Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá
dc.contributor.advisor | Rojas Roa, Néstor Yezid | spa |
dc.contributor.advisor | Mateus Fontecha, Lady | spa |
dc.contributor.author | Blanco Fajardo, Karen Johanna | spa |
dc.contributor.researchgroup | Calidad del Aire | spa |
dc.coverage.city | Bogotá | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Cundinamarca | spa |
dc.coverage.tgn | http://vocab.getty.edu/page/tgn/1000838 | |
dc.date.accessioned | 2024-05-06T20:02:14Z | |
dc.date.available | 2024-05-06T20:02:14Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Este estudio buscó realizar un ejercicio pionero en el país en la medición en aire ambiente de la concentración de número de partículas (CNP) y la caracterización de la distribución de tamaño (PNSD) con el equipo contador de partículas ELPI+ en dos estaciones de monitoreo de calidad del aire del de Bogotá, correspondientes a San Cristóbal (estación de fondo urbano) y Las Ferias (estación de tráfico vehicular), con el fin de identificar las concentraciones y tamaños de las partículas a las que están expuestos los ciudadanos. Estas mediciones se realizaron en tres campañas en diferentes fechas entre junio y octubre de 2017. Los resultados obtenidos correspondieron a promedios horarios de concentración de partículas entre diámetros medios desde 0.016 µm hasta 5.3 µm. Estos resultados en conjunto con la medición de variables meteorológicas y concentraciones másica de contaminantes criterio de las estaciones de calidad del aire permitieron hacer análisis de proveniencia de contaminantes, correlaciones estadísticas y análisis de componentes principales (PCA). (Texto tomado de la fuente). | spa |
dc.description.abstract | This study sought to carry out a pioneering exercise in the country about measurement of particle number concentration (PNC) and the characterization of the particle number size distribution (PNSD) with particle counter equipment ELPI+ in two stations of air quality monitoring of Bogotá, corresponding to San Cristóbal (urban background station) and Las Ferias (vehicular traffic station), in order to identify the concentrations and sizes of the particles to which citizens are exposed. These measurements were made in three campaigns on different dates between June and October 2017. The results obtained corresponded to hourly averages of particle concentration between average diameters from 0.016 µm to 5.3 µm. These results, combined with metrological variables measurement and criteria pollutants concentrations from the air quality stations, allowed analysis of the origin of pollutants, statistical correlations, and principal components analysis (PCA). | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Ambiental | spa |
dc.description.researcharea | Calidad del aire | spa |
dc.format.extent | xiv, 88 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86034 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental | spa |
dc.relation.references | Agudelo-Castañeda, D. M., Teixeira, E. C., Braga, M., Rolim, S. B. A., Silva, L. F. O., Beddows, D. C. S., Harrison, R. M., & Querol, X. (2019). Cluster analysis of urban ultrafine particles size distributions. Atmospheric Pollution Research, 10(1), 45–52. https://doi.org/10.1016/j.apr.2018.06.006 | spa |
dc.relation.references | Avila Prada, L. (2016). Determinación del nivel de exposición de viajeros pendulares a partículas ultrafinas según el modo de transporte en la ciudad de Bogotá. Universidad Nacional de Colombia. | spa |
dc.relation.references | Beddows, D. C. S., Harrison, R. M., Green, D. C., & Fuller, G. W. (2015). Receptor modelling of both particle composition and size distribution from a background site in London, UK. Atmospheric Chemistry and Physics, 15(17), 10107–10125. https://doi.org/10.5194/acp-15-10107-2015 | spa |
dc.relation.references | Chan, T. W., & Mozurkewich, M. (2007). Atmospheric Chemistry and Physics Application of absolute principal component analysis to size distribution data: identification of particle origins. En Atmos. Chem. Phys (Vol. 7). www.atmos-chem-phys.net/7/887/2007/ | spa |
dc.relation.references | Colbeck, I., & Lazaridis, M. (2014b). Aerosol Science: Technology and Application. | spa |
dc.relation.references | Dekati Ltd. (2011). ELPI Plus User Manual (1.12). | spa |
dc.relation.references | Diez, D. M., Barr, C. D., & Cetinkaya-Rundel, M. (2015). OpenIntro Statistics (4a ed.). Duke University. | spa |
dc.relation.references | España, G. DE, & Pindado Ma Pérez S García, O. R. (2013). Informes Técnicos Ciemat Desarrollo del Modelo de Factorización de la Matriz Positiva (PMF) al Estudio Anual de la Composición Orgánica del PM2.5 en Chapinería. https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/060/44060243.pdf | spa |
dc.relation.references | Finlayson-Pitts, B. J., & Pitts, J. N. (1999). Chemistry of the Upper and Lower Atmosphere (1a ed.). Academic Press. | spa |
dc.relation.references | Friedlander, S. K. (2000). Smoke, dust, and haze. Fundamentals of Aerosols Dynamics (2a ed.). Oxford University Press. | spa |
dc.relation.references | Fults, S. L., Massmann, A. K., Montecinos, A., Andrews, E., Kingsmill, D. E., Minder, J. R., Garreaud, R. D., & Snider, J. R. (2019). Wintertime aerosol measurements during the Chilean Coastal Orographic Precipitation Experiment. Atmospheric Chemistry and Physics, 19(19), 12377–12396. https://doi.org/10.5194/acp-19-12377-2019 | spa |
dc.relation.references | Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., & Apte, J. S. (2020). Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study. Atmospheric Chemistry and Physics, 20(14), 8533–8549. https://doi.org/10.5194/acp-20-8533-2020 | spa |
dc.relation.references | Guarieiro, L. L. N., & Guarieiro, A. L. N. (2015). Impact of the Biofuels Burning on Particle Emissions from the Vehicular Exhaust. En Biofuels - Status and Perspective. InTech. https://doi.org/10.5772/60110 | spa |
dc.relation.references | Hama, S. M. L., Cordell, R. L., Kos, G. P. A., Weijers, E. P., & Monks, P. S. (2017). Sub-micron particle number size distribution characteristics at two urban locations in Leicester. Atmospheric Research, 194, 1–16. https://doi.org/10.1016/j.atmosres.2017.04.021 | spa |
dc.relation.references | Harrison, R. M., & Jones, M. (1995). The chemical composition of airborne particles in the UK atmosphere. Science of The Total Environment, 168(3), 195–214. https://doi.org/10.1016/0048-9697(95)04536-A | spa |
dc.relation.references | Hopke, P. K. (2003). Recent developments in receptor modeling. Journal of Chemometrics, 17(5), 255–265. https://doi.org/10.1002/cem.796 | spa |
dc.relation.references | IDEAM. (2021). Informe de Calidad del Aire de Colombia. | spa |
dc.relation.references | Jain, S., Sharma, S. K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T. K., Gupta, A., Gupta, N. C., & Sharma, C. (2017). Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research, 24(17), 14637–14656. https://doi.org/10.1007/s11356-017-8925-5 | spa |
dc.relation.references | Jancsek-Turóczi, B., Hoffer, A., Nyírö-Kósa, I., & Gelencsér, A. (2013). Sampling and characterization of resuspended and respirable road dust. Journal of Aerosol Science, 65, 69–76. https://doi.org/10.1016/j.jaerosci.2013.07.006 | spa |
dc.relation.references | Jones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of The Total Environment, 326(1–3), 151–180. https://doi.org/10.1016/j.scitotenv.2003.11.021 | spa |
dc.relation.references | Kassambara, A. (2017). Multivariate Analisys . | spa |
dc.relation.references | Kasumba, J., Hopke, P. K., Chalupa, D. C., & Utell, M. J. (2009). Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY. Science of the Total Environment, 407(18), 5071–5084. https://doi.org/10.1016/j.scitotenv.2009.05.040 | spa |
dc.relation.references | Kleinman, L. I., Springston, S. R., Wang, J., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Senum, G. I., Weinstein-Lloyd, J., Alexander, M. L., Hubbe, J., Ortega, J., Zaveri, R. A., Canagaratna, M. R., & Jayne, J. (2009). The time evolution of aerosol size distribution over the Mexico City plateau. Atmospheric Chemistry and Physics, 9(13), 4261–4278. https://doi.org/10.5194/acp-9-4261-2009 | spa |
dc.relation.references | Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., & McMurry, P. H. (2004). Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 35(2), 143–176. https://doi.org/10.1016/j.jaerosci.2003.10.003 | spa |
dc.relation.references | Leoni, C., Pokorná, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y., Křůmal, K., Cliff, S., Mikuška, P., & Hopke, P. K. (2018). Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environmental Pollution, 234, 145–154. https://doi.org/10.1016/j.envpol.2017.10.097 | spa |
dc.relation.references | Li, Q.-F., Wang-Li, L., Jayanty, R. K. M., & Shah, S. B. (2013). Organic and Elemental Carbon in Atmospheric Fine Particulate Matter in an Animal Agriculture Intensive Area in North Carolina: Estimation of Secondary Organic Carbon Concentrations. Open Journal of Air Pollution, 02(01), 7–18. https://doi.org/10.4236/ojap.2013.21002 | spa |
dc.relation.references | Miller, S. L., Anderson, M. J., Daly, E. P., & Milford, J. B. (2002). Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment, 36(22), 3629–3641. https://doi.org/10.1016/S1352-2310(02)00279-0 | spa |
dc.relation.references | Minitab Statistical Software. (2023). Modelos ANOVA. | spa |
dc.relation.references | Monteiro dos Santos, D., Rizzo, L. V., Carbone, S., Schlag, P., & Artaxo, P. (2021). Physical and chemical properties of urban aerosols in São Paulo, Brazil: links between composition and size distribution of submicron particles. Atmospheric Chemistry and Physics, 21(11), 8761–8773. https://doi.org/10.5194/acp-21-8761-2021 | spa |
dc.relation.references | Na, K., Sawant, A. A., Song, C., & Cocker, D. R. (2004). Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment, 38(9), 1345–1355. https://doi.org/10.1016/j.atmosenv.2003.11.023 | spa |
dc.relation.references | Ogulei, D., Hopke, P. K., Ferro, A. R., & Jaques, P. a. (2007). Factor analysis of submicron particle size distributions near a major United States-Canada trade bridge. Journal of the Air & Waste Management Association (1995), 57(2), 190–203. https://doi.org/10.1080/10473289.2007.10465316 | spa |
dc.relation.references | OMS. (2021). Directrices mundiales de la OMS sobre la calidad del aire. | spa |
dc.relation.references | Pekkanen, Juha., & Kuopio University Printing Office). (2000). Ultra : exposure and risk assessment for fine and ultrafine particles in ambient air ; study manual and data book. National Public Health Institute. | spa |
dc.relation.references | Ram, S. S., Kumar, R. V., Chaudhuri, P., Chanda, S., Santra, S. C., Sudarshan, M., & Chakraborty, A. (2014). Physico-chemical characterization of street dust and re-suspended dust on plant canopies: An approach for finger printing the urban environment. Ecological Indicators, 36, 334–338. https://doi.org/10.1016/j.ecolind.2013.08.010 | spa |
dc.relation.references | Rissler, J., Swietlicki, E., Bengtsson, A., Boman, C., Pagels, J., Sandström, T., Blomberg, A., & Löndahl, J. (2012). Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. Journal of Aerosol Science, 48, 18–33. https://doi.org/10.1016/j.jaerosci.2012.01.005 | spa |
dc.relation.references | Rivas, I., Beddows, D. C. S., Amato, F., Green, D. C., Järvi, L., Hueglin, C., Reche, C., Timonen, H., Fuller, G. W., Niemi, J. V., Pérez, N., Aurela, M., Hopke, P. K., Alastuey, A., Kulmala, M., Harrison, R. M., Querol, X., & Kelly, F. J. (2020). Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 135, 105345. https://doi.org/10.1016/j.envint.2019.105345 | spa |
dc.relation.references | Rogula-Kozłowska, W., & Klejnowski, K. (2013). Submicrometer Aerosol in Rural and Urban Backgrounds in Southern Poland: Primary and Secondary Components of PM1. Bulletin of Environmental Contamination and Toxicology, 90(1), 103–109. https://doi.org/10.1007/s00128-012-0868-4 | spa |
dc.relation.references | Rose, D., Wehner, B., Ketzel, M., Engler, C., Voigtländer, J., Tuch, T., & Wiedensohler, A. (2006). Atmospheric number size distributions of soot particles and estimation of emission factors. Atmospheric Chemistry and Physics, 6(4), 1021–1031. https://doi.org/10.5194/acp-6-1021-2006 | spa |
dc.relation.references | Rueda, J. (2017). NANO-PARTÍCULAS, Impactos en salud e influencia de los vehículos motorizados. | spa |
dc.relation.references | Sánchez P., L. F., Manzano, C. A., Leiva-Guzmán, M. A., Canales A., M., & Toro Araya, R. (2021). Urban atmospheric particle size distribution in Santiago, Chile. Atmospheric Pollution Research, 12(10), 101201. https://doi.org/10.1016/j.apr.2021.101201 | spa |
dc.relation.references | Secretaría Distrital de Ambiente. (2017). Hoja de vida estaciones de monitoreo RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Hojas_de_Vida_Estaciones_2017%20(1).pdf | spa |
dc.relation.references | Secretaría Distrital de Ambiente. (2022). Inventario de emisiones contaminantes atmosféricas de Bogotá, Año 2021. | spa |
dc.relation.references | Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2a ed.). Wiley. | spa |
dc.relation.references | Slezakova, K., Morais, S., & Carmo Pereir, M. do. (2013a). Atmospheric Nanoparticles and Their Impacts on Public Health. En Current Topics in Public Health. InTech. https://doi.org/10.5772/54775 | spa |
dc.relation.references | Taiwo, A. M., Beddows, D. C. S., Shi, Z., & Harrison, R. M. (2014). Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. Science of The Total Environment, 475, 29–38. https://doi.org/10.1016/j.scitotenv.2013.12.076 | spa |
dc.relation.references | Tan, J., Duan, J., Chai, F., He, K., & Hao, J.-M. (2014). Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing. Atmospheric Research, 139, 90–100. https://doi.org/10.1016/j.atmosres.2014.01.007 | spa |
dc.relation.references | Villalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2015). Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Science of the Total Environment, 512–513, 133–142. https://doi.org/10.1016/j.scitotenv.2015.01.006 | spa |
dc.relation.references | Virtanen, A., Rönkkö, T., Kannosto, J., Ristimäki, J., Mäkelä, J. M., Keskinen, J., Pakkanen, T., Hillamo, R., Pirjola, L., & Hämeri, K. (2006). Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki. Atmospheric Chemistry and Physics, 6(9), 2411–2421. https://doi.org/10.5194/acp-6-2411-2006 | spa |
dc.relation.references | William C. Hinds, Y. Z. (2022). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 3rd Edition (3a ed.). Wiley. | spa |
dc.relation.references | Wu, H., Li, Z., Jiang, M., Liang, C., Zhang, D., Wu, T., Wang, Y., & Cribb, M. (2021). Contributions of traffic emissions and new particle formation to the ultrafine particle size distribution in the megacity of Beijing. Atmospheric Environment, 262, 118652. https://doi.org/10.1016/j.atmosenv.2021.118652 | spa |
dc.relation.references | EPA. (24 de Junio de 2023). Criteria Air Pollutans. Obtenido de https://www.epa.gov/criteria-air-pollutants | spa |
dc.relation.references | NASA. (2023). Fire Information for Resource Managment System. Obtenido de https://firms.modaps.eosdis.nasa.gov/ | spa |
dc.relation.references | Observarorio Ambiental de Bogotá. (2022). Informe de seguimiento semestral al Plan Aire 2030. Bogotá. Obtenido de https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=25679 | spa |
dc.relation.references | Planeación, S. D. (14 de junio de 2023). Visor de población. Obtenido de https://sdpbogota.maps.arcgis.com/apps/MapSeries/index.html?appid=baabe888c3ab42c6bb3d10d4eaa993c5 | spa |
dc.relation.references | Secretaría Distrital de Ambiente. (2020). Informe Anual de Calidad del Aire de Bogotá Año 2020. Bogotá | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.proposal | Distribución de tamaño de partícula | spa |
dc.subject.proposal | Concentración de número de partícula | spa |
dc.subject.proposal | Análisis de Componentes Principales | spa |
dc.subject.proposal | Calidad del aire | spa |
dc.subject.proposal | Particle number concentration | eng |
dc.subject.proposal | Particle number size distribution | eng |
dc.subject.proposal | Principal Components Analysis | eng |
dc.subject.proposal | Air quality | eng |
dc.subject.unesco | Contaminación atmosférica | spa |
dc.subject.unesco | Air pollution | eng |
dc.subject.wikidata | Calidad del aire | spa |
dc.subject.wikidata | air quality | eng |
dc.subject.wikidata | Partículas en suspensión | spa |
dc.subject.wikidata | particulates | eng |
dc.title | Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá | spa |
dc.title.translated | Characterization of the particle size distribution of particulate matter present in air at two sites in Bogotá | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1030589591.2023.pdf
- Tamaño:
- 3.74 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Ingeniería Ambiental
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: