi.org/10.5194/acp-2020-92spa
dc.relation.referencesWu, X., Vu, T. V., Shi, Z., Harrison, R. M., Liu, D., & Cen, K. (2018). Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmospheric Environment, 189(January), 187–212. https://doi.org/10.1016/j.atmosenv.2018.06.025spa
dc.relation.referencesYamasoe, M., Artaxo, P., Miguel, A. H., & Allen, A. G. (2000). Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: water-soluble species and trace elements. Atmospheric Environment, 34(10). https://doi.org/https://doi.org/10.1016/S1352-2310(99)00329-5spa
dc.relation.referencesYang, M., Chu, C., Bloom, M. S., Li, S., Chen, G., Heinrich, J., … Dong, G. H. (2018). Is smaller worse? New insights about associations of PM 1 and respiratory health in children and adolescents. Environment International, 120(May), 516–524. https://doi.org/10.1016/j.envint.2018.08.027spa
dc.relation.referencesYang, Y., Zhou, R., Yu, Y., Yan, Y., Liu, Y., Di, Y., … Zhang, W. (2017). Size-resolved aerosol water-soluble ions at a regional background station of Beijing, Tianjin, and Hebei, North China. Journal of Environmental Sciences (China), 55, 146–156. https://doi.org/10.1016/j.jes.2016.07.012spa
dc.relation.referencesYassaa, N., Meklati, B. Y., Cecinato, A., & Marino, F. (2001). Particulate n -alkanes , n -alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City Area. 35.spa
dc.relation.referencesZapata Mora, C. (2020). Hidrocarburos aromáticos policíclicos en el aire ambiente de manizales. Universidad Nacional de Colombia. Sede Manizales.spa
dc.relation.referencesZarate, E., Belalcazar, L. C., Clappier, A., & Manzi, V. (2007). Air quality modelling over Bogota , Colombia : Combined techniques to estimate and evaluate emission inventories. 41, 6302–6318. https://doi.org/10.1016/j.atmosenv.2007.03.011spa
dc.relation.referencesZhang, L., Yang, L., Zhou, Q., Zhang, X., Xing, W., Wei, Y., … Tang, N. (2020). Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. Journal of Environmental Sciences (China), 88, 370–384. https://doi.org/10.1016/j.jes.2019.09.007spa
dc.relation.referencesZhang, Y., Lang, J., Cheng, S., Li, S., Zhou, Y., Chen, D., … Wang, H. (2018). Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Science of the Total Environment, 630, 72–82. https://doi.org/10.1016/j.scitotenv.2018.02.151spa
dc.relation.referencesZhao, J., Zhang, F., Chen, J., & Xu, Y. (2010). Characterization of polycyclic aromatic hydrocarbons and gas/particle partitioning in a coastal city, Xiamen, southeast China. Environmental Sciences, 22(7), 1014–1022.spa
dc.relation.referencesZhao, J., Zhang, F., Xu, Y., & Chen, J. (2011). Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmospheric Research, 99(3–4), 546–562. https://doi.org/10.1016/j.atmosres.2010.12.017spa
dc.relation.referencesZhao, T., Yang, L., Huang, Q., Zhang, Y., Bie, S., Li, J., … Wang, W. (2020). PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitrated-PAHs and oxygenated-PAHs) in a road tunnel located in Qingdao, China: Characteristics, sources and emission factors. Science of the Total Environment, 720, 137521. https://doi.org/10.1016/j.scitotenv.2020.137521spa
dc.relation.referencesZhao, Y., & Gao, Y. (2008). Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast. Atmospheric Environment, 42(18), 4063–4078. https://doi.org/10.1016/j.atmosenv.2008.01.032spa
dc.relation.referencesZhou, J., Xing, Z., Deng, J., & Du, K. (2016). Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmospheric Environment, 135, 20–30. https://doi.org/10.1016/j.atmosenv.2016.03.054spa
dc.relation.referencesZhuang, H., Chan, C. K., Fang, M., & Wexler, A. S. (1999). Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment, 33(6), 843–853. https://doi.org/10.1016/S1352-2310(98)00305-7spa
dc.relation.referencesAgency for Toxic Substances and Disease Registry (ATSDR). (2012). Toxicity of Polycyclic Aromatic Hydrocarbons (PAH).spa
dc.relation.referencesAlcaldía Local Fontibón, & Alcaldía Mayor Bogotá D.C. (2017). Plan Ambiental Localidad de Fontibón. Bogotá.spa
dc.relation.referencesAlcaldía Mayor Bogotá D.C. (2018a). Análisis de condiciones, calidad de vida, salud y enfermedad - 2018 Fontibon.spa
dc.relation.referencesAlcaldía Mayor Bogotá D.C. (2018b). Análisis demográfico y proyecciones poblacionales de Bogotá. Alcaldia Mayor de Bogotá D.C., 109. Retrieved from http://www.sdp.gov.co/sites/default/files/demografia_proyecciones_2017_0_0.pdfspa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalParticulate mattereng
dc.subject.proposalMaterial particuladospa
dc.subject.proposalCaracterización químicaspa
dc.subject.proposalChemical compositioneng
dc.subject.proposalDistribución de tamañospa
dc.subject.proposalSize distributioneng
dc.subject.proposalContribución de fuentesspa
dc.subject.proposalSource appointmenteng
dc.titleEvaluación del aporte de fuentes al material particulado en la zona urbana de la localidad de Fontibón, Bogotá teniendo en cuenta la caracterización química en diferentes distribuciones de tamañospa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1085306830.2020.pdf
Tamaño:
17.88 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: