Análisis de factores comunes dinámicos en presencia de procesos de ruido autocorrelacionados

dc.contributor.advisorNieto Sánchez, Fabio Humbertospa
dc.contributor.advisorPeña Sánchez de Rivera, Danielspa
dc.contributor.authorBolívar Atuesta, Stevensonspa
dc.contributor.researchgroupSeries de Tiempospa
dc.date.accessioned2021-01-27T22:38:47Zspa
dc.date.available2021-01-27T22:38:47Zspa
dc.date.issued2020-07-25spa
dc.description.abstractThis thesis presents a procedure to build a dynamic factor model in the presence of orthogonal stationary noise-processes. The procedure is based on the Peña-Box model (Peña & Box, 1987), in which the number of observed time series is fixed, and in the extension proposed by Peña & Poncela (2006) to non-stationary common factors, in which the common factors may be integrated processes. As a first result, an alternative for detecting the number of common factors is proposed by extending the statistical test of Peña & Poncela (2006), proposed for the Peña-Box model with a white noise process. Furthermore, in the same context, a statistical test is proposed to identify the number of non-stationary common factors. These proposals are illustrated by simulation and an application with real data, in which some empirical findings related to seasonal factors are also presented. The model is estimated by maximum likelihood, via a state-space model.spa
dc.description.abstractEsta tesis presenta un procedimiento para construir un modelo de factores comunes dinámicos en presencia de procesos de ruido estacionarios ortogonales. El procedimiento se basa en el modelo de Peña-Box (Peña & Box, 1987), en el cual el número de series de tiempo observadas es fijo, y en la extensión propuesta por Peña & Poncela (2006) a factores comunes no estacionarios, en la cual los factores comunes pueden ser procesos integrados. Como primer resultado, se propone una alternativa para la identificación del número de factores comunes extendiendo la prueba estadística de Peña & Poncela (2006) , propuesta para el modelo Peña-Box con proceso de ruido blanco. Adicionalmente, bajo el mismo contexto, se propone una prueba estadística para identificar el número de factores comunes no estacionarios. Estas propuestas son ilustradas mediante simulación y una aplicación con datos reales, en la cual también se presentan algunos hallazgos empíricos relacionados a factores estacionales. La estimación del modelo se realiza por máxima verosimilitud, vía un modelo espacio de estados.spa
dc.description.additionalLínea de investigación: Series de Tiempospa
dc.description.degreelevelDoctoradospa
dc.format.extent97spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78960
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Estadísticaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Estadísticaspa
dc.relation.referencesAhn, S. C. & Horenstein, A. R. (2013). Eigenvalue Ratio Test for the Number of Factors, Econometrica 81(3): 1203–1227.spa
dc.relation.referencesAlonso, A. M., Galeano, P. & Pe˜na, D. (2020). A robust procedure to build dynamic factor models with cluster structure, Journal of Econometrics.spa
dc.relation.referencesAmengual, D. & Watson, M. W. (2007). Consistent estimation of the number of dynamic factors in a large n and t panel, Journal of Business & Economic Statistics 25(1): 91– 96.spa
dc.relation.referencesAnderson, T. W. (1963b). The use of factor analysis in the statistical analysis of multiple time series, Psychometrika 28(1-25).spa
dc.relation.referencesArgyros, I. K. & d Hilout, S. (2013). Computational methods in nonlinear analysis: efficient algorithms, fixed point theory and applications, World Scientific.spa
dc.relation.referencesBai, J. (2003). Inferential theory for factor models of large dimensions, Econometrica 71(1): 135–171.spa
dc.relation.referencesBai, J. & Ng, S. (2002). Determining the number of factors in approximate factor models, Econometrica 70(191-222).spa
dc.relation.referencesBai, J. & Ng, S. (2004). A panic attack on unit roots and cointegration., Econometrica 72(1127-1177).spa
dc.relation.referencesBai, J. & Ng, S. (2007). Determining the number of primitive shocks in factor models, Journal of Business & Economic Statistics 25(1): 52–60.spa
dc.relation.referencesBai, J. & Ng, S. (2010). Panel unit root tests with cross-section dependence: a further investigation, Econometric Theory 26(4): 1088–1114.spa
dc.relation.referencesBai, J. & Wang, P. (2015). Identification and bayesian estimation of dynamic factor models, Journal of Business & Economic Statistics 33(2): 221–240.spa
dc.relation.referencesBai, J. & Wang, P. (2016). Econometric analysis of large factor models, Annual Review of Economics 8(1): 53–80.spa
dc.relation.referencesBickel, P. J., Levina, E. et al. (2008a). Covariance regularization by thresholding, The Annals of Statistics 36(6): 2577–2604.spa
dc.relation.referencesBickel, P. J., Levina, E. et al. (2008b). Regularized estimation of large covariance matrices, The Annals of Statistics 36(1): 199–227.spa
dc.relation.referencesBolívar, S., Nieto, F. H. & Peña, D. (2021). On a new procedure for identifying a dynamic common factor model, Revista Colombiana de Estadística 44(1): 1–21.spa
dc.relation.referencesBreitung, J. & Pigorsch, U. (2013). A canonical correlation approach for selecting the number of dynamic factors., Oxford Bulletin of Economics and Statistics 75(1): 23–36.spa
dc.relation.referencesBreitung, J. & Tenhofen, J. (2011). GLS estimation of dnamic factor models, Journal of the American Statistical Association 106(1150-1166).spa
dc.relation.referencesCai, T. T., Ren, Z., Zhou, H. H. et al. (2016). Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation, Electronic Journal of Statistics 10(1): 1–59.spa
dc.relation.referencesCai, T. T., Zhang, C.-H., Zhou, H. H. et al. (2010). Optimal rates of convergence for covariance matrix estimation, The Annals of Statistics 38(4): 2118–2144.spa
dc.relation.referencesCai, T. T., Zhou, H. H. et al. (2012). Optimal rates of convergence for sparse covariance matrix estimation, The Annals of Statistics 40(5): 2389–2420.spa
dc.relation.referencesChamberlain, G. (1983). Funds, factors, and diversification in arbitrage pricing models, Econometrica 51(5): 1305–1323.spa
dc.relation.referencesChamberlain, G. & Rothschild, M. (1983). Arbitrage, factor structure, and mean-variance analysis on large asset markets, Econometrica 51(5): 1281–1304.spa
dc.relation.referencesChudik, A., Pesaran, M. H. &Tosetti, E. (2011). Weak and strong cross-section dependence and estimation of large panels, The Econometrics Journal 14(1): C45–C90.spa
dc.relation.referencesCorona, F., Poncela, P. & Ruiz, E. (2017). Determining the number of factors after stationary univariate transformations, Empirical Economics 53(1): 351–372.spa
dc.relation.referencesCorona, F., Poncela, P. & Ruiz, E. (2020). Estimating non-stationary common factors: implications for risk sharing, Computational Economics 55(1): 37–60.spa
dc.relation.referencesCorreal, M. E. (2007). Modelo Factorial Dinámico TAR, PhD thesis, Universidad Nacional de Colombia - Sede Bogotá.spa
dc.relation.referencesDempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm, Journal of the Royal Statistical Society: Series B (Methodological) 39(1): 1–22.spa
dc.relation.referencesDoz, C. & Fuleky, P. (2019). Dynamic Factor Models. working paper or preprint. URL: https://halshs.archives-ouvertes.fr/halshs-02262202spa
dc.relation.referencesDoz, C., Giannone, D. & Reichlin, L. (2011). A two-step estimator for large approximate dynamic factor models based on Kalman filtering, Journal of Econometrics 164(1): 188 – 205.spa
dc.relation.referencesDoz, C., Giannone, D. & Reichlin, L. (2012). A quasi-maximum likelihood approach for large, approximate dynamic factor models., Review of Economics and Statistics 94(4): 1014 – 1024.spa
dc.relation.referencesFan, J., Fan, Y. & Lv, J. (2008). High dimensional covariance matrix estimation using a factor model, Journal of Econometrics 147(1): 186–197.spa
dc.relation.referencesForni, M., Hallin, M., Lippi, M. & Reichlin, L. (2000). The generalized dynamic-factor model: Identification and estimation., Review ofEconomics and Statistics 82(4): 540– 554.spa
dc.relation.referencesFurrer, R. & Bengtsson, T. (2007). Estimation of high-dimensional prior and posterior covariance matrices in kalman filter variants, Journal of Multivariate Analysis 98(2): 227–255.spa
dc.relation.referencesGayles, J. & Molenaar, P. (2013). The utility of person-specific analyses for investigating developmental processes: An analytic primer on studying the individual, International Journal of Behavioral Development .spa
dc.relation.referencesGeweke, J. (1977). The dynamic factor analysis of economic timeseries models, Latent variables in socio-economic models pp. 365–383.spa
dc.relation.referencesGraybill, F. A. F. A. (1983). Matrices with Applications in Statistics, Wadsworth statistics/probability series, second edn, Wadsworth International Group, Belmont, CA, USA.spa
dc.relation.referencesHallin, M. & Lippi, M. (2013). Factor models in high-dimensional time series?a timedomain approach, Stochastic Processes and their Applications 123(7): 2678 – 2695.spa
dc.relation.referencesHallin, M. & Liska, R. (2007). Determining the number of factors in the general dynamic factor model, Journal of the American Statistical Association 102(603-617).spa
dc.relation.referencesHindrayanto, I., Koopman, S. J. & Ooms, M. (2010). Exact maximum likelihood estimation for non-stationary periodic time series models, Computational Statistics & Data Analysis 54: 2641–2654.spa
dc.relation.referencesHu, Y.-P. (2005). Identifying the time-effect factors of multiple time series, Journal of Forecasting 24(379-387).spa
dc.relation.referencesHu, Y.-P. (2011). Likelihood function and canonical correlation analysis of the Pe˜na-Box model, Communications in Statistics-Theory and Methods 40(1453-1467).spa
dc.relation.referencesHu, Y.-P. & Chou, R.-J. (2003). A dynamic factor model., Journal ofTime Series Analysis 24(5): 529–538.spa
dc.relation.referencesHu, Y.-P. & Chou, R.-J. (2004). On the Pe˜na-Box model, Journal ofTime Series Analysis 25(811-830).spa
dc.relation.referencesHu, Y.-P. & Chou, R.-J. (2008). A generalized time-effect factor model and its application: recovering trend of temperature by pollen data, Environmetrics 19(5): 439–451.spa
dc.relation.referencesHuang, J. Z., Liu, N., Pourahmadi, M. & Liu, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood, Biometrika 93(1): 85–98.spa
dc.relation.referencesJohnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis, The Annals of Statistics 29(2): 295–327.spa
dc.relation.referencesJungbacker, B. & Koopman, S. J. (2015). Likelihood-based dynamic factor analysis for measurement and forecasting, The Econometrics Journal 18(2): C1–C21.spa
dc.relation.referencesKoopman, S. J. & Durbin, J. (2000). Fast filtering and smoothing for multivariate state space models., Journal of Time Series Analysis 21(3): 281–296.spa
dc.relation.referencesLam, C. & Yao, Q. (2012). Factor modeling for high-dimensional time series: Inference for the number of factors, The Annals of Statistics 40(2): 694–726.spa
dc.relation.referencesLutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis, Springer Publishing Company.spa
dc.relation.referencesMarchenko, V. & Pastur, L. (1967). Distributions of eigenvalues of some sets of random matrices, Math. USSR-Sb 1: 507–536.spa
dc.relation.referencesMartínez, W. O., Nieto, F. H. & Poncela, P. (2013). Choosing a dynamic common factor as a coincident index, Reporte Interno de Investigación 25(1-26).spa
dc.relation.referencesMetaxoglou, K. & Smith, A. (2007). Maximun likelihood estimation of VARMA models using a state-space EM algorithm, Journal of Time Series Analysis 28(5): 666–685.spa
dc.relation.referencesNieto, F. H., Peña, D. & Saboyá, D. (2016). Common seasonality in multivariate time series, Statistica Sinica 26(4): 1389–1410.spa
dc.relation.referencesOnatski, A. (2009). Testing hypotheses about the number of factors in large factor models, Econometrica 77(5): 1447–1479.spa
dc.relation.referencesOnatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues, The Review of Economics and Statistics 72(4): 1004–1016.spa
dc.relation.referencesOnatski, A. (2012). Asymptotics of the principal components estimator of large factor models with weakly influential factors, Journal of Econometrics 168(2): 244 – 258.spa
dc.relation.referencesPaul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, Statistica Sinica pp. 1617–1642.spa
dc.relation.referencesPeña, D. (2002). Análisis de datos multivariantes, McGraw-Hill/Interamericana de España.spa
dc.relation.referencesPeña, D. & Box, G. E. P. (1987). Identifying a simplifying structure in time series, Journal of the American Statistical Association 82(836-843).spa
dc.relation.referencesPeña, D. & Poncela, P. (2006). Dimension reduction in multivariate time series, in N. Balakrishnan, J. Sarabia & E. Castillo (eds), Advances in Distribution Theory, Order Statistics, and Inference, Statistics for Industry and Technology, Birkhäuser Boston, pp. 433–458.spa
dc.relation.referencesPeña, D. & Poncela, P. (2006). Nonstationary dynamic factor analysis, Journal of Statistical Planning and Inference 136(1237-1257).spa
dc.relation.referencesPeña, D. & Yohai, V. J. (2016). Generalized dynamic principal components, Journal of the American Statistical Association 111(515): 1121–1131.spa
dc.relation.referencesR Core Team (2019). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/spa
dc.relation.referencesRam, N., Brose, A., Molenaar, P. C. et al. (2013). Dynamic factor analysis: Modeling person-specific process, The Oxford handbook of quantitative methods 2: 441–457.spa
dc.relation.referencesReichel, L. & Trefethen, L. N. (1992). Eigenvalues and pseudo-eigenvalues of toeplitz matrices, Linear algebra and its applications 162: 153–185.spa
dc.relation.referencesReinsel, G. C. (1997). Elements of Multivariate Time Series Analysis, second edi edn, Springer-Verlag.spa
dc.relation.referencesResnick, S. (2005). A probability path, Birkhäuser.spa
dc.relation.referencesRothman, A. J., Bickel, P. J., Levina, E., Zhu, J. et al. (2008). Sparse permutation invariant covariance estimation, Electronic Journal of Statistics 2: 494–515.spa
dc.relation.referencesSoshnikov, A. (2002). A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices, Journal of Statistical Physics 108(5-6): 1033– 1056.spa
dc.relation.referencesStock, J. H. & Watson, M. W. (1991). A probability model of the coincident economic indicators, in: G. Moore and K. Lahiri, eds., The Leading Economic Indicators: New Approaches and Forecasting Records (Cambridge University Press, Cambridge) .spa
dc.relation.referencesStock, J. H. & Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes, Journal of Business & Economic Statistics 20(2): 147–162.spa
dc.relation.referencesStock, J. & Watson, M. (2016). Dynamic factor models, factor-augmented vector autoregressions, and structural vector autoregressions in macroeconomics, in J. B. Taylor & H. Uhlig (eds), Handbook of macroeconomics, Vol. 2 of Handbook of Macroeconomics, Elsevier, chapter 8, pp. 415 – 525.spa
dc.relation.referencesTanaka, K. (2017). Time Series Analysis: Nonstationary and Noninvertible Distribution Theory, John Wiley & Sons.spa
dc.relation.referencesTiao, G. C. & Tsay, R. S. (1989). Model specification in multivariate time series, Journal of the Royal Statistical Society. Series B (Methodological) 51(157-213).spa
dc.relation.referencesTyler, D. E. et al. (1983). The asymptotic distribution of principal component roots under local alternatives to multiple roots, The Annals of Statistics 11(4): 1232–1242.spa
dc.relation.referencesVenables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics with S, fourth edn, Springer, New York.spa
dc.relation.referencesWu, W. B. & Pourahmadi, M. (2009). Banding sample autocovariance matrices of stationary processes, Statistica Sinica pp. 1755–1768.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.proposalCanonical correlationeng
dc.subject.proposalCorrelación canónicaspa
dc.subject.proposalEstacionalidad comúnspa
dc.subject.proposalCommon seasonalityeng
dc.subject.proposalFactores comunes dinámicosspa
dc.subject.proposalDynamic common factorseng
dc.subject.proposalSeries de tiempo multivariadasspa
dc.subject.proposalMultivariate time serieseng
dc.titleAnálisis de factores comunes dinámicos en presencia de procesos de ruido autocorrelacionadosspa
dc.title.alternativeAnalysis of dynamic common factors in the presence of autocorrelated noise-processesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
9868363.2020.pdf
Tamaño:
1.14 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: