Caracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotá

dc.contributor.advisorRojas Roa, Néstor Yezidspa
dc.contributor.advisorMateus Fontecha, Ladyspa
dc.contributor.authorBlanco Fajardo, Karen Johannaspa
dc.contributor.researchgroupCalidad del Airespa
dc.coverage.cityBogotáspa
dc.coverage.countryColombiaspa
dc.coverage.regionCundinamarcaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000838
dc.date.accessioned2024-05-06T20:02:14Z
dc.date.available2024-05-06T20:02:14Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEste estudio buscó realizar un ejercicio pionero en el país en la medición en aire ambiente de la concentración de número de partículas (CNP) y la caracterización de la distribución de tamaño (PNSD) con el equipo contador de partículas ELPI+ en dos estaciones de monitoreo de calidad del aire del de Bogotá, correspondientes a San Cristóbal (estación de fondo urbano) y Las Ferias (estación de tráfico vehicular), con el fin de identificar las concentraciones y tamaños de las partículas a las que están expuestos los ciudadanos. Estas mediciones se realizaron en tres campañas en diferentes fechas entre junio y octubre de 2017. Los resultados obtenidos correspondieron a promedios horarios de concentración de partículas entre diámetros medios desde 0.016 µm hasta 5.3 µm. Estos resultados en conjunto con la medición de variables meteorológicas y concentraciones másica de contaminantes criterio de las estaciones de calidad del aire permitieron hacer análisis de proveniencia de contaminantes, correlaciones estadísticas y análisis de componentes principales (PCA). (Texto tomado de la fuente).spa
dc.description.abstractThis study sought to carry out a pioneering exercise in the country about measurement of particle number concentration (PNC) and the characterization of the particle number size distribution (PNSD) with particle counter equipment ELPI+ in two stations of air quality monitoring of Bogotá, corresponding to San Cristóbal (urban background station) and Las Ferias (vehicular traffic station), in order to identify the concentrations and sizes of the particles to which citizens are exposed. These measurements were made in three campaigns on different dates between June and October 2017. The results obtained corresponded to hourly averages of particle concentration between average diameters from 0.016 µm to 5.3 µm. These results, combined with metrological variables measurement and criteria pollutants concentrations from the air quality stations, allowed analysis of the origin of pollutants, statistical correlations, and principal components analysis (PCA).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambientalspa
dc.description.researchareaCalidad del airespa
dc.format.extentxiv, 88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86034
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAgudelo-Castañeda, D. M., Teixeira, E. C., Braga, M., Rolim, S. B. A., Silva, L. F. O., Beddows, D. C. S., Harrison, R. M., & Querol, X. (2019). Cluster analysis of urban ultrafine particles size distributions. Atmospheric Pollution Research, 10(1), 45–52. https://doi.org/10.1016/j.apr.2018.06.006spa
dc.relation.referencesAvila Prada, L. (2016). Determinación del nivel de exposición de viajeros pendulares a partículas ultrafinas según el modo de transporte en la ciudad de Bogotá. Universidad Nacional de Colombia.spa
dc.relation.referencesBeddows, D. C. S., Harrison, R. M., Green, D. C., & Fuller, G. W. (2015). Receptor modelling of both particle composition and size distribution from a background site in London, UK. Atmospheric Chemistry and Physics, 15(17), 10107–10125. https://doi.org/10.5194/acp-15-10107-2015spa
dc.relation.referencesChan, T. W., & Mozurkewich, M. (2007). Atmospheric Chemistry and Physics Application of absolute principal component analysis to size distribution data: identification of particle origins. En Atmos. Chem. Phys (Vol. 7). www.atmos-chem-phys.net/7/887/2007/spa
dc.relation.referencesColbeck, I., & Lazaridis, M. (2014b). Aerosol Science: Technology and Application.spa
dc.relation.referencesDekati Ltd. (2011). ELPI Plus User Manual (1.12).spa
dc.relation.referencesDiez, D. M., Barr, C. D., & Cetinkaya-Rundel, M. (2015). OpenIntro Statistics (4a ed.). Duke University.spa
dc.relation.referencesEspaña, G. DE, & Pindado Ma Pérez S García, O. R. (2013). Informes Técnicos Ciemat Desarrollo del Modelo de Factorización de la Matriz Positiva (PMF) al Estudio Anual de la Composición Orgánica del PM2.5 en Chapinería. https://inis.iaea.org/collection/NCLCollectionStore/_Public/44/060/44060243.pdfspa
dc.relation.referencesFinlayson-Pitts, B. J., & Pitts, J. N. (1999). Chemistry of the Upper and Lower Atmosphere (1a ed.). Academic Press.spa
dc.relation.referencesFriedlander, S. K. (2000). Smoke, dust, and haze. Fundamentals of Aerosols Dynamics (2a ed.). Oxford University Press.spa
dc.relation.referencesFults, S. L., Massmann, A. K., Montecinos, A., Andrews, E., Kingsmill, D. E., Minder, J. R., Garreaud, R. D., & Snider, J. R. (2019). Wintertime aerosol measurements during the Chilean Coastal Orographic Precipitation Experiment. Atmospheric Chemistry and Physics, 19(19), 12377–12396. https://doi.org/10.5194/acp-19-12377-2019spa
dc.relation.referencesGani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Hildebrandt Ruiz, L., & Apte, J. S. (2020). Particle number concentrations and size distribution in a polluted megacity: the Delhi Aerosol Supersite study. Atmospheric Chemistry and Physics, 20(14), 8533–8549. https://doi.org/10.5194/acp-20-8533-2020spa
dc.relation.referencesGuarieiro, L. L. N., & Guarieiro, A. L. N. (2015). Impact of the Biofuels Burning on Particle Emissions from the Vehicular Exhaust. En Biofuels - Status and Perspective. InTech. https://doi.org/10.5772/60110spa
dc.relation.referencesHama, S. M. L., Cordell, R. L., Kos, G. P. A., Weijers, E. P., & Monks, P. S. (2017). Sub-micron particle number size distribution characteristics at two urban locations in Leicester. Atmospheric Research, 194, 1–16. https://doi.org/10.1016/j.atmosres.2017.04.021spa
dc.relation.referencesHarrison, R. M., & Jones, M. (1995). The chemical composition of airborne particles in the UK atmosphere. Science of The Total Environment, 168(3), 195–214. https://doi.org/10.1016/0048-9697(95)04536-Aspa
dc.relation.referencesHopke, P. K. (2003). Recent developments in receptor modeling. Journal of Chemometrics, 17(5), 255–265. https://doi.org/10.1002/cem.796spa
dc.relation.referencesIDEAM. (2021). Informe de Calidad del Aire de Colombia.spa
dc.relation.referencesJain, S., Sharma, S. K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T. K., Gupta, A., Gupta, N. C., & Sharma, C. (2017). Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research, 24(17), 14637–14656. https://doi.org/10.1007/s11356-017-8925-5spa
dc.relation.referencesJancsek-Turóczi, B., Hoffer, A., Nyírö-Kósa, I., & Gelencsér, A. (2013). Sampling and characterization of resuspended and respirable road dust. Journal of Aerosol Science, 65, 69–76. https://doi.org/10.1016/j.jaerosci.2013.07.006spa
dc.relation.referencesJones, A. M., & Harrison, R. M. (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of The Total Environment, 326(1–3), 151–180. https://doi.org/10.1016/j.scitotenv.2003.11.021spa
dc.relation.referencesKassambara, A. (2017). Multivariate Analisys .spa
dc.relation.referencesKasumba, J., Hopke, P. K., Chalupa, D. C., & Utell, M. J. (2009). Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY. Science of the Total Environment, 407(18), 5071–5084. https://doi.org/10.1016/j.scitotenv.2009.05.040spa
dc.relation.referencesKleinman, L. I., Springston, S. R., Wang, J., Daum, P. H., Lee, Y.-N., Nunnermacker, L. J., Senum, G. I., Weinstein-Lloyd, J., Alexander, M. L., Hubbe, J., Ortega, J., Zaveri, R. A., Canagaratna, M. R., & Jayne, J. (2009). The time evolution of aerosol size distribution over the Mexico City plateau. Atmospheric Chemistry and Physics, 9(13), 4261–4278. https://doi.org/10.5194/acp-9-4261-2009spa
dc.relation.referencesKulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., & McMurry, P. H. (2004). Formation and growth rates of ultrafine atmospheric particles: a review of observations. Journal of Aerosol Science, 35(2), 143–176. https://doi.org/10.1016/j.jaerosci.2003.10.003spa
dc.relation.referencesLeoni, C., Pokorná, P., Hovorka, J., Masiol, M., Topinka, J., Zhao, Y., Křůmal, K., Cliff, S., Mikuška, P., & Hopke, P. K. (2018). Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environmental Pollution, 234, 145–154. https://doi.org/10.1016/j.envpol.2017.10.097spa
dc.relation.referencesLi, Q.-F., Wang-Li, L., Jayanty, R. K. M., & Shah, S. B. (2013). Organic and Elemental Carbon in Atmospheric Fine Particulate Matter in an Animal Agriculture Intensive Area in North Carolina: Estimation of Secondary Organic Carbon Concentrations. Open Journal of Air Pollution, 02(01), 7–18. https://doi.org/10.4236/ojap.2013.21002spa
dc.relation.referencesMiller, S. L., Anderson, M. J., Daly, E. P., & Milford, J. B. (2002). Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment, 36(22), 3629–3641. https://doi.org/10.1016/S1352-2310(02)00279-0spa
dc.relation.referencesMinitab Statistical Software. (2023). Modelos ANOVA.spa
dc.relation.referencesMonteiro dos Santos, D., Rizzo, L. V., Carbone, S., Schlag, P., & Artaxo, P. (2021). Physical and chemical properties of urban aerosols in São Paulo, Brazil: links between composition and size distribution of submicron particles. Atmospheric Chemistry and Physics, 21(11), 8761–8773. https://doi.org/10.5194/acp-21-8761-2021spa
dc.relation.referencesNa, K., Sawant, A. A., Song, C., & Cocker, D. R. (2004). Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California. Atmospheric Environment, 38(9), 1345–1355. https://doi.org/10.1016/j.atmosenv.2003.11.023spa
dc.relation.referencesOgulei, D., Hopke, P. K., Ferro, A. R., & Jaques, P. a. (2007). Factor analysis of submicron particle size distributions near a major United States-Canada trade bridge. Journal of the Air & Waste Management Association (1995), 57(2), 190–203. https://doi.org/10.1080/10473289.2007.10465316spa
dc.relation.referencesOMS. (2021). Directrices mundiales de la OMS sobre la calidad del aire.spa
dc.relation.referencesPekkanen, Juha., & Kuopio University Printing Office). (2000). Ultra : exposure and risk assessment for fine and ultrafine particles in ambient air ; study manual and data book. National Public Health Institute.spa
dc.relation.referencesRam, S. S., Kumar, R. V., Chaudhuri, P., Chanda, S., Santra, S. C., Sudarshan, M., & Chakraborty, A. (2014). Physico-chemical characterization of street dust and re-suspended dust on plant canopies: An approach for finger printing the urban environment. Ecological Indicators, 36, 334–338. https://doi.org/10.1016/j.ecolind.2013.08.010spa
dc.relation.referencesRissler, J., Swietlicki, E., Bengtsson, A., Boman, C., Pagels, J., Sandström, T., Blomberg, A., & Löndahl, J. (2012). Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. Journal of Aerosol Science, 48, 18–33. https://doi.org/10.1016/j.jaerosci.2012.01.005spa
dc.relation.referencesRivas, I., Beddows, D. C. S., Amato, F., Green, D. C., Järvi, L., Hueglin, C., Reche, C., Timonen, H., Fuller, G. W., Niemi, J. V., Pérez, N., Aurela, M., Hopke, P. K., Alastuey, A., Kulmala, M., Harrison, R. M., Querol, X., & Kelly, F. J. (2020). Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environment International, 135, 105345. https://doi.org/10.1016/j.envint.2019.105345spa
dc.relation.referencesRogula-Kozłowska, W., & Klejnowski, K. (2013). Submicrometer Aerosol in Rural and Urban Backgrounds in Southern Poland: Primary and Secondary Components of PM1. Bulletin of Environmental Contamination and Toxicology, 90(1), 103–109. https://doi.org/10.1007/s00128-012-0868-4spa
dc.relation.referencesRose, D., Wehner, B., Ketzel, M., Engler, C., Voigtländer, J., Tuch, T., & Wiedensohler, A. (2006). Atmospheric number size distributions of soot particles and estimation of emission factors. Atmospheric Chemistry and Physics, 6(4), 1021–1031. https://doi.org/10.5194/acp-6-1021-2006spa
dc.relation.referencesRueda, J. (2017). NANO-PARTÍCULAS, Impactos en salud e influencia de los vehículos motorizados.spa
dc.relation.referencesSánchez P., L. F., Manzano, C. A., Leiva-Guzmán, M. A., Canales A., M., & Toro Araya, R. (2021). Urban atmospheric particle size distribution in Santiago, Chile. Atmospheric Pollution Research, 12(10), 101201. https://doi.org/10.1016/j.apr.2021.101201spa
dc.relation.referencesSecretaría Distrital de Ambiente. (2017). Hoja de vida estaciones de monitoreo RMCAB. http://rmcab.ambientebogota.gov.co/Pagesfiles/Hojas_de_Vida_Estaciones_2017%20(1).pdfspa
dc.relation.referencesSecretaría Distrital de Ambiente. (2022). Inventario de emisiones contaminantes atmosféricas de Bogotá, Año 2021.spa
dc.relation.referencesSeinfeld, J. H., & Pandis, S. N. (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2a ed.). Wiley.spa
dc.relation.referencesSlezakova, K., Morais, S., & Carmo Pereir, M. do. (2013a). Atmospheric Nanoparticles and Their Impacts on Public Health. En Current Topics in Public Health. InTech. https://doi.org/10.5772/54775spa
dc.relation.referencesTaiwo, A. M., Beddows, D. C. S., Shi, Z., & Harrison, R. M. (2014). Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. Science of The Total Environment, 475, 29–38. https://doi.org/10.1016/j.scitotenv.2013.12.076spa
dc.relation.referencesTan, J., Duan, J., Chai, F., He, K., & Hao, J.-M. (2014). Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing. Atmospheric Research, 139, 90–100. https://doi.org/10.1016/j.atmosres.2014.01.007spa
dc.relation.referencesVillalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2015). Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Science of the Total Environment, 512–513, 133–142. https://doi.org/10.1016/j.scitotenv.2015.01.006spa
dc.relation.referencesVirtanen, A., Rönkkö, T., Kannosto, J., Ristimäki, J., Mäkelä, J. M., Keskinen, J., Pakkanen, T., Hillamo, R., Pirjola, L., & Hämeri, K. (2006). Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki. Atmospheric Chemistry and Physics, 6(9), 2411–2421. https://doi.org/10.5194/acp-6-2411-2006spa
dc.relation.referencesWilliam C. Hinds, Y. Z. (2022). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 3rd Edition (3a ed.). Wiley.spa
dc.relation.referencesWu, H., Li, Z., Jiang, M., Liang, C., Zhang, D., Wu, T., Wang, Y., & Cribb, M. (2021). Contributions of traffic emissions and new particle formation to the ultrafine particle size distribution in the megacity of Beijing. Atmospheric Environment, 262, 118652. https://doi.org/10.1016/j.atmosenv.2021.118652spa
dc.relation.referencesEPA. (24 de Junio de 2023). Criteria Air Pollutans. Obtenido de https://www.epa.gov/criteria-air-pollutantsspa
dc.relation.referencesNASA. (2023). Fire Information for Resource Managment System. Obtenido de https://firms.modaps.eosdis.nasa.gov/spa
dc.relation.referencesObservarorio Ambiental de Bogotá. (2022). Informe de seguimiento semestral al Plan Aire 2030. Bogotá. Obtenido de https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=25679spa
dc.relation.referencesPlaneación, S. D. (14 de junio de 2023). Visor de población. Obtenido de https://sdpbogota.maps.arcgis.com/apps/MapSeries/index.html?appid=baabe888c3ab42c6bb3d10d4eaa993c5spa
dc.relation.referencesSecretaría Distrital de Ambiente. (2020). Informe Anual de Calidad del Aire de Bogotá Año 2020. Bogotáspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalDistribución de tamaño de partículaspa
dc.subject.proposalConcentración de número de partículaspa
dc.subject.proposalAnálisis de Componentes Principalesspa
dc.subject.proposalCalidad del airespa
dc.subject.proposalParticle number concentrationeng
dc.subject.proposalParticle number size distributioneng
dc.subject.proposalPrincipal Components Analysiseng
dc.subject.proposalAir qualityeng
dc.subject.unescoContaminación atmosféricaspa
dc.subject.unescoAir pollutioneng
dc.subject.wikidataCalidad del airespa
dc.subject.wikidataair qualityeng
dc.subject.wikidataPartículas en suspensiónspa
dc.subject.wikidataparticulateseng
dc.titleCaracterización de la distribución de tamaño de partícula del material particulado presente en aire ambiente en dos puntos de Bogotáspa
dc.title.translatedCharacterization of the particle size distribution of particulate matter present in air at two sites in Bogotáeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030589591.2023.pdf
Tamaño:
3.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: