Evaluación de la relación entre el estado nutricional y la respuesta espectral del cultivo de papa (Solanum tuberosum L.) para la estimación del contenido de nitrógeno y potasio

dc.contributor.advisorMartínez Martínez, Luis Joelspa
dc.contributor.advisorDarghan Contreras, Aquiles Enriquespa
dc.contributor.authorCristancho Rojas, Omar Yesidspa
dc.contributor.orcidCristancho Rojas, Omar Yesid [0000000246097632]spa
dc.date.accessioned2024-08-26T14:05:24Z
dc.date.available2024-08-26T14:05:24Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractEl uso racional de fertilizantes es una medida que busca la sostenibilidad del sistema productivo de papa en Colombia, ya que con esto se puede reducir el efecto ambiental y los costos asociados a la fertilización del cultivo. El objetivo de este trabajo fue evaluar el uso de información espectral para estimar el estado nutricional de Solanum tuberosum L, variedad Bacatá bajo diferentes niveles de fertilización, para esto se realizó un ensayo en un lote comercial de papa en Soacha, Cundinamarca, Colombia. Se estableció un diseño en medidas repetidas para un arreglo en bloques generalizados y al azar usando los tiempos como factor intra-sujetos, con ocho tratamientos con variación en nitrógeno (N) y potasio (K). Se evaluó la respuesta híperespectral entre los 350 a 2500nm con un sensor FieldSpec Standar-Res ® y se tomaron fotografías con una cámara multiespectral Micasense Red-edge M ®. Las variables nutricionales se midieron con sensores de ion selectivo Laqua ® y clorofilometro SPAD. Las mediciones se llevaron a cabo entre los 65 y 107 DDS. Se encontró que hubo efecto de los tratamientos y la época en la respuesta espectral de las plantas de papa por los cambios en la concentración de pigmentos, ya que hubo efecto de los tratamientos sobre el contenido de nitratos y en los valores SPAD. Sin embargo, no hubo efecto sobre el contenido de K en peciolos. Los índices de vegetación obtenidos con el sensor híperespectral que se basaron en la reflectancia de la región entre los 445 y 850 nm fueron los que más correlación obtuvieron con el contenido de nitratos y unidades SPAD. En las imágenes multiespectrales se registró la reflectancia más alta en las regiones del Red-Edge y NIR con las dosis más altas de fertilizante nitrogenado, además se encontró que los índices PSSRa, PSSRc y DATT-4 fueron los más sensibles a los cambios generados por la época de medición y los tratamientos evaluados, lo que los convierte en parámetros con potencial en la estimación del estado nutricional para la variedad Bacatá (Texto tomado de la fuente).spa
dc.description.abstractThe rational use of fertilizers is a measure that seeks the sustainability of the potato production system in Colombia, since this can reduce the environmental effect and the costs associated with the fertilization of the crop. The objective of this work was to evaluate the use of spectral information to estimate the nutritional status of Solanum tuberosum L, variety Bacatá under different levels of fertilization, for this a trial was carried out in a commercial potato lot in Soacha, Cundinamarca, Colombia. A repeated measures design was established for a generalized and randomized block arrangement using times as an intra-subjects factor, with eight treatments with variation in nitrogen (N) and potassium (K). The hyperspectral response between 350 to 2500nm was evaluated with a FieldSpec Standard-Res ® sensor and photographs were taken with a Micasense Red-edge M ® multispectral camera. Nutritional variables were measured with Laqua ® selective ion sensors and SPAD chlorophyllometer. Measurements were carried out between 65 and 107 DAS. It was found that there was an effect of the treatments and the season on the spectral response of the potato plants due to changes in the concentration of pigments, since there was an effect of the treatments on the nitrate content and on the SPAD values. However, there was no effect on the K content in petioles. The vegetation indices obtained with the hyperspectral sensor that were based on the reflectance of the region between 445 and 850 nm were the ones that obtained the most correlation with the content of nitrates and SPAD units. In the multispectral images, the highest reflectance was recorded in the Red-Edge and NIR regions with the highest doses of nitrogen fertilizer, and it was also found that the PSSRa, PSSRc and DATT-4 indices were the most sensitive to the changes generated by the time of measurement and the treatments evaluated, which makes them parameters with potential in estimating the nutritional status for the Bacatá variety.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.methodsEl estudio se llevó a cabo en un lote comercial de papa para industria en el municipio de Soacha (Cundinamarca), con coordenadas 4° 37’ 00” N y 74° 15’ 60” W, a una altura sobre el nivel del mar de 2630 m, la pendiente promedio del lote experimental era del 13%. La zona corresponde a un clima frio semihúmedo con una temperatura media anual de 13.4 grados Celsius y una precipitación anual media de 1850 mm (IDEAM, 2020). El suelo tenía buena profundidad, una textura franco-limosa, un pH de 5.6 y materia orgánica del 22,3%.spa
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.format.extentxx, 132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86752
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAbdel-Rahman, E. M., Mutanga, O., Odindi, J., Adam, E., Odindo, A., & Ismail, R. (2017). Estimating Swiss chard foliar macro- and micronutrient concentrations under different irrigation water sources using ground-based hyperspectral data and four partial least squares (PLS)-based (PLS1, PLS2, SPLS1 and SPLS2) regression algorithms. Computers and Electronics in Agriculture, 132, 21–33. https://doi.org/10.1016/j.compag.2016.11.008spa
dc.relation.referencesAbutaleb, K., & Fatma Sayed, A. (2021a). Modeling Potato Yield Response to Different Nitrogen Application Rates Using Hyperspectral Data and PLS Regression. Journal of Horticultural Science & Ornamental Plants, 13(3), 301–310. https://doi.org/10.5829/idosi.jhsop.2021.301.310spa
dc.relation.referencesAgisoft. (2019). Agisoft Metashape User Manual. 160.spa
dc.relation.referencesAlberto, R. T., Rivera, J. C. E., Biagtan, A. R., & Isip, M. F. (2019). Extraction of onion fields infected by anthracnose-twister disease in selected municipalities of Nueva Ecija using UAV imageries. Spatial Information Research. https://doi.org/10.1007/s41324-019-00302-zspa
dc.relation.referencesAsefpour Vakilian, K., & Massah, J. (2017). A farmer-assistant robot for nitrogen fertilizing management of greenhouse crops. Computers and Electronics in Agriculture, 139, 153–163. https://doi.org/10.1016/j.compag.2017.05.012spa
dc.relation.referencesBasso, M., & Pignaton de Freitas, E. (2019). A UAV Guidance System Using Crop Row Detection and Line Follower Algorithms. Journal of Intelligent and Robotic Systems: Theory and Applications, 605–621. https://doi.org/10.1007/s10846-019-01006-0spa
dc.relation.referencesBautista, H. F., Ramírez, W. L., & Torres, J. (2012). Nutrient uptake of the diploid potato ( Solanum phureja ) variety Criolla Colombia , as a reference point to determine critical nutritional levels Absorción de nutrientes de la papa diploide ( Solanum phureja ) variedad Criolla Colombia , como punto de pa. Agronomia Colombiana, 30(3), 436–446.spa
dc.relation.referencesBendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79–87. https://doi.org/10.1016/j.jag.2015.02.012spa
dc.relation.referencesBlackburn, G. A. (1998). Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. International Journal of Remote Sensing, 19(4), 657–675. https://doi.org/10.1080/014311698215919spa
dc.relation.referencesBotha, E. J., Leblon, B., Zebarth, B., & Watmough, J. (2007). Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. 9, 360–374. https://doi.org/10.1016/j.jag.2006.11.003spa
dc.relation.referencesBrunner, E. (2001). Asymptotic and approximate analysis of repeated measures designs under heteroscedasticity. Mathematical Statistics with Applications in Biometry.spa
dc.relation.referencesCao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., & Jiang, R. (2013). Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Research, 154, 133–144. https://doi.org/10.1016/j.fcr.2013.08.005spa
dc.relation.referencesCarter, G. A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15(3), 697–703. https://doi.org/10.1080/01431169408954109spa
dc.relation.referencesCen, H., Wan, L., Zhu, J., Li, Y., Li, X., Zhu, Y., Weng, H., Wu, W., Yin, W., Xu, C., Bao, Y., Feng, L., Shou, J., & He, Y. (2019). Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Plant Methods, 15(1), 1–16. https://doi.org/10.1186/s13007-019-0418-8spa
dc.relation.referencesChivasa, W., Mutanga, O., & Biradar, C. (2017). Application of remote sensing in estimating maize grain yield in heterogeneous african agricultural landscapes: A review. International Journal of Remote Sensing, 38(23), 6816–6845. https://doi.org/10.1080/01431161.2017.1365390spa
dc.relation.referencesCorti, M., Cavalli, D., Cabassi, G., Vigoni, A., Degano, L., & Marino Gallina, P. (2019). Application of a low-cost camera on a UAV to estimate maize nitrogen-related variables. Precision Agriculture, 20(4), 675–696. https://doi.org/10.1007/s11119-018-9609-yspa
dc.relation.referencesCucho-Padin, G., Loayza, H., Palacios, S., Balcazar, M., Carbajal, M., & Quiroz, R. (2019). Development of low-cost remote sensing tools and methods for supporting smallholder agriculture. Applied Geomatics. https://doi.org/10.1007/s12518-019-00292-5spa
dc.relation.referencesDatt, B. (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves. Remote Sensing of Environment, 66(2), 111–121. https://doi.org/10.1016/S0034-4257(98)00046-7spa
dc.relation.referencesDelgado-Vera, C., Aguirre-Munizaga, M., Jiménez-Icaza, M., Manobanda-Herrera, N., & Rodríguez-Méndez, A. (2017). A Photogrammetry Software as a Tool for Precision Agriculture: A Case Study. In R. Valencia-García, K. Lagos-Ortiz, G. Alcaraz-Mármol, J. Del Cioppo, N. Vera-Lucio, & M. Bucaram-Leverone (Eds.), Technologies and Innovation (pp. 282–295). Springer International Publishing.spa
dc.relation.referencesDutta Gupta, S., Ibaraki, Y., & Pattanayak, A. K. (2013). Development of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plants. Plant Biotechnology Reports, 7(1), 91–97. https://doi.org/10.1007/s11816-012-0240-5spa
dc.relation.referencesFAOSTAT. (2018). Food and Agriculture Organization of United Nations. http://www.fao.org/faostat/es/#data/QCspa
dc.relation.referencesFEDEPAPA. (2018). Informe de gestión 2018. 188spa
dc.relation.referencesFEDEPAPA. (2021). Federación Colombiana De Productores De Papa – Fedepapa Fondo Nacional De Fomento De La Papa – Fnfp. 555.spa
dc.relation.referencesFriedrich, S., Brunner, E., & Pauly, M. (2017). Permuting longitudinal data in spite of the dependencies. Journal of Multivariate Analysis, 153, 255–265. https://doi.org/10.1016/j.jmva.2016.10.004spa
dc.relation.referencesFriedrich, S., & Pauly, M. (2018). MATS: Inference for potentially singular and heteroscedastic MANOVA. Journal of Multivariate Analysis, 165, 166–179. https://doi.org/10.1016/j.jmva.2017.12.008spa
dc.relation.referencesFriedrich, Sarah., Konietschke, Frank., & Pauly, Markus. (2019). Resampling-based analysis of multivariate data and repeated measures designs with the R package MANOVA. RM. R Journal, 11(2), 380–400. https://doi.org/10.32614/rj-2019-051spa
dc.relation.referencesGamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112(4), 492–501. https://doi.org/10.1007/s004420050337spa
dc.relation.referencesGandia, S., Fernández, G., García, J. C., & Moreno, J. F. (2004). RETRIEVAL OF VEGETATION BIOPHYSICAL VARIABLES FROM CHRIS/PROBA DATA IN THE SPARC CAMPAING.spa
dc.relation.referencesGao, P., Zuo, Z., Zhang, R., Qiu, Y., He, R., Gao, R., & Gu, R. (2016). Optimum Nitrogen Fertilization for. Agronomy Journal, 108(1), 448–458. https://doi.org/10.2134/agronj2015.0324spa
dc.relation.referencesGiletto, C. M., Reussi Calvo, N. I., Sandaña, P., Echeverría, H. E., & Bélanger, G. (2020). Shoot- and tuber-based critical nitrogen dilution curves for the prediction of the N status in potato. European Journal of Agronomy, 119(June), 126114. https://doi.org/10.1016/j.eja.2020.126114spa
dc.relation.referencesGitelson, A. A., Gritz, Y., & Merzlyak, M. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282.spa
dc.relation.referencesGitelson, A., Merzlyak, M., & Lichtenthaler, H. K. (1996). Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm. Journal of Plant Physiology, 148(3–4), 501–508. https://doi.org/10.1016/S0176-1617(96)80285-9spa
dc.relation.referencesGitelson, A., & Merzlyak, M. N. (1994). Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of Plant Physiology, 143(3), 286–292. https://doi.org/10.1016/S0176-1617(11)81633-0spa
dc.relation.referencesGitelson, Anatoly., Kaufman, Y. J., & Merzlyak, Mark. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298. https://doi.org/10.1016/S0034-4257(96)00072-7spa
dc.relation.referencesGizaw, S. A., Garland-campbell, K., & Carter, A. H. (2016). Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions. Field Crops Research. https://doi.org/10.1016/j.fcr.2016.06.018spa
dc.relation.referencesGómez, M. I., Magnitskiy, S., & Rodríguez, L. E. (2017). Diagnóstico de K + y NO 3- en savia para determinar el estado nutricional en papa ( Solanum tuberosum L . Diagnostics of K + and NO 3- in sap to determine nutritional status in potato ( Solanum tuberosum L . subsp . andigena ). Revista Colombiana de Ciencias Hortícolas, 11(3), 133–142.spa
dc.relation.referencesGómez, M. I., Magnitskiy, S., & Rodríguez, L. E. (2019). Nitrogen, phosphorus and potassium accumulation and partitioning by the potato group Andigenum in Colombia. Nutrient Cycling in Agroecosystems, 113(3), 349–363. https://doi.org/10.1007/s10705-019-09986-zspa
dc.relation.referencesGu, D.-D., Wang, W.-Z., Hu, J.-D., Zhang, X.-M., Wang, J.-B., & Wang, B.-S. (2016). Nondestructive Determination of Total Chlorophyll Content in Maize Using Three-Wavelength Diffuse Reflectance. Journal of Applied Spectroscopy, 83(4), 541–547. https://doi.org/10.1007/s10812-016-0325-yspa
dc.relation.referencesGuo, J., Zhang, J., Xiong, S., Zhang, Z., Wei, Q., Zhang, W., Feng, W., & Ma, X. (2021). Hyperspectral assessment of leaf nitrogen accumulation for winter wheat using different regression modeling. Precision Agriculture, 22(5), 1634–1658. https://doi.org/10.1007/s11119-021-09804-zspa
dc.relation.referencesHaboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426. https://doi.org/10.1016/S0034-4257(02)00018-4spa
dc.relation.referencesHe, L., Song, X., Feng, W., Guo, B.-B., Zhang, Y.-S., Wang, Y.-H., Wang, C.-Y., & Guo, T.-C. (2016). Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sensing of Environment, 174, 122–133. https://doi.org/10.1016/j.rse.2015.12.007spa
dc.relation.referencesHuete, A. R. (2004). R Emote S Ensing for. In M. L. Brusseau. anick F. Artiola, Ian L. Pepper (Ed.), Environmental Monitoring and Characterization (Firts, pp. 183–206). Academic Press. https://doi.org/10.1016/B978-0-12-064477-3.50013-8spa
dc.relation.referencesHunt, E. R., Donald, J., Spinelli, C. B., Turner, R. W., Bruce, A. E., Gadler, D. J., Brungardt, J. J., & Hamm, P. B. (2018). Monitoring nitrogen status of potatoes using small unmanned aerial vehicles. Precision Agriculture, 19(2), 314–333. https://doi.org/10.1007/s11119-017-9518-5spa
dc.relation.referencesHussain, A., Sahoo, R. N., Kumar, D., & Pradhan, S. (2017). Relationship of Hyperspectral Reflectance Indices with Leaf N and P Concentration, Dry Matter Accumulation and Grain Yield of Wheat. Journal of the Indian Society of Remote Sensing, 45(5), 773–784. https://doi.org/10.1007/s12524-016-0633-yspa
dc.relation.referencesIerna, A., & Mauromicale, G. (2018). Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agricultural Water Management, 201(January), 21–26. https://doi.org/10.1016/j.agwat.2018.01.008spa
dc.relation.referencesIerna, A., & Mauromicale, G. (2019). Sustainable and profitable nitrogen fertilization management of potato. Agronomy, 9(10). https://doi.org/10.3390/agronomy9100582spa
dc.relation.referencesIglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., & Rosette, J. (2019). Structure from Motion Photogrammetry in Forestry: a Review. Current Forestry Reports, 5(3), 155–168. https://doi.org/10.1007/s40725-019-00094-3spa
dc.relation.referencesInostroza, L., Acuña, H., Munoz, P., Vásquez, C., Ibáñez, J., Tapia, G., Pino, M. T., & Aguilera, H. (2016). Using aerial images and canopy spectral reflectance for high-throughput phenotyping of white clover. Crop Science, 56(5), 2629–2637. https://doi.org/10.2135/cropsci2016.03.0156spa
dc.relation.referencesJay, S., Maupas, F., Bendoula, R., & Gorretta, N. (2017). Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Research, 210(June), 33–46. https://doi.org/10.1016/j.fcr.2017.05.005spa
dc.relation.referencesJones, C. A., & Church, E. (2020). Photogrammetry is for everyone: Structure-from-motion software user experiences in archaeology. Journal of Archaeological Science: Reports, 30(March), 102261. https://doi.org/10.1016/j.jasrep.2020.102261spa
dc.relation.referencesKang, W., Fan, M., Ma, Z., Shi, X., & Zheng, H. (2014). Luxury absorption of potassium by potato plants. American Journal of Potato Research, 91(5), 573–578. https://doi.org/10.1007/s12230-014-9386-8spa
dc.relation.referencesKaur, R., Singh, B., Singh, M., & Thind, S. K. (2015). Hyperspectral Indices, Correlation and Regression Models for Estimating Growth Parameters of Wheat Genotypes. Journal of the Indian Society of Remote Sensing, 43(3), 551–558. https://doi.org/10.1007/s12524-014-0425-1spa
dc.relation.referencesKoch, M., Naumann, M., Pawelzik, E., Gransee, A., & Thiel, H. (2019). The Importance of Nutrient Management for Potato Production Part I: Plant Nutrition and Yield. Potato Research, 97–119. https://doi.org/10.1007/s11540-019-09431-2spa
dc.relation.referencesKonietschke, F., Bathke, A. C., Harrar, S. W., & Pauly, M. (2015). Parametric and nonparametric bootstrap methods for general MANOVA. Journal of Multivariate Analysis, 140, 291–301. https://doi.org/10.1016/j.jmva.2015.05.001spa
dc.relation.referencesLaban, N., Abdellatif, B., Ebeid, H. M., Shedeed, H. A., & Tolba, M. F. (2019). Machine Learning for Enhancement Land Cover and Crop Types Classification. In A. E. Hassanien (Ed.), Machine Learning Paradigms: Theory and Application (pp. 71–87). Springer International Publishing. https://doi.org/10.1007/978-3-030-02357-7_4spa
dc.relation.referencesLee, J., & Sung, S. (2016). Evaluating spatial resolution for quality assurance of UAV images. Spatial Information Research, 24(2), 141–154. https://doi.org/10.1007/s41324-016-0015-0spa
dc.relation.referencesLehnert, L. W., Meyer, H., Obermeier, W. A., Silva, B., Regeling, B., Thies, B., & Bendix, J. (2019). Hyperspectral data analysis in R: The hsdar package. Journal of Statistical Software, 89(Ii). https://doi.org/10.18637/jss.v089.i12spa
dc.relation.referencesLi, B., Xu, X., Han, J., Zhang, L., Bian, C., Jin, L., & Liu, J. (2019). The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods, 15(1), 1–13. https://doi.org/10.1186/s13007-019-0399-7spa
dc.relation.referencesLi, Bo., Xu, Xiangming., Zhang, Li., Han, Jiwan., Bian, Chunsong., Li, Guangcun., Liu, Jiangang., & Jin, Liping. (2020). Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 161–172. https://doi.org/10.1016/j.isprsjprs.2020.02.013spa
dc.relation.referencesLiang, S. (2004). Quantitative Remote Sensing of Land Surfaces. In W. & Sons (Ed.), Wiley Series on Remote Sensing. Wiley & Sons. https://doi.org/10.1002/047172372Xspa
dc.relation.referencesLicciardello, F., Lombardo, S., Rizzo, V., Pitino, I., Pandino, G., Strano, M. G., Muratore, G., Restuccia, C., & Mauromicale, G. (2018). Integrated agronomical and technological approach for the quality maintenance of ready-to-fry potato sticks during refrigerated storage. Postharvest Biology and Technology, 136(October 2017), 23–30. https://doi.org/10.1016/j.postharvbio.2017.10.001spa
dc.relation.referencesLinder, W. (2006). Digital photogrammetry. 3rd. ed. 219 pp. https://doi.org/10.4324/9780203305959spa
dc.relation.referencesLiu, B., Shen, W., Yue, Y. min, Li, R., Tong, Q., & Zhang, B. (2017). Combining spatial and spectral information to estimate chlorophyll contents of crop leaves with a field imaging spectroscopy system. Precision Agriculture, 18(4), 491–506. https://doi.org/10.1007/s11119-016-9466-5spa
dc.relation.referencesLiu, N., Townsend, P. A., Naber, M. R., Bethke, P. C., Hills, W. B., & Wang, Y. (2021). Hyperspectral imagery to monitor crop nutrient status within and across growing seasons. Remote Sensing of Environment, 255(January). https://doi.org/10.1016/j.rse.2021.112303spa
dc.relation.referencesLiu, Y., Feng, H., Yue, J., Jin, X., Fan, Y., Chen, R., Bian, M., Ma, Y., Song, X., & Yang, G. (2023). Improved potato AGB estimates based on UAV RGB and hyperspectral images. Computers and Electronics in Agriculture, 214(February). https://doi.org/10.1016/j.compag.2023.108260spa
dc.relation.referencesLizarazo, I., Rodriguez, J. L., Cristancho, O., Olaya, F., Duarte, M., & Prieto, F. (2023). Identification of symptoms related to potato Verticillium wilt from UAV-based multispectral imagery using an ensemble of gradient boosting machines. Smart Agricultural Technology, 3(November 2022). https://doi.org/10.1016/j.atech.2022.100138spa
dc.relation.referencesLu, H., Fu, X., Liu, C., Li, L. guo, He, Y. xin, & Li, N. wen. (2017). Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning. Journal of Mountain Science, 14(4), 731–741. https://doi.org/10.1007/s11629-016-3950-2spa
dc.relation.referencesLu, Jingshan., Eitel, J. U. H., Engels, M., Zhu, J., Ma, Y., Liao, F., Zheng, H., Wang, X., Yao, X., Cheng, T., Zhu, Y., Cao, W., & Tian, Y. (2021). Improving Unmanned Aerial Vehicle (UAV) remote sensing of rice plant potassium accumulation by fusing spectral and textural information. International Journal of Applied Earth Observation and Geoinformation, 104. https://doi.org/10.1016/j.jag.2021.102592spa
dc.relation.referencesM. Prabhakar , Y. G. Prasad, and M. N. R. (2012). Remote Sensing of Biotic Stress in Crop Plants and Its Applications for Pest Management. In B. Venkateswarlu, A. K. Shanker, C. Shanker, & M. Maheswari (Eds.), Crop Stress and its Management: Perspectives and Strategies (Vol. 9789400722, pp. 1–611). https://doi.org/10.1007/978-94-007-2220-0spa
dc.relation.referencesMahajan, G. R., Pandey, R. N., Sahoo, R. N., Gupta, V. K., Datta, S. C., & Kumar, D. (2017). Monitoring nitrogen, phosphorus and sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precision Agriculture, 18(5), 736–761. https://doi.org/10.1007/s11119-016-9485-2spa
dc.relation.referencesMahlein, A. K., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012). Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology, 133(1), 197–209. https://doi.org/10.1007/s10658-011-9878-zspa
dc.relation.referencesMahlein, A., Rumpf, T., Welke, P., Dehne, H., Plümer, L., Steiner, U., & Oerke, E. (2013). Remote Sensing of Environment Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21–30. https://doi.org/10.1016/j.rse.2012.09.019spa
dc.relation.referencesMamaghani, B., & Salvaggio, C. (2019). Multispectral sensor calibration and characterization for sUAS remote sensing. Sensors (Switzerland), 19(20). https://doi.org/10.3390/s19204453spa
dc.relation.referencesMarouani, A., & Harbeoui, Y. (2016). Eficiencia Nitrogeno En Cultivos Papa. Acta Agronómica, 65(2), 164–169.spa
dc.relation.referencesMarschener, P. (2012). Mineral Nutrition of Higher Plants (P. Marschner, Ed.; Third Edit).spa
dc.relation.referencesMartínez, L. J. (2017). Relationship between crop nutritional status , spectral measurements and Sentinel 2 images. Agronomia Colombiana, 35(2), 205–215. https://doi.org/10.15446/agron.colomb.v35n2.62857spa
dc.relation.referencesMerton, R., & Huntington, J. (1999). Early Simulation Results of the Aries-1 Satellite Sensor for Multi-Temporal Vegetation Research Derived From Aviris. Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop1–10.spa
dc.relation.referencesMinolta, K. (2009). A lightweight handheld meter for leaves without causing damage to plants. 4.spa
dc.relation.referencesMokrani, K., Hamdi, K., & Tarchoun, N. (2018). Potato (Solanum Tuberosum L.) Response to Nitrogen, Phosphorus and Potassium Fertilization Rates. Communications in Soil Science and Plant Analysis, 49(11), 1314–1330. https://doi.org/10.1080/00103624.2018.1457159spa
dc.relation.referencesMoran, P. A. P. (1950). Notes on Continuous Stochastic Phenomena. Biometrika, 37(1/2), 17–23. https://doi.org/10.2307/2332142spa
dc.relation.referencesMorier, T., Cambouris, A. N., & Chokmani, K. (2015). In-season nitrogen status assessment and yield estimation using hyperspectral vegetation indices in a potato crop. Agronomy Journal, 107(4), 1295–1309. https://doi.org/10.2134/agronj14.0402spa
dc.relation.referencesNaumann, M., Koch, M., Pawelzik, E., Gransee, A., & Thiel, H. (2019). The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Research, 63, 121–137. https://doi.org/10.1007/s11540-019-09431-2spa
dc.relation.referencesNex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Applied Geomatics, 6(1), 1–15. https://doi.org/10.1007/s12518-013-0120-xspa
dc.relation.referencesNigon, T. J., Mulla, D. J., Rosen, C. J., Cohen, Y., Alchanatis, V., Knight, J., & Rud, R. (2015). Hyperspectral aerial imagery for detecting nitrogen stress in two potato cultivars. Computers and Electronics in Agriculture, 112, 36–46. https://doi.org/10.1016/j.compag.2014.12.018spa
dc.relation.referencesÑústes, C. E. L., Castellanos, M. S., & Abril, M. S. (2009). Acumulación y distribución de materia seca de cuatro variedades de papa (Solanum tuberosum L.) en Zipaquirá, Cundinamarca (Colombia). Rev. Fac. Nal. Agr. Medellín, 62(113), 4823–4834.spa
dc.relation.referencesNustez L, C. E. (2011). Variedades Colombianas de papa. In Universidad Nacional de Colombia.spa
dc.relation.referencesPadilla, F. M., Farneselli, M., Gianquinto, G., Tei, F., & Thompson, R. B. (2020). Monitoring nitrogen status of vegetable crops and soils for optimal nitrogen management. Agricultural Water Management, 241(June), 106356. https://doi.org/10.1016/j.agwat.2020.106356spa
dc.relation.referencesPavlidis, G., Karasali, H., & Tsihrintzis, V. A. (2020). Pesticide and Fertilizer Pollution Reduction in Two Alley Cropping Agroforestry Cultivating Systems. Water, Air, and Soil Pollution, 231(5). https://doi.org/10.1007/s11270-020-04590-2spa
dc.relation.referencesPimstein, A., Karnieli, A., Bansal, S. K., & Bonfil, D. J. (2011). Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field Crops Research, 121(1), 125–135. https://doi.org/10.1016/j.fcr.2010.12.001spa
dc.relation.referencesPineux, N., Lisein, J., Swerts, G., Bielders, C. L., Lejeune, P., Colinet, G., & Degré, A. (2017). Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed? Geomorphology, 280, 122–136. https://doi.org/10.1016/j.geomorph.2016.12.003spa
dc.relation.referencesPo, E. A., Snapp, S. S., & Kravchenko, A. (2010). Potato yield variability across the landscape. Agronomy Journal, 102(3), 885–894. https://doi.org/10.2134/agronj2009.0424spa
dc.relation.referencesQuirós Rosado, E. (2014). Introducción a la Fotogrametría y Cartografía aplicadas a la Ingeniería Civil (Universidad de Extremadura, Ed.; First).spa
dc.relation.referencesRay, S. S., Singh, J. P., & Panigraphy, S. (2010). Use of hyperstectralremote senings data for crop stress detection: ground-based studies. International Archives of Photogrammetry, XXXVIII(8), 562–570.spa
dc.relation.referencesRiccardi, M., Mele, G., Pulvento, C., Lavini, A., D’Andria, R., & Jacobsen, S. E. (2014). Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosynthesis Research, 120(3), 263–272. https://doi.org/10.1007/s11120-014-9970-2spa
dc.relation.referencesRodríguez, A., Peña-Fleitas, M. T., Padilla, F. M., Gallardo, M., & Thompson, R. B. (2021). Petiole sap nitrate concentration to assess crop nitrogen status of greenhouse sweet pepper. Scientia Horticulturae, 285(July 2020). https://doi.org/10.1016/j.scienta.2021.110157spa
dc.relation.referencesRodríguez, J., Lizarazo, I., Prieto, F., & Angulo-Morales, V. (2021). Assessment of potato late blight from UAV-based multispectral imagery. Computers and Electronics in Agriculture, 184(July 2020). https://doi.org/10.1016/j.compag.2021.106061spa
dc.relation.referencesRodríguez, L. E. (2010). Origen y evolución de la papa cultivada . Una revisión Origins and evolution of cultivated potato . A review. Agronomia Colombiana, 28(1), 9–17.spa
dc.relation.referencesRodríguez-Pérez, L. (2010). Ecofisiología del cultivo de la papa. Revista Colombiana de Ciencias Hortícolas, 4(1), 97–108.spa
dc.relation.referencesRoosjen, P. P. J., Brede, B., Suomalainen, J. M., Bartholomeus, H. M., Kooistra, L., & Clevers, J. G. P. W. (2018). Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data – potential of unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation, 66(July 2017), 14–26. https://doi.org/10.1016/j.jag.2017.10.012spa
dc.relation.referencesRouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with Erts. In NASA Special Publication (Vol. 351, p. 309).spa
dc.relation.referencesSevertson, D., Callow, N., Flower, K., Neuhaus, A., Olejnik, M., & Nansen, C. (2016). Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola. Precision Agriculture, 17(6), 659–677. https://doi.org/10.1007/s11119-016-9442-0spa
dc.relation.referencesShi, X., Zhang, X., Kang, W., Chen, Y., & Fan, M. (2019). Possibility of Recommending Potassium Application Rates Based on a Rapid Detection of the Potato Petiole K Status with a Portable K ion Meter. American Journal of Potato Research, 96(1), 48–54. https://doi.org/10.1007/s12230-018-9687-4spa
dc.relation.referencesSid’ko, A. F., Botvich, I. Y., Pisman, T. I., & Shevyrnogov, A. P. (2017). Estimation of chlorophyll content and yield of wheat crops from reflectance spectra obtained by ground-based remote measurements. Field Crops Research, 207, 24–29. https://doi.org/10.1016/j.fcr.2016.10.023spa
dc.relation.referencesSom-ard, J., Hossain, M. D., Ninsawat, S., & Veerachitt, V. (2018). Pre-harvest Sugarcane Yield Estimation Using UAV-Based RGB Images and Ground Observation. Sugar Tech, 1–13. https://doi.org/10.1007/s12355-018-0601-7spa
dc.relation.referencesSouza, C. H. W. de, Lamparelli, R. A. C., Rocha, J. V., & Magalhães, P. S. G. (2017). Mapping skips in sugarcane fields using object-based analysis of unmanned aerial vehicle (UAV) images. Computers and Electronics in Agriculture, 143(March 2016), 49–56. https://doi.org/10.1016/j.compag.2017.10.006spa
dc.relation.referencesStellacci, A. M., Castrignanò, A., Troccoli, A., Basso, B., & Buttafuoco, G. (2016). Selecting optimal hyperspectral bands to discriminate nitrogen status in durum wheat: a comparison of statistical approaches. Environmental Monitoring and Assessment, 188(3), 1–15. https://doi.org/10.1007/s10661-016-5171-0spa
dc.relation.referencesSugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., & Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering, 148, 1–10. https://doi.org/10.1016/j.biosystemseng.2016.04.010spa
dc.relation.referencesTabares Patiño, Edison., Villegas Jaramillo, Sonia., González Santamaría, L. Hernán., & Cotes, J. Miguel. (2009). Respuesta de la papa (Solanum tuberosum L.) Variedad diacol capiro a la fertilización en un andisol del oriente antioqueño, Colombia. Revista Facultad Nacional de Agronomía, 62(2), 5099–5110.spa
dc.relation.referencesTaiz, L., & Zeiger, E. (2010). Plant Physiology. In Annals of Botany (Fourth edi). Sinauer Associates. https://doi.org/10.1104/pp.900074spa
dc.relation.referencesThenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2), 158–182. https://doi.org/10.1016/S0034-4257(99)00067-Xspa
dc.relation.referencesThompson, R. B., Tremblay, N., Fink, M., Gallardo, M., & Padilla, F. M. (2017). Tools and Strategies for Sustainable Nitrogen Fertilisation of Vegetable Crops. In F. Tei, S. Nicola, & P. Benincasa (Eds.), Advances in Research on Fertilization Management of Vegetable Crops (pp. 11–63). Springer International Publishing. https://doi.org/10.1007/978-3-319-53626-2_2spa
dc.relation.referencesTurner, D., Lucieer, A., & Watson, C. (2012). An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SFM) point clouds. Remote Sensing, 4(5), 1392–1410. https://doi.org/10.3390/rs4051392spa
dc.relation.referencesUnidad de Planificación Rural Agropecuaria. (2016). Cultivo comercial de papa: Identificación de zonas aptas en Colombia, a escala 1:100.000. UPRA. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesVesali, F., Omid, M., Mobli, H., & Kaleita, A. (2017). Feasibility of using smart phones to estimate chlorophyll content in corn plants. Photosynthetica, 55(4), 603–610. https://doi.org/10.1007/s11099-016-0677-9spa
dc.relation.referencesVirnodkar, S. S., Pachghare, V. K., Patil, V. C., & Jha, S. K. (2020). Remote sensing and machine learning for crop water stress determination in various crops: a critical review. In Precision Agriculture (Issue 0123456789). Springer US. https://doi.org/10.1007/s11119-020-09711-9spa
dc.relation.referencesWagner, P., & Hank, K. (2013). Suitability of aerial and satellite data for calculation of site-specific nitrogen fertilisation compared to ground based sensor data. Precision Agriculture, 14(2), 135–150. https://doi.org/10.1007/s11119-012-9278-1spa
dc.relation.referencesWu, J., Wang, D., Rosen, C. J., & Bauer, M. E. (2007). Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research, 101(1), 96–103. https://doi.org/10.1016/j.fcr.2006.09.014spa
dc.relation.referencesXu, K., Gong, Y., Fang, S., Wang, K., Lin, Z., & Wang, F. (2019). Radiometric calibration of UAV remote sensing image with spectral angle constraint. Remote Sensing, 11(11). https://doi.org/10.3390/rs11111291spa
dc.relation.referencesYan, L., Gou, Z., & Duan, Y. (2009). A UAV Remote Sensing System: Design and Tests. In D. Li, J. Shan, & J. Gong (Eds.), Geospatial Technology for Earth Observation (pp. 27–44). Springer US. https://doi.org/10.1007/978-1-4419-0050-0_2spa
dc.relation.referencesYang, H., Li, F., Hu, Y., & Yu, K. (2021). Hyperspectral indices optimization algorithms for estimating canopy nitrogen concentration in potato (Solanum tuberosum L.). International Journal of Applied Earth Observation and Geoinformation, 102. https://doi.org/10.1016/j.jag.2021.102416spa
dc.relation.referencesYang, T., Lu, J., Liao, F., Qi, H., Yao, X., Cheng, T., Zhu, Y., Cao, W., & Tian, Y. (2021). Retrieving potassium levels in wheat blades using normalised spectra. International Journal of Applied Earth Observation and Geoinformation, 102, 102412. https://doi.org/10.1016/j.jag.2021.102412spa
dc.relation.referencesYin, C., Lin, J., Ma, L., Zhang, Z., Hou, T., Zhang, L., & Lv, X. (2021). Study on the Quantitative Relationship Among Canopy Hyperspectral Reflectance, Vegetation Index and Cotton Leaf Nitrogen Content. Journal of the Indian Society of Remote Sensing, 0. https://doi.org/10.1007/s12524-021-01355-0spa
dc.relation.referencesZahir, S. A. D. M., Jamlos, M. F., Omar, A. F., Jamlos, M. A., Mamat, R., Muncan, J., & Tsenkova, R. (2024). Review – Plant nutritional status analysis employing the visible and near-infrared spectroscopy spectral sensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 304(August 2023), 123273. https://doi.org/10.1016/j.saa.2023.123273spa
dc.relation.referencesZaman-Allah, M., Vergara, O., Araus, J. L., Tarekegne, A., Magorokosho, C., Zarco-Tejada, P. J., Hornero, A., Albà, A. H., Das, B., Craufurd, P., Olsen, M., Prasanna, B. M., & Cairns, J. (2015). Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods, 11(1), 1–10. https://doi.org/10.1186/s13007-015-0078-2spa
dc.relation.referencesZhang, M., Chen, T., Gu, X., Kuai, Y., Wang, C., Chen, D., & Zhao, C. (2023). UAV-borne hyperspectral estimation of nitrogen content in tobacco leaves based on ensemble learning methods. Computers and Electronics in Agriculture, 211. https://doi.org/10.1016/j.compag.2023.108008spa
dc.relation.referencesZhang, W., Liu, X., Wang, Q., Zhang, H., Li, M., Song, B., & Zhao, Z. (2018). Effects of potassium fertilization on potato starch physicochemical properties. International Journal of Biological Macromolecules, 117, 467–472. https://doi.org/10.1016/j.ijbiomac.2018.05.131spa
dc.relation.referencesZhao, R., An, L., Song, D., Li, M., Qiao, L., Liu, N., & Sun, H. (2021). Detection of chlorophyll fluorescence parameters of potato leaves based on continuous wavelet transform and spectral analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 259, 119768. https://doi.org/10.1016/j.saa.2021.119768spa
dc.relation.referencesZhao, Ruomei., An, Lulu., Tang, Weijie., Gao, Dehua., Qiao, Lang., Li, Minzan., Sun, Hong., & Qiao, Jinbo. (2022). Deep learning assisted continuous wavelet transform-based spectrogram for the detection of chlorophyll content in potato leaves. Computers and Electronics in Agriculture, 195(February). https://doi.org/10.1016/j.compag.2022.106802spa
dc.relation.referencesZhou, Z., Jabloun, M., Plauborg, F., & Andersen, M. N. (2018). Using ground-based spectral reflectance sensors and photography to estimate shoot N concentration and dry matter of potato. Computers and Electronics in Agriculture, 144, 154–163. https://doi.org/10.1016/j.compag.2017.12.005spa
dc.relation.referencesZhu, W., Rezaei, E. E., Nouri, H., Sun, Z., Li, J., Yu, D., & Siebert, S. (2022). UAV-based indicators of crop growth are robust for distinct water and nutrient management but vary between crop development phases. Field Crops Research, 284. https://doi.org/10.1016/j.fcr.2022.108582spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.ddc640 - Gestión del hogar y vida familiar::641 - Alimentos y bebidasspa
dc.subject.lembPAPAS (TUBERCULOS)spa
dc.subject.lembPotatoeseng
dc.subject.lembHORTALIZAS DE RAIZ-CULTIVOspa
dc.subject.lembRoot vegetables--Cropseng
dc.subject.lembPAPAS (TUBERCULOS)-ABONOS Y FERTILIZANTESspa
dc.subject.lembPotatoes - fertilizers and manureseng
dc.subject.lembCONTAMINACION DE SUELOSspa
dc.subject.lembSoil pollutioneng
dc.subject.lembPRODUCTOS QUIMICOS AGRICOLAS-ASPECTOS AMBIENTALESspa
dc.subject.lembAgricultural chemicals - environmental aspectseng
dc.subject.lembNITROGENO COMO FERTILIZANTEspa
dc.subject.lembNitrogen as fertilizereng
dc.subject.lembPOTASIO COMO FERTILIZANTEspa
dc.subject.lembPotassium as fertilizereng
dc.subject.proposalÍndices de vegetaciónspa
dc.subject.proposalRegión Red-edgespa
dc.subject.proposalSensores de ion selectivospa
dc.subject.proposalMedidas repetidas en el tiempospa
dc.subject.proposalVegetation indiceseng
dc.subject.proposalRed-edge regioneng
dc.subject.proposalIon selective sensorseng
dc.subject.proposalRepeated measures in timeeng
dc.titleEvaluación de la relación entre el estado nutricional y la respuesta espectral del cultivo de papa (Solanum tuberosum L.) para la estimación del contenido de nitrógeno y potasiospa
dc.title.translatedEvaluation of the relationship between the nutritional status and the spectral response of the potato crop (Solanum tuberosum L.) for the estimation of nitrogen and potassium contenteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022998428.2024.pdf
Tamaño:
3.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: