Oxidación catalítica en medio heterogéneo de un colorante azoico empleando el sistema peróxido activado con bicarbonato

dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.advisorCardona Castaño, Julio Andres
dc.contributor.authorMarín González, Natalia
dc.contributor.orcidMarín González, Nataia [0000-0002-1199-9863]spa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos, Catalíticos y Biotecnológicos - PQCBspa
dc.date.accessioned2023-06-27T16:10:38Z
dc.date.available2023-06-27T16:10:38Z
dc.date.issued2022
dc.descriptiongraficas, tablasspa
dc.description.abstractUno de los contaminantes recalcitrantes que generan alto impacto en los cuerpos de agua son los colorantes sintéticos, especialmente los que contienen en su estructura molecular grupos azo, debido a que impiden los procesos fotosintéticos, reducen la concentración de oxígeno disuelto y afectan la dinámica del sistema acuático. Dada la compleja estructura química y tamaño molecular de los colorantes, la mayoría de estos compuestos no logran ser eliminados por los métodos convencionales para el tratamiento de aguas. El rojo allura, también conocido como rojo No. 40 o E129, es un colorante azoico ampliamente utilizado en la industria alimentaria para impartir coloración en helados, refrescos, dulces y productos de panadería. Su fórmula molecular es C18H14N2Na2O8S2 y se caracteriza por ser una molécula estable, con una vida media de 33.6 h bajo fotólisis directa (UVB). En la presente investigación se evaluó el potencial catalítico de la bentonita pilarizada con aluminio e impregnada con cobalto (Co/Al-PILC) para la oxidación del colorante rojo allura con el sistema BAP (por sus siglas en inglés, Bicarbonate-Activated Peroxide), bajo condiciones suaves de temperatura y presión (25 °C y presión atmosférica). Para todos los ensayos de oxidación se empleó una dosis de catalizador de 2.0 g/L y la concentración de cobalto impregnado fue del 1.0% en masa. El efecto de las concentraciones de H2O2, NaHCO3 y colorante sobre la decoloración y remociones de carbono total (CT) y nitrógeno total (NT) se analizó mediante un diseño central compuesto (DCC) y la metodología de superficie de respuesta (MSR). Empleando el sistema Co/Al-PILC-BAP se lograron decoloraciones de 99.43%, y remociones de NT y CT del 72.82 y 18.74%, respectivamente. Los datos experimentales de decoloración y remoción del CT y NT se ajustaron a modelos matemáticos de segundo orden, con coeficientes de determinación (R2) mayores a 0.9713. Las condiciones óptimas que maximizan la decoloración y mineralización se obtuvieron para concentraciones de colorante, H2O2 y NaHCO3 de 21.25 mg/L, 2.59 y 1.25 mM, respectivamente. Los datos de la cinética de decoloración 25 y 35 °C se ajustaron al modelo de pseudo primer orden, en tanto que a 45 °C el mejor ajuste fue al modelo de pseudo segundo orden. Algunos intermediarios y subproductos finales de reacción fueron identificados mediante análisis de cromatografía líquida (HPLC) y cromatografía de gases acoplada a espectrometría de masas (CG-EM). Los resultados de esta investigación mostraron que el sistema BAP catalizado con cobalto soportado sobre una arcilla pilarizada (Co/Al-PILC) es una alternativa para el tratamiento de aguas coloreadas, y puede ser empleado como tratamiento terciario o como pretratamiento para mejorar la biodegradabilidad del agua. (Texto tomado de la fuente)spa
dc.description.abstractOne of the recalcitrant pollutants that have a high impact on water bodies are synthetic dyes, especially those that contain azo groups in their molecular structure, because they impede photosynthetic processes, reduce the concentration of dissolved oxygen, and affect the dynamics of the aquatic system. Due to the complex chemical structure and molecular size of the dyes, most of these compounds cannot be removed by conventional water treatment methods. Allura red, also known as red No. 40 or E129, is an azo dye widely used in the food industry to impart coloration in ice cream, soft drinks, candies, and bakery products. Its molecular formula is C18H14N2Na2O8S2 and it is characterized by being a stable molecule, with a half-life of 33.6 h under direct photolysis (UVB). In the present investigation, the catalytic potential of cobalt-impregnated aluminum-pillarized bentonite (Co/Al-PILC) was evaluated for the oxidation of allura red dye with the Bicarbonate-Activated Peroxide (BAP) system under mild temperature and pressure conditions (25 °C and atmospheric pressure). For all oxidation tests, a catalyst dosage of 2.0 g/L was used, and the impregnated cobalt concentration was 1.0% by mass. The effect of H2O2, NaHCO3 and dye concentrations on decolorization and total carbon (TC) and total nitrogen (TN) removals was analyzed using a central composite design (CCD) and response surface methodology (RSM). Using the Co/Al-PILC-BAP system, discolorations of 99% and TC and TN removals of 18 and 72%, respectively, were achieved. The experimental data for TC and TN discoloration and removal were fitted to second-order mathematical models, with coefficients of determination (R2) greater than 0.9713. Optimal conditions maximizing decolorization and mineralization were obtained for dye, H2O2 and NaHCO3 concentrations of 21.25 mg/L, 2.59 and 1.25 mM, respectively. The decolorization kinetics data 25 and 35 °C were fitted to the pseudo first order model, while at 45 °C the best fit was to the pseudo second order model. Some intermediates and final reaction by-products were identified by liquid chromatography (HPLC) and gas chromatography coupled to mass spectrometry (GC-MS) analysis. The results of this research showed that the cobalt-catalyzed BAP system supported on a pillared clay (Co/Al-PILC) is an alternative for the treatment of colored water and can be employed as a tertiary treatment or as a pretreatment to improve the biodegradability of the water.eng
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.format.extentii, 104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84079
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesSanz, A. Química Orgánica Industrial. La Industria de los Colorantes y Pigmentos. Consultado el 10 de abril de 2021. Disponible en https://www.eii.uva.es/organica/qoi/tema-11.php.spa
dc.relation.referencesMarcano, D. (2018). Capítulo 2. Constitución Química de los Colorantes, In: Introducción a la Química de los Colorantes. Marcano, D. (Ed). Academia de Ciencias Físicas, Matemáticas y Naturales: Caracas, VEN, pg. 26-99.spa
dc.relation.referencesBożęcka, A. M., Orlof-Naturalna, M. M., Kopeć, M. (2021). Methods of dye removal from aqueous environment. Journal of Ecological Engineering, 22(9): 111-118.spa
dc.relation.referencesSharma, K., Dalai, A. K., Vyas, R. K. (2018). Removal of synthetic dyes from multicomponent industrial wastewaters. Reviews in Chemical Engineering, 34(1): 107-134.spa
dc.relation.referencesRobinson, T., McMullan, G., Marchant, R., Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3): 247-255.spa
dc.relation.referencesVacchi, F., Albuquerque, A., Vendemiatti, J., Morales, D., Ormond, A., Freeman, H., Zocolo, G., Zanoni, M., Umbuzeiro, G. (2012). Chlorine disinfection of dye wastewater: Implications for a commercial azo dye mixture. The Science of the Total Environment, 442: 302-309.spa
dc.relation.referencesBarrios-Ziolo, L. F., Gaviria-Restrepo, L.-F., Agudelo, E. A., Cardona-Gallo, S. A. (2016). Estudio de la toxicidad asociada al vertimiento de aguas residuales con presencia de colorantes y pigmentos en el área metropolitana del Valle de Aburrá. EIA, 13(26): 61-74.spa
dc.relation.referencesCelik, S., Duman, N., Sayin, F., Tunali Akar, S., Akar, T. (2021). Microbial cells immobilized on natural biomatrix as a new potential ecofriendly biosorbent for the biotreatment of reactive dye contamination. Journal of Water Process Engineering, 39: 101731.spa
dc.relation.referencesSiddiqui, S. I., Ravi, R., Rathi, G., Tara, N., Islam, S. U., Chaudhry, S. A. (2018). Chapter 6. Decolorization of Textile Wastewater Using Composite Materials, In: Nanomaterials in the Wet Processing of Textiles. ul-Islam, S., Butola, B. S. (Eds). Scrivener Publishing LLC: IND, pg. 187-218.spa
dc.relation.referencesKatheresan, V., Kansedo, J., Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4): 4676-4697.spa
dc.relation.referencesNamasivayam, C., Jeyakumar, R., Yamuna, R. T. (1994). Dye removal from wastewater by adsorption on ‘waste’ Fe(III)/Cr(III) hydroxide. Waste Management, 14(7): 643-648.spa
dc.relation.referencesAtalay, S., Ersöz, G. (2015). Chapter 3. Advanced Oxidation Processes for Removal of Dyes from Aqueous Media, In: Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications. Sharma, S. K. (Ed). Scrivener Publishing LLC: Massachusetts, USA, pg. 83-117.spa
dc.relation.referencesDomènech, X., Jardim, W. F., Litter, M. I. (2001). Capítulo 1. Procesos Avanzados de Oxidación para la Eliminación de Contaminantes, In: Eliminación de Contaminantes por Fotocatálisis Heterogénea. Blesa, M. A. (Ed). Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo - CYTED: La Plata, ARG, pg. 3-25.spa
dc.relation.referencesOrtiz, I., Rivero, M., Margallo, M. (2019). Chapter 6. Advanced Oxidative and Catalytic Processes, In: Sustainable Water and Wastewater Processing. Galanakis, C., Agrafioti, E. (Eds). Elsevier Inc: ESP, pg. 161-201.spa
dc.relation.referencesDomingues, E., Gomes, J., Quina, M., Quinta-Ferreira, R., Martins, R. (2018). Detoxification of olive mill wastewaters by Fenton’s process. Catalysts, 8(12): 662.spa
dc.relation.referencesGoldstein, S., Meyerstein, D., Czapski, G. (1993). The Fenton reagents. Free Radical Biology and Medicine, 15(4): 435-445.spa
dc.relation.referencesBokare, A. D., Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: 121-135.spa
dc.relation.referencesJawad, A., Chen, Z., Yin, G. (2016). Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): 810-825.spa
dc.relation.referencescherifi-naci, H., Louhab, K., Aksas, H. (2015). Elimination of copper (II) in aqueous solution by adsorption on a pillared clay with polycations of aluminum and iron. Research Journal of Chemistry and Environment, 19: 73-81.spa
dc.relation.referencesBaloyi, J., Ntho, T., Moma, J. (2018). Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): 5197-5211.spa
dc.relation.referencesMarković, M., Marinović, S., Mudrinić, T., Ajduković, M., Jović-Jovičić, N., Mojović, Z., Orlić, J., Milutinović-Nikolić, A., Banković, P. (2019). Co(II) impregnated Al(III)-pillared montmorillonite–Synthesis, characterization and catalytic properties in Oxone® activation for dye degradation. Applied Clay Science, 182: 105276.spa
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., Yin, G. (2015). Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: 165-173.spa
dc.relation.referencesJawad, A., Lu, X., Chen, Z., Yin, G. (2014). Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide. Journal of Physical Chemistry A, 118(43): 10028-10035.spa
dc.relation.referencesZhou, L., Song, W., Chen, Z., Yin, G. (2013). Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science and Technology, 47(8): 3833-3839.spa
dc.relation.referencesCerrón, D., Unterlass, M. (2018). Ecofriendly synthesis of colorants. Revista de Química (PUCP), 32(1): 18- 31.spa
dc.relation.referencesDecelles, C. (1949). The story of dyes and dyeing. Journal of Chemical Education, 26(11): 583-587.spa
dc.relation.referencesIndependent Commodity Intelligence Services. (2008). Germany Beat the British to Dominate Dyes. Consultado el 13 de abril de 2021. Disponible en https://www.icis.com/explore/resources/news/2008/05/12/9122542/germany-beat-the-british-to-dominate-dyes/.spa
dc.relation.referencesAramouni, F., Deschenes, K. (2014). Chapter 6. Food Additives, In: Methods for Developing New Food Products: An Instructional Guide. Aramouni, F., Deschenes, K. (Eds). DEStech Publications, Inc: Lancaster-Pennsylvania, USA, pg. 87-124.spa
dc.relation.referencesChequer, F., Olivera, G. A. R., Ferraz, E., Cardoso, J., Zanoni, M., Olivera, D. P. (2013). Textile dyes: Dyeing process and environmental impact. Eco-Friendly Textile Dyeing and Finishing, 6: 151-176.spa
dc.relation.referencesAbrahart, E. N. (2019). Dye. Consultado el 28 de abril de 2021. Disponible en https://www.britannica.com/technology/dye.spa
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., Gürses, M. S. (2016). Chapter 2. Their Structure and Properties, In: Dyes and Pigments. Sharma, S. K. (Ed). Springer International: Jaipur, IND, pg. 13-29.spa
dc.relation.referencesHanna Instruments. Fotometría como Ténica Instrumental en el Análisis de Agua. Consultado el 13 de mayo de 2021. Disponible en https://www.hannainst.es/blog/1498/Fotometria-como-tecnica-instrumental-agua.spa
dc.relation.referencesSelim, Y., Mohamed, A. (2017). Role of dyestuff in improving dye-sensitized solar cell performance. Renewable Energy and Sustainable Development, 3(1): 79-82.spa
dc.relation.referencesRamírez, L. C. C., Lozano, L. C. (2020). Principios físicoquímicos de los colorantes utilizados en microbiología. NOVA, 18(33): 73-100.spa
dc.relation.referencesFernández, G. Espectroscopía Visible Ultravioleta. Grupos Cromóforos y Auxocromos. Consultado el 30 de marzo de 2021. Disponible en https://www.quimicaorganica.org/espectroscopia-visible-ultraviolata/735-grupos-cromoforos-y-auxocromos.html.spa
dc.relation.referencesGürses, A., Açıkyıldız, M., Güneş, K., Gürses, M. S. (2016). Chapter 3. Classification of Dye and Pigments, In: Dyes and Pigments. Heron, B. M., Wainwright, M. (Eds). SpringerBriefs: Jaipur, IND, pg. 31-45.spa
dc.relation.referencesEl-Sikaily, A., Khaled, A., El Nemr, A. (2012). Chapter 2. Textile Dyes Xenobiotic and Their Harmful Effect, In: Non-Conventional Textile Waste Water Treatment. Nemr, A. E. (Ed). Nova Science: EGY pg. 31-64.spa
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 2724063, Naphthol Yellow S. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/2724063.spa
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 6915910, Naphthol Green B. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/6915910.spa
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 13297, Sudan I. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/13297.spa
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 11294, Malachite Green. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/11294.spa
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 2723854, Indigo Carmine. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/2723854.spa
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem Compound Summary for CID 25863, Procion Blue MX-R. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/25863.spa
dc.relation.referencesSezgin, A., Ayyıldız, S. (2017). Food Additives: Colorants, In: Science within Food: Up-to-Date Advances on Research and Educational Ideas Méndez, A. (Ed). Printed: ESP, pg. 87-94.spa
dc.relation.referencesCoultate, T., Blackburn, R. (2018). Food colorants: Their past, present and future. Coloration Technology, 134(2010): 1-21.spa
dc.relation.referencesChung, K.-T. (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health, 34(4): 233-261.spa
dc.relation.referencesCorradini, M. (2018). Synthetic Food Colors, In: Reference Module in Food Science. Beddows, C. (Ed). Elsevier Inc: Amsterdam, NLD, pg. 1-6.spa
dc.relation.referencesFood and Drug Administration. (2021). Report on the Certification of Color Additives: 2nd Quarter, Fiscal Year 2021, January 1-March 31. Consultado el 20 de mayo de 2021. Disponible en https://www.fda.gov/industry/color-certification-reports/report-certification-color-additives-2nd-quarter-fiscal-year-2021-january-1-march-31.spa
dc.relation.referencesShah, K. (2014). Biodegradation of azo dye compounds. International Research Journal of Biochemistry and Biotechnology, 1(2): 005-013.spa
dc.relation.referencesAl-Rubaie, L., Abd-Alredha, R., Jameel Mhessn, R. (2012). Synthesis and characterization of azo dye para red and new derivatives. E-Journal of Chemistry, 9(1): 465-470.spa
dc.relation.referencesArvizu, I., Alvarez, L. H., Almaguer, V., Garcia-Reyes, B., Olivo, D., Del Angel, Y. (2019). Biotransformación de colorantes azo por microorganismos reductores del humus. BioTecnología, 23(3): 61-73.spa
dc.relation.referencesBenkhaya, S., M'Rabet, S., El Harfi, A. (2020). Classifications, properties, recent synthesis and applications of azo dyes. Heliyon, 6(1): e03271.spa
dc.relation.referencesGriffiths, J. (1990). The Evolution of Present-Day Dye Technology, In: The Chemistry and Application of Dyes. Waring, D. R., Hallas, G. (Eds). Springer US: Boston, USA, pg. 1-16.spa
dc.relation.referencesBerrie, B., Lomax, S. (1997). Azo pigments: Their history, synthesis, properties, and use in artists' materials. Studies in the History of Art, 57: 8-33.spa
dc.relation.referencesBafana, A., Devi, S. S., Chakrabarti, T. (2011). Azo dyes: past, present and the future. Environmental Reviews, 19: 350-370.spa
dc.relation.referencesSiddiquee, S., Shafwanah, A. M. S. (2020). Chapter 10. Toxicology and Analytical Methods for the Analysis of Allura Red (E129) in Food and Beverage Products: A Current Perspective, In: Safety Issues in Beverage Production. Grumezescu, A., Holban, A. M. (Eds). Academic Press: Oxford, GBR, pg. 335-357.spa
dc.relation.referencesRovina, K., Siddiquee, S., Shaarani, S. M. (2016). Extraction, analytical and advanced methods for detection of allura red AC (E129) in food and beverages products. Frontiers in Microbiology, 7: 798 - 811.spa
dc.relation.referencesKönig, J. (2015). Chapter 2. Food Colour Additives of Synthetic Origin, In: Colour Additives for Foods and Beverages. Scotter, M. J. (Ed). Woodhead Publishing: Oxford, GBR, pg. 35-60.spa
dc.relation.referencesBoyles, C., Sobeck, S. J. S. (2020). Photostability of organic red food dyes. Food Chemistry, 315: 126249.spa
dc.relation.referencesNational Center for Biotechnology Information. (2005). PubChem compound summary for CID 33258, Allura Red AC. Consultado el 30 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/Allura-Red-AC.spa
dc.relation.referencesPereira, L., Alves, M. (2012). Chapter 4. Dyes-Environmental Impact and Remediation, In: Environmental Protection Strategies for Sustainable Development. Grohmann, E., Malik, A. (Eds). Springer: Dordrecht, NLD, pg. 111-162.spa
dc.relation.referencesRuíz, Á., Garces Giraldo, L. (2009). Removal of azo amaranth dye from aqueous solution by the use of electro coagulation. Revista Lasallista de Investigación, 6(2): 31-38.spa
dc.relation.referencesHao, O., Kim, H., Chiang, P.-C. (1999). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 30: 449-505.spa
dc.relation.referencesTkaczyk, A., Mitrowska, K., Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717: 137222.spa
dc.relation.referencesSubramaniam, M. N., Goh, P. S., Lau, W. J., Ng, B. C., Ismail, A. F. (2018). Chapter 3. Development of Nanomaterial-Based Photocatalytic Membrane for Organic Pollutants Removal, In: Advanced Nanomaterials for Membrane Synthesis and its Applications. Lau, W. J., Ismail, A. F., Isloor, A., Al-Ahmed, A. (Eds). IWA publishing: London, GBR, pg. 45-67.spa
dc.relation.referencesScotter, M. J., Castle, L. (2004). Chemical interactions between additives in foodstuffs: A review. Food Additives and Contaminants, 21(2): 93-124.spa
dc.relation.referencesHussain, S., Khan, N., Gul, S., Khan, S., Khan, H. (2019). Contamination of Water Resources by Food Dyes and its Removal Technologies, In: Water Chemistry. Eyvaz, M., Yüksel, E. (Eds). IntechOpen: London, GBR, pg. 1-14.spa
dc.relation.referencesJajpura, L. (2019). Biotechnology Applications in Textiles, In: Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications. Islam, S., Butola, B. (Eds). Scrivener Publishing: Beverly, USA, pg. 99-127.spa
dc.relation.referencesJulkapli, N. M., Bagheri, S., Hamid, S. B. A. (2014). Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. The Scientific World Journal, 2014: 1-25.spa
dc.relation.referencesWojnárovits, L., Takács, E. (2008). Irradiation treatment of azo dye containing wastewater: An overview. Radiation Physics and Chemistry, 77(3): 225-244.spa
dc.relation.referencesWakelyn, P. J. (2007). Chapter 14. Health and Safety Issues in Cotton Production and Processing, In: Cotton: Science and Technology. Gordon, S., Hsieh, Y. L. (Eds). Woodhead Publishing: Cambridge, GBR, pg. 460-483.spa
dc.relation.referencesOller, I., Malato, S., Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Science of the Total Environment, 409(20): 4141-4166.spa
dc.relation.referencesShindhal, T., Rakholiya, P., Varjani, S., Pandey, A., Ngo, H. H., Guo, W., Ng, H. Y., Taherzadeh, M. J. (2021). A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered, 12(1): 70-87.spa
dc.relation.referencesPunzi, M., Nilsson, F., Anbalagan, A., Svensson, B. M., Jönsson, K., Mattiasson, B., Jonstrup, M. (2015). Combined anaerobic-ozonation process for treatment of textile wastewater: Removal of acute toxicity and mutagenicity. Journal of Hazardous Materials, 292: 52-60.spa
dc.relation.referencesBuscio, V., Marín, M. J., Crespi, M., Gutiérrez-Bouzán, C. (2015). Reuse of textile wastewater after homogenization–decantation treatment coupled to PVDF ultrafiltration membranes. Chemical Engineering Journal, 265: 122-128.spa
dc.relation.referencesManekar, P., Patkar, G., Aswale, P., Mahure, M., Nandy, T. (2014). Detoxifying of high strength textile effluent through chemical and bio-oxidation processes. Bioresource Technology, 157: 44-51.spa
dc.relation.referencesEl Enshasy, H. A., Hanapi, S. Z., Abdelgalil, S. A., Malek, R. A., Pareek, A. (2017). Mycoremediation: Decolourization Potential of Fungal Ligninolytic Enzymes, In: Mycoremediation and Environmental Sustainability. Prasad, R. (Ed). Springer International Publishing: Oxford, UK, pg. 69-104.spa
dc.relation.referencesNational Center for Biotechnology Information. (2021). PubChem Compound Summary for CID 33258, Allura Red AC. Consultado el 10 de abril de 2021. Disponible en https://pubchem.ncbi.nlm.nih.gov/compound/Allura-Red-AC.spa
dc.relation.referencesNawaz, H., Umar, M., Ullah, A., Razzaq, H., Zia, K. M., Liu, X. (2021). Polyvinylidene fluoride nanocomposite super hydrophilic membrane integrated with polyaniline-graphene oxide nano fillers for treatment of textile effluents. Journal of Hazardous Materials, 403: 123587.spa
dc.relation.referencesSartaj, S., Ali, N., Khan, A., Malik, S., Bilal, M., Khan, M., Ali, N., Hussain, S., Khan, H., Khan, S. (2020). Performance evaluation of photolytic and electrochemical oxidation processes for enhanced degradation of food dyes laden wastewater. Water Science and Technology, 81(5): 971-984.spa
dc.relation.referencesTorres-Perez, J., Huang, Y., Bazargan, A., Khoshand, A., McKay, G. (2020). Two-stage optimization of allura direct red dye removal by treated peanut hull waste. SN Applied Sciences, 2: 475.spa
dc.relation.referencesStreit, A. F. M., Côrtes, L. N., Druzian, S. P., Godinho, M., Collazzo, G. C., Perondi, D., Dotto, G. L. (2019). Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Science of the Total Environment, 660: 277-287.spa
dc.relation.referencesAlayli Gungor, A., Nadaroglu, H., Kalkan, E., Celebi, N. (2016). Fenton process-driven decolorization of allura red AC in wastewater using apolaccase-modified or native nanomagnetite immobilized on silica fume. Desalination and Water Treatment, 57(34): 15889-15899.spa
dc.relation.referencesFarghali, A. A., Zaki, A. H., Khedr, M. H. (2016). Control of selectivity in heterogeneous photocatalysis by tuning TiO2 morphology for water treatment applications. Nanomaterials and Nanotechnology, 6(1): 12.spa
dc.relation.referencesLiang, T. W., Huang, C. T., Dzung, N. A., Wang, S. L. (2015). Squid pen chitin chitooligomers as food colorants absorbers. Marine Drugs, 13(1): 681-696.spa
dc.relation.referencesXu, Y. L., Zhong, D. J., Jia, J. P. (2008). Electrochemical-assisted photodegradation of allura red and textile effluent using a half-exposed rotating TiO2/Ti disc electrode. Journal of Environmental Science and Health, 43(5): 503-510.spa
dc.relation.referencesGlaze, W. H., Kang, J.-W., Chapin, D. H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science and Engineering, 9(4): 335-352.spa
dc.relation.referencesKiran, S., Nosheen, S., Abrar, S., Anjum, F., Gulzar, T., Naz, S. (2019). Advanced Approaches for Remediation of Textile Wastewater: A Comparative Study, In: Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications. Islam, S., Butola, B. S. (Eds). Scrivener Publishing: Beverly, USA, pg. 201-264.spa
dc.relation.referencesGaleano, L. A., Guerrero-Flórez, M., Sánchez, C. A., Gil, A., Vicente, M. Á. (2019). Disinfection by Chemical Oxidation Methods, In: Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment. A., G., L., G., M., V. (Eds). Springer: CHE, pg. 257-295.spa
dc.relation.referencesAl-Kdasi, A., Idris, A., Saed, K., Guan, C. T. (2004). Treatment of textile wastewater by advanced oxidation processes– A review. Global NEST. International Journal, 6(3): 222-230.spa
dc.relation.referencesJaciw-Zurakowsky, I., Snowdon, M. R., Schneider, O. M., Zhou, Y. N., Liang, R. L. (2020). Advanced Oxidation Processes Using Catalytic Nanomaterials for Air and Water Remediation, In: Nanomaterials for Air Remediation. Abdeltif, A., Assadi, A., Tri, P., Nguyen, T. D., Rtimi, S. (Eds). Elsevier: Oxford, GBR, pg. 167-192.spa
dc.relation.referencesAmor, C., Marchão, L., Lucas, M. S., Peres, J. A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water, 11(2): 205.spa
dc.relation.referencesHuang, C. P., Dong, C., Tang, Z. (1993). Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment. Waste Management, 13(5-7): 361-377.spa
dc.relation.referencesWalling, C. (1975). Fenton's reagent revisited. Accounts of Chemical Research, 8(4): 125-131.spa
dc.relation.referencesWalling, C. (1998). Intermediates in the reactions of Fenton type reagents. Accounts of Chemical Research, 31(4): 155-157.spa
dc.relation.referencesPignatello, J. J. (1992). Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science and Technology, 26(5): 944-951.spa
dc.relation.referencesPignatello, J. J., Liu, D., Huston, P. (1999). Evidence for an additional oxidant in the photoassisted Fenton reaction. Environmental Science and Technology, 33(11): 1832-1839.spa
dc.relation.referencesSafarzadeh-Amiri, A., Bolton, J. R., Cater, S. R. (1996). Ferrioxalate-mediated solar degradation of organic contaminants in water. Solar Energy, 56(5): 439-443.spa
dc.relation.referencesSafarzadeh-Amiri, A., Bolton, J. R., Cater, S. R. (1997). Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Research, 31(4): 787-798.spa
dc.relation.referencesBigda, R. J. (1995). Consider Fenton’s chemistry for wastewater treatment. Chemical Engineering Progress, 91(12): 62-66.spa
dc.relation.referencesSafarzadeh-Amiri, A., Bolton, J. R., Cater, S. R. (1996). The use of iron in advanced oxidation processes. Journal of Advanced Oxidation Technologies, 1(1): 18-26.spa
dc.relation.referencesLin, S. H., Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8): 2050-2056.spa
dc.relation.referencesPan, H., Gao, Y., Li, N., Zhou, Y., Lin, Q., Jiang, J. (2021). Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: 127332.spa
dc.relation.referencesRichardson, D. E., Yao, H., Frank, K. M., Bennett, D. A. (2000). Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate. Journal of the American Chemical Society, 122(8): 1729-1739.spa
dc.relation.referencesDrago, R. S., Frank, K. M., Yang, Y. C., Wagner, G. W. (1998). Proceedings of 1997 ERDEC scientific conference on chemical and biological defense research. Edgewood Chemical Biological Center, 1999: 285-292.spa
dc.relation.referencesRichardson, D. E., Yao, H. X., C., Drago, R. S., Frank, K. M., Wagner, G. W., Yang, Y.-C. (1999). Proceedings of 1998 ERDEC scientific conference on chemical and biological defense research. Edgewood Chemical Biological Center, 2000: 341-342.spa
dc.relation.referencesLong, X., Yang, Z., Wang, H., Min, C., Peng, K., Zeng, Q.-F., Aihua, X. (2012). Selective degradation of orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Industrial and Engineering Chemistry Research, 51(37): 11998–12003.spa
dc.relation.referencesXu, A., Li, X., Ye, S., Yin, G., Zeng, Q. (2011). Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): 37-43.spa
dc.relation.referencesLi, Y., Li, L., Chen, Z. X., Zhang, J., Gong, L., Wang, Y. X., Zhao, H. Q., Mu, Y. (2018). Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: 372-378.spa
dc.relation.referencesLi, X., Xiong, Z., Ruan, X., Xia, D., Zeng, Q., Xu, A. (2012). Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: 24-30.spa
dc.relation.referencesYang, Z., Wang, H., Chen, M., Luo, M., Xia, D., Xu, A., Zeng, Q. (2012). Fast degradation and biodegradability improvement of reactive brilliant red X-3B by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial and Engineering Chemistry Research, 51(34): 11104-11111.spa
dc.relation.referencesXu, A., Li, X., Xiong, H., Yin, G. (2011). Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): 1190-1195.spa
dc.relation.referencesMacías-Quiroga, I. F., Rojas-Méndez, E. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2020). Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: 105463.spa
dc.relation.referencesBruland, K., Donat, J., Hutchins, D. (1991). Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): 1555-1577.spa
dc.relation.referencesBarceloux, D. G., Barceloux, D. (1999). Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2): 201-216.spa
dc.relation.referencesDuan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., Xu, A. (2015). Catalytic degradation of Acid Orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): 84303-84310.spa
dc.relation.referencesGuo, X., Li, H., Zhao, S. (2015). Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: 90-100.spa
dc.relation.referencesRache, M. L., Garcia, A. R., Zea, H. R., Silva, A. M. T., Madeira, L. M., Ramirez, J. H. (2014). Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-kinetics with a model based on the Fermi's equation. Applied Catalysis B: Environmental, 146: 192-200.spa
dc.relation.referencesLopez Lopez, C., Martin Pascual, J., Martinez Toledo, M. V., Munio, M. M., Hontoria, E., Poyatos, J. M. (2015). Kinetic modelling of TOC removal by H2O2/UV, photo-Fenton and heterogeneous photocatalysis processes to treat dye-containing wastewater. International Journal of Environmental Science and Technology, 12(10): 3255-3262.spa
dc.relation.referencesHaji, S., Al-Bastaki, N. (2011). Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering Journal, 168: 134-139.spa
dc.relation.referencesAttri, P., Garg, S., Ratan, J. K., Giri, A. S. (2022). Comparative study using advanced oxidation processes for the degradation of model dyes mixture: Reaction kinetics and biodegradability assay. Materials Today: Proceedings, 57: 1533-1538.spa
dc.relation.referencesKan, H., Soklun, H., Yang, Z., Wu, R., Shen, J., Qu, G., Wang, T. (2020). Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 232: 115974.spa
dc.relation.referencesMacías‑Quiroga, I. F., Pérez‑Flórez, A., Arcila, J. S., Giraldo‑Goméz, G. I., Sanabria‑Gonzalez, N. R. (2021). Synthesis and characterization of Co/Al‑PILCs for the oxidation of an azo dye using the bicarbonate‑activated hydrogen peroxide system. Catalysis Letters, 7: 152.spa
dc.relation.referencesRodríguez, P., Álvarez García, B. (2019). Origen y distribución de arcillas utilizadas en la fabricación de búcaros: Bucarofagia en la Edad Moderna. Iberian-African-AmericanJournal of Physical Geography and Environment, 1(1): 57-71.spa
dc.relation.referencesRytwo, G. (2008). Clay minerals as an ancient nanotechnology: Historical uses of clay organic interactions, and future possible perspectives. Sociedad Española de Mineralogía, 9: 15-17.spa
dc.relation.referencesBergaya, F., Lagaly, G. (2006). Chapter 1. General Introduction: Clays, Clay Minerals, and Clay Science, In: Developments in Clay Science. Bergaya, F., Theng, B. K. G., Lagaly, G. (Eds). Elsevier: Oxford, GBR, pg. 1-18.spa
dc.relation.referencesGuggenheim, S., Martin, R. T., Alietti, A., Drits, V. A., Formoso, M., Galán, E., Köster, H. M., Morgan, D. J., Paquet, H., Watanabe, T., Bain, D. C., Ferrell, R. E., Bish, D., Fanning, D. S., Kodama, H., Wicks, F. J. (1995). Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and Clay Minerals, 43(2): 255-256.spa
dc.relation.referencesGuggenheim, S., Martin, R. T. (1996). Reply to the comment by D. M. Moore on “Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees”. Clays and Clay Minerals, 44(5): 713-715.spa
dc.relation.referencesWimpenny, J. (2018). Clay Minerals, In: Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth. White, W. M. (Ed). Springer International Publishing: Ithaca, USA, pg. 265-275.spa
dc.relation.referencesChoy, J.-H., Choi, S.-J., Oh, J.-M., Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36(1): 122-132.spa
dc.relation.referencesBrigatti, M. F., Galan, E., Theng, B. K. G. (2006). Chapter 2. Structures and Mineralogy of Clay Minerals, In: Developments in Clay Science. Bergaya, F., Theng, B. K. G., Lagaly, G. (Eds). Elsevier: Oxford, GBR, pg. 19-86.spa
dc.relation.referencesBarton, C. D., Karathanasis, A. D. (2002). Clay Minerals. Dekker, Marcel: New York, USA, pg. 192.spa
dc.relation.referencesFossum, J. (2020). Clay nanolayer encapsulation, evolving from origins of life to future technologies. The European Physical Journal Special Topics, 229(17-18): 2863-2879.spa
dc.relation.referencesWilliams, L. B., Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Review, 52(7/8): 745-770.spa
dc.relation.referencesMokaya, R. (2000). Novel Layered Materials: Non-Phosphates, In: Ion Exchange. Wilson, I. (Ed). Academic Press: Oxford, GBR, pg. 1610-1617.spa
dc.relation.referencesOdom, I. E. (1984). Smectite clay minerals: Properties and uses. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 311(1517): 391-409.spa
dc.relation.referencesGiesse, R. F., Van Oss, C. J. (2002). Colloid and Surface Properties of Clays and Related Minerals. Marcel Dekker, INC: New York, USA, pg. 312.spa
dc.relation.referencesPergher, S., Corma, A., Fornes, V. (1999). Materiales laminares pilareados: Preparación y propiedades. Química Nova, 22(5): 693-709.spa
dc.relation.referencesGarcía, E., Suárez, M. (2002). Las Arcillas: Propiedades y Usos. Universidad Complutense, Universidad de Salamanca: Madrid, ESP, pg. 16.spa
dc.relation.referencesKhalifa, A. Z., Cizer, Ö., Pontikes, Y., Heath, A., Patureau, P., Bernal, S. A., Marsh, A. T. M. (2020). Advances in alkali-activation of clay minerals. Cement and Concrete Research, 132: 106050.spa
dc.relation.referencesArchives, Global Trade Daily, News. Global Bentonite Market Slipped Back Slightly to $4.3b. Consultado el 15 de abril de 2021. Disponible en: https://www.globaltrademag.com/tag/global-bentonite-production/.spa
dc.relation.referencesLaguna, O., G, C., Moreno, S., Molina, R. (2008). Mineralogical nature of smectites from the honda formation (north east Tolima - Colombia). Boletín de Ciencias de la Tierra, 23: 55-68.spa
dc.relation.referencesCamacho, J. A., Celada, C. M. (2004). Definición de Zonas Potenciales para Esmectitas en los Departamentos del Valle del Cauca, Tolima y Caldas. Instituto Colombiano de Geología y Minería: Bogotá, COL, pg. 43.spa
dc.relation.referencesKloprogge, J. T. (2017). Infrared and Raman Spectroscopies of Pillared Clays, In: Developments in Clay Science. Gates, W. P., Kloprogge, J. T., Madejová, J., Bergaya, F. (Eds). Elsevier: Oxford, GBR, pg. 411-446.spa
dc.relation.referencesVicente, M. A., Gil, A., Bergaya, F. (2013). Chapter 10.5. Pillared Clays and Clay Minerals, In: Developments in Clay Science. Bergaya, F., Lagaly, G. (Eds). Elsevier B.V.: Oxford, GBR, pg. 523-557.spa
dc.relation.referencesSchoonheydt, R. A., Pinnavaia, T., Lagaly, G., Gangas, N. (1999). Pillared clays and pillared layered solids. Pure and Applied Chemistry, 71(12): 2367-2371.spa
dc.relation.referencesBergaya, F., Aouad, A., Mandalia, T. (2006). Chapter 7.5. Pillared Clays and Clay Minerals. Developments in Clay Science, In: Handbook of Clay Science. Bergaya, F., Theng, B. K. G., Lagaly, G. (Eds). Elsevier: FRA, pg. 393-421.spa
dc.relation.referencesBasiony, M. S., Gaber, S. E., Ibrahim, H., Elshehy, E. A. (2020). Synthesis and characterization of Al-pillared bentonite for remediation of chlorinated pesticide-contaminated water. Clays and Clay Minerals 68: 197-210.spa
dc.relation.referencesRouquerol, J., Llewellyn, P., Sing, K. (2014). Chapter 12. Adsorption by Clays, Pillared Clays, Zeolites and Aluminophosphates, In: Adsorption by Powders and Porous Solids Rouquerol, F., Rouquerol, J., Sing, K., Llewellyn, P., Maurin, G. (Eds). Academic Press: Oxford, GBR, pg. 467-527.spa
dc.relation.referencesCool, P., Vansant, E. F. (1998). Pillared Clays: Preparation, Characterization and Applications, In: Synthesis. Karge, H. G., Weitkamp, J. (Eds). Springer Berlin Heidelberg: Berlin, DEU, pg. 265-288.spa
dc.relation.referencesHoward, B. H., Lekse, J. W. (2018). Clay Mineralogy, In: Green Energy and Technology. Romanov, V. (Ed). Springer Verlag: Pittsburgh, USA, pg. 55-75.spa
dc.relation.referencesGraham, T. R., Chun, J., Schenter, G. K., Zhang, X., Clark, S. B., Pearce, C. I., Rosso, K. M. (2022). 27Al NMR diffusometry of Al13 Keggin nanoclusters. Magnetic Resonance in Chemistry, 60(2): 226-238.spa
dc.relation.referencesAllouche, L., Huguenard, C., Taulelle, F. (2001). 3QMAS of three aluminum polycations: space group consistency between NMR and XRD. Journal of Physics and Chemistry of Solids, 62(8): 1525-1531.spa
dc.relation.referencesAllouche, L., Taulelle, F. (2003). Conversion of Al13 Keggin into Al30: A reaction controlled by aluminum monomers. Inorganic Chemistry Communications, 6(9): 1167-1170.spa
dc.relation.referencesFurrer, G., Ludwig, C., Schindler, P. W. (1992). On the chemistry of the Keggin Al13 polymer : I. Acid-base properties. Journal of Colloid and Interface Science, 149(1): 56-67.spa
dc.relation.referencesWang, J., Guan, J., Santiwong, S. R., Waite, T. D. (2008). Characterization of floc size and structure under different monomer and polymer coagulants on microfiltration membrane fouling. Journal of Membrane Science, 321(2): 132-138.spa
dc.relation.referencesChu, Y. B., Gao, B. Y., Yue, Q. Y., Wang, S. G., Wang, Y. (2005). Purification of Al13 species in polyaluminum chloride (PAC) by column chromatography and the character of the fractions. Environmental Science, 26(3): 87-91.spa
dc.relation.referencesFeng, C., Tang, H., Wang, D. (2007). Differentiation of hydroxyl-aluminum species at lower OH/Al ratios by combination of 27Al NMR and Ferron assay improved with kinetic resolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305(1-3): 76-82.spa
dc.relation.referencesWu, K., Ye, Q., Wu, R., Chen, S., Dai, H. (2020). Carbon dioxide adsorption behaviors of aluminum-pillared montmorillonite-supported alkaline earth metals. Journal of Environmental Science China, 98: 109-117.spa
dc.relation.referencesKim, S., Kim, D., Lee, G., Kang, J., Lee, D. K., Yang, Y. K. (2002). Catalytic Wet Oxidation of Reactive Dyes with H2O2 Over Mixed (Al−Cu) Pillared Clays, In: Studies in Surface Science and Catalysis. Aiello, R., Giordano, G., Testa, F. (Eds). Elsevier: KOR, pg. 683-690.spa
dc.relation.referencesLouloudi, A., Michalopoulos, J., Gangas, N., Papayannakos, N. (2003). Hydrogenation of benzene on Ni/Al-pillared saponite catalysts. Applied Catalysis A-General, 242(1): 41-49.spa
dc.relation.referencesGonzález, E., Moronta, A. (2004). The dehydrogenation of ethylbenzene to styrene catalyzed by a natural and an Al-pillared clays impregnated with cobalt compounds: A comparative study. Applied Catalysis A: General, 258(1): 99-105.spa
dc.relation.referencesBradley, S. M., Kydd, R. A. (1993). A comparison of the catalytic activities of Ga13-, Al13-, GaAl12-, and chromium-pillar interlayered clay minerals and Ga-H-ZSM-5 zeolite in the dehydrocyclodimerization of propane. Journal of Catalysis, 142(2): 448-454.spa
dc.relation.referencesManos, G., Yusof, I. Y., Gangas, N. H., Papayannakos, N. (2002). Tertiary recycling of polyethylene to hydrocarbon fuel by catalytic cracking over aluminum pillared clays. Energy Fuels, 16(2): 485-489.spa
dc.relation.referencesGil, A., Gandía, L. M., Vicente, M. A. (2000). Recent advances in the synthesis and catalytic applications of pillared clays. Catalysis Reviews - Science and Engineering, 42(1-2): 145-212.spa
dc.relation.referencesBartley, G. J. J., Burch, R. (1985). Zr-containing pillared interlayer clays. Part III. Influence of method of preparation on the thermal and hydrothermal stability. Applied Catalysis, 19(1): 175-185.spa
dc.relation.referencesBartley, G. J. J. (1988). Zirconium pillared clays. Catalysis Today, 2(2-3): 233-241.spa
dc.relation.referencesBellaloui, A., Plee, D., Meriaudeau, P. (1990). Gallium containing pillared interlayer clays. Preparation, characterization and catalytic properties. Applied Catalysis, 63(1): L7-L10.spa
dc.relation.referencesCoelho, A. V., Poncelet, G. (1991). Gallium, aluminium and mixed gallium-aluminium pillared montmorillonite. Preparation and characterization. Applied Catalysis, 77(2): 303-314.spa
dc.relation.referencesGonzález, F., Pesquera, C., Benito, I., Mendioroz, S. (1991). Aluminium-gallium pillared montmorillonite with high thermal stability. Journal of the Chemical Society, Chemical Communications (8): 587-588.spa
dc.relation.referencesBradley, S. M., Kydd, R. A., Yamdagni, R., Fyfe, C. A. (1991). Ga13, GaAl12 and Al13 Polyoxocations and Pillared Clays, In: Expanded Clays and Other Microporous Solids. Occelli, M. L., Robson, H. E. (Eds). Springer US: Boston, USA, pg. 13-31.spa
dc.relation.referencesKiricsi, I., Molnár, A., Pálinko, I., Fudala, A., Nagy, J. B. (1997). Nanoscale redox catalysts: Cr- and Cr,Al-pillared layer clays: Characterization and catalytic activity. Solid State Ionics, 101-103(Part 2): 793-797.spa
dc.relation.referencesPinnavaia, T. J., Tzou, M. S., Landau, S. D. (1985). New chromia pillared clay catalysts. Journal of the American Chemical Society, 107(16): 4783-4785.spa
dc.relation.referencesSychev, M., De Beer, V. H. J., Kodentsov, A., Van Oers, E. M., Van Santen, R. A. (1997). Chromia- and chromium sulfide-pillared clays: Preparation, characterization, and catalytic activity for thiophene hydrodesulfurization. Journal of Catalysis, 168(2): 245-254.spa
dc.relation.referencesSychev, M., Shubina, T., Rozwadowski, M., Sommen, A. P. B., De Beer, V. H. J., Van Santen, R. A. (2000). Characterization of the microporosity of chromia- and titania-pillared montmorillonites differing in pillar density: Adsorption of nitrogen. Microporous and Mesoporous Materials, 37(1-2): 187-200.spa
dc.relation.referencesBarrault, J., Abdellaoui, M., Bouchoule, C., Majeste, A., Tatibouët, J. M., Louloudi, A., Papayannakos, N., Gangas, N. H. (2000). Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays. Applied Catalysis B: Environmental, 27(4): L225-L230.spa
dc.relation.referencesBelver, C., Vicente, M. A., Martínez-Arias, A., Fernández-García, M. (2004). Fe-saponite pillared and impregnated catalysts: II. Nature of the iron species active for the reduction of NOx with propene. Applied Catalysis B: Environmental, 50(4): 227-234.spa
dc.relation.referencesBelver, C., Banares-Muñoz, M. A., Vicente, M. A. (2004). Fe-saponite pillared and impregnated catalysts: I. Preparation and characterisation. Applied Catalysis B: Environmental, 50(2): 101-112.spa
dc.relation.referencesCarriazo, J., Guélou, E., Barrault, J., Tatibouët, J. M., Molina, R., Moreno, S. (2005). Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: Characterization and catalytic activity. Catalysis Today, 107-108(2005): 126-132.spa
dc.relation.referencesLakshmi Kantam, M., Lakshmi Santhi, P., Ram Prasad, K. V., Figueras, F. (2000). Iron pillared clay - An efficient catalyst for ring opening of oxiranes. Journal of Molecular Catalysis A: Chemical, 156(1-2): 289-292.spa
dc.relation.referencesYamanaka, S., Hattori, M. (1988). Iron oxide pillared clay. Catalysis Today, 2(2-3): 261-270.spa
dc.relation.referencesBarrault, J., Bouchoule, C., Echachoui, K., Frini-Srasra, N., Trabelsi, M., Bergaya, F. (1998). Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (Al-Cu)-pillared clays. Applied Catalysis B: Environmental, 15(3-4): 269-274.spa
dc.relation.referencesCarriazo, J. G., Guélou, E., Barrault, J., Tatibouët, J. M., Moreno, S. (2003). Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays. Applied Clay Science, 22(6): 303-308.spa
dc.relation.referencesKim, S. C., Lee, D. K. (2004). Effects of Cu on the catalytic wet peroxide oxidation of reactive dye solutions with Al-Cu pillared clays. Studies in Surface Science and Catalysis, 154: 2958-2965.spa
dc.relation.referencesXu, X. F., Suo, Z. H., Wei, Y. P., Gong, B. A., An, L. D. (2001). Preparation of Cu, Co-exchanged Al-pillared montmorillonite and its catalytic activity for N2O decomposition. Journal of Fuel Chemistry and Technology, 29(3): 247-250.spa
dc.relation.referencesFrini, N., Crespin, M., Trabelsi, M., Messad, D., Van Damme, H., Bergaya, F. (1997). Preliminary results on the properties of pillared clays by mixed Al-Cu solutions. Applied Clay Science, 12(3): 281-292.spa
dc.relation.referencesGonzález, F., Pesquera, C., Benito, I., Mendioroz, S., Poncelet, G. (1992). High conversion and selectivity for cracking of n-heptane on cerium-aluminium montmorillonite catalysts. Journal of the Chemical Society, Chemical Communications, 0(6): 491-493.spa
dc.relation.referencesHernando, M. J., Pesquera, C., Blanco, C., Benito, I., González, F. (1996). Effect of Ce on catalytic properties of pillared montmorillonite with Al and GaAl-polyoxications. Applied Catalysis A: General, 141(1-2): 175-183.spa
dc.relation.referencesHernando, M. J., Pesquera, C., Blanco, C., González, F. (2001). Synthesis, characterization, and catalytic properties of pillared montmorillonite with aluminum/cerium polyoxycations. Chemistry of Materials, 13(6): 2154-2159.spa
dc.relation.referencesHernando, M. J., Pesquera, C., Blanco, C., González, F. (2001). Comparative study of the texture of montmorillonites pillared with aluminum and aluminum/cerium. Langmuir, 17(17): 5156-5159.spa
dc.relation.referencesHernando, M. J., Blanco, C., Pesquera, C., González, F. (2002). Study of the porosity of montmorillonite pillared with aluminum/cerium. Studies in Surface Science and Catalysis, 142: 1253-1260.spa
dc.relation.referencesHernando, M. J., Pesquera, C., Blanco, C., González, F. (2002). Increase in thermal stability of the texture in montmorillonites pillared with aluminum/cerium polyoxocations. Langmuir, 18(14): 5633-5636.spa
dc.relation.referencesRinaldi, N. (2011). Preparation of Ni-Mo catalysts using the pillared clay as a support for hydrodesulfurization of coker naphtha. Widyariset, 14(3): 657-664.spa
dc.relation.referencesZuo, S., Yang, P., Wang, X. (2017). Efficient and environmentally friendly synthesis of AlFe-PILC-supported MnCe catalysts for benzene combustion. ACS Omega, 2(8): 5179-5186.spa
dc.relation.referencesGil, A., Massinon, A., Grange, P. (1995). Analysis and comparison of the microporosity in Al, Zr and Ti-pillared clays. Microporous Materials, 4(5): 369-378.spa
dc.relation.referencesMunnik, P., de Jongh, P. E., de Jong, K. P. (2015). Recent developments in the synthesis of supported catalysts. Chemical Reviews, 115(14): 6687-6718.spa
dc.relation.referencesChe, M., Bonneviot, L. (1989). The Change of Properties of Transition Metal Ions and the Role of the Support as a Function of Catalyst Preparation, In: Studies in Surface Science and Catalysis. Inui, T. (Ed). Elsevier: Amsterdam, NLD, pg. 147-158.spa
dc.relation.referencesCarriazo, J. G., Martínez, L. M., Odriozola, J. A., Moreno, S., Molina, R., Centeno, M. A. (2007). Gold supported on Fe, Ce, and Al pillared bentonites for CO oxidation reaction. Applied Catalysis B: Environmental, 72(1): 157-165.spa
dc.relation.referencesGil, A., Vicente, M. A., Lambert, J. F., Gandı́a, L. M. (2001). Platinum catalysts supported on Al-pillared clays: Application to the catalytic combustion of acetone and methyl-ethyl-ketone. Catalysis Today, 68(1): 41-51.spa
dc.relation.referencesRanga Rao, G., Mishra, B. G. (2007). Al-pillared clay supported CuPd catalysts for nitrate reduction. Journal of Porous Materials, 14(2): 205-212.spa
dc.relation.referencesPan, J., Wang, C., Guo, S., Li, J., Yang, Z. (2008). Cu supported over Al-pillared interlayer clays catalysts for direct hydroxylation of benzene to phenol. Catalysis Communications, 9(1): 176-181.spa
dc.relation.referencesAchma, R. B., Ghorbel, A., Dafinov, A., Medina, F. (2008). Copper-supported pillared clay catalysts for the wet hydrogen peroxide catalytic oxidation of model pollutant tyrosol. Applied Catalysis A: General, 349(1): 20-28.spa
dc.relation.referencesMacías-Quiroga, I. F., Henao-Aguirre, P. A., Marín-Flórez, A., Arredondo-López, S. M., Sanabria-González, N. R. (2021). Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. Environmental Science and Pollution Research, 28: 23791- 23811.spa
dc.relation.referencesJawad, A., Li, Y., Guo, L., Khan, A., Chen, Z., Wang, J., Yang, J., Liu, W., Yin, G. (2016). Bimetallic synergistic degradation of chlorophenols by CuCoOx-LDH catalyst in bicarbonate-activated hydrogen peroxide system. RSC Advances, 6(76): 72643-72653.spa
dc.relation.referencesWWAP (2009). United Nations World Water Assessment Programme. The United Nations World Water Development Report 3: Water in a Changing World. UNESCO (Ed). Paris, FRA.spa
dc.relation.referencesPizarro, A. H., Monsalvo, V. M., Molina, C. B., Mohedano, A. F., Rodriguez, J. J. (2015). Catalytic hydrodechlorination of p-chloro-m-cresol and 2,4,6-trichlorophenol with Pd and Rh supported on Al-pillared clays. Chemical Engineering Science, 273: 363-370.spa
dc.relation.referencesUN Periódico Digital. (2018). Arcilla tolimense remueve metales pesados de aguas contaminadas. Consultado el 2 de mayo de 2021. Disponible en https://unperiodico.unal.edu.co/pages/detail/arcilla-tolimense-remueve-metales-pesados-de-aguas-contaminadas/.spa
dc.relation.referencesGeo Minerales. Bentonita sódica y bentonita cálcica. Consultado el 24 de enero de 2022. Disponible en http://www.geaminerales.com/pr-bentonita-sodica.html.spa
dc.relation.referencesMacías-Quiroga, I. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2018). Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018: 1-11.spa
dc.relation.referencesGuy, H. (1969). Chapter 1. Laboratory Theory and Methods for Sediment Analysis, In: Techniques of Water-Resources Investigations of the United States Geological Survey McKelvey, V. E. (Ed). USGS (Science for a Changing World): Washington, USA, pg. 1-18.spa
dc.relation.referencesCarrado, K. A., Decarreau, A., Petit, S., Bergaya, F., Lagaly, G. (2006). Chapter 4. Synthetic Clay Minerals and Purification of Natural Clays, In: Developments in Clay Science. Bergaya, F., Theng, B. K. G., Lagaly, G. (Eds). Elsevier: Oxford, GBR, pg. 115-139.spa
dc.relation.referencesCool, P., Vansant, E. F. (1998). Pillared Clays: Preparation, Characterization and Applications, In: Synthesis. Karge, H. G., Weitkamp, J. (Eds). Springer Berlin Heidelberg: Berlin, DEU, pg. 265-288.spa
dc.relation.referencesFigueras, F. (1988). Pillared Clays as Catalysts. Catalysis Reviews, 30(3): 457-499.spa
dc.relation.referencesCañizares, P., Valverde, J. L., Sun Kou, M. R., Molina, C. B. (1999). Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study. Microporous Mesoporous Materials, 29(3): 267-281.spa
dc.relation.referencesGe, Z., Li, D., Pinnavaia, T. J. (1994). Preparation of alumina-pillared montmorillonites with high thermal stability, regular microporosity and Lewis/Brönsted acidity. Mesoporous Material, 3(1): 165-175.spa
dc.relation.referencesCarriazo, J. G., Guélou, E., Barrault, J., Tatibouët, J. M., Moreno, S. (2003). Catalytic wet peroxide oxidation of phenol over Al-Cu or Al-Fe modified clays. Applied Clay Science, 22(6): 303-308.spa
dc.relation.referencesBaloyi, J., Ntho, T., Moma, J. (2018). Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: A review. RSC Advances, 8(10): 5197-5211.spa
dc.relation.referencesSietsma, J. R. A., Jos van Dillen, A., de Jongh, P. E., de Jong, K. P. (2006). Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying, In: Studies in Surface Science and Catalysis. Gaigneaux, E. M., Devillers, M., De Vos, D. E., Hermans, S., Jacobs, P. A., Martens, J. A., Ruiz, P. (Eds). Elsevier: Ámsterdam, NLD, pg. 95-102.spa
dc.relation.referencesHerney-Ramirez, J., Lampinen, M., Vicente, M. A., Costa, C. A., Madeira, L. M. (2008). Experimental design to optimize the oxidation of orange II dye solution using a clay-based fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): 284-294.spa
dc.relation.referencesKalmakhanova, M. S., Diaz de Tuesta, J. L., Massalimova, B. K., Gomes, H. T. (2020). Pillared clays from natural resources as catalysts for catalytic wet peroxide oxidation: Characterization and kinetic insights. Environmental Engineering Research, 25(2): 186-196.spa
dc.relation.referencesGutiérrez Pulido, H., Salazar, R. (2012). Análisis y Diseño de Experimentos. Mc Graw Hill: MEX, pg. 506.spa
dc.relation.referencesAy, F., Catalkaya, E. C., Kargi, F. (2009). A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment. Journal of Hazardous Materials, 162(1): 230-236.spa
dc.relation.referencesRamirez, H., Lampinen, M., Vicente, M. A., Costa, C., Madeira, L. (2007). Experimental design to optimize the oxidation of orange II dye solution using a clay-based fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): 284–294.spa
dc.relation.referencesZhou, L., Song, W., Chen, Z., Yin, G. (2013). Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science and Technology, 47(8): 3833-3839.spa
dc.relation.referencesGuo, X., Li, H., Zhao, S. (2015). Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: 90-100.spa
dc.relation.referencesDuan, L., Chen, Y., Zhang, K., Luo, H., Huang, J., Xu, A. (2015). Catalytic degradation of Acid Orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution. RSC Advances, 5(102): 84303-84310.spa
dc.relation.referencesJawad, A., Li, Y., Lu, X., Chen, Z., Liu, W., Yin, G. (2015). Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: 165-173.spa
dc.relation.referencesAttri, P., Garg, S., Ratan, J. K., Giri, A. S. (2022). Comparative study using advanced oxidation processes for the degradation of model dyes mixture: Reaction kinetics and biodegradability assay. Materials Today: Proceedings, 57: 1533-1538.spa
dc.relation.referencesMacías-Quiroga, I. F., Rojas-Méndez, E. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2020). Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: 105463.spa
dc.relation.referencesKumar, V., Singh, K., Shah, M. P. (2021). Chapter 1. Advanced Oxidation Processes for Complex Wastewater Treatment, In: Advanced Oxidation Processes for Effluent Treatment Plants. Shah, M. P. (Ed). Elsevier: Oxford, GBR, pg. 1-31.spa
dc.relation.referencesGosetti, F., Gianotti, V., Polati, S., Gennaro, M. (2005). HPLC-MS degradation study of E110 Sunset Yellow FCF in a commercial beverage. Journal of chromatography. A, 1090: 107-115.spa
dc.relation.referencesCamacho, J. A., Celada, C. M. (2004). Definición de Zonas Potenciales para Esmectitas en los Departamentos del Valle del Cauca, Tolima y Caldas. Instituto Colombiano de Geología y Minería: Bogotá, COL, pg. 43.spa
dc.relation.referencesSilva, L. C. A., da Silva, E., Monteiro, M. R., Silva, C., Teleken, J. G., Alves, H. (2014). Effect of the chemical composition of smectites used in KF/Clay catalysts on soybean oil transesterification into methyl esters. Applied Clay Science, 102: 121-127.spa
dc.relation.referencesSivrikaya, O., Uzal, B., Ozturk, Y. E. (2017). Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils. Applied Clay Science, 135: 532-537.spa
dc.relation.referencesAmigó, J. (1994). Caracterización y control de materiales por DRX. Cerámica Información, 199: 29-41.spa
dc.relation.referencesTuesta, E., Huaypar, Y. Aplicación de la técnica de difracción de rayos X (DRX) en la insdutria minera. Laboratorio de caracterización menralógina. Buenaventua Ingenieros.spa
dc.relation.referencesCarriazo, J., Saavedra, M., Molina, M. F. (2009). XRD study on the intercalation-pillaring of a 2:1 clay mineral with aluminum polyoxocationic species. Revista Mexicana de Ingeniera Qumica, 8: 299-305.spa
dc.relation.referencesSanabria, N., Molina, R., Moreno, S. (2008). Effects of ultrasound in the synthesis of aluminum pillared clay in concentrated media. Revista Colombiana de Química, 37: 325-335.spa
dc.relation.referencesMa, H., Yao, Q., Fu, Y., Ma, C., Dong, X. (2010). Synthesis of zeolite of type a from bentonite by alkali fusion activation using Na2CO3. Industrial & Engineering Chemistry Research, 49(2): 454-458.spa
dc.relation.referencesZhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J., He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123: 239-258.spa
dc.relation.referencesFossum, J. (2020). Clay nanolayer encapsulation, evolving from origins of life to future technologies. The European Physical Journal Special Topics, 229(17-18): 2863-2879.spa
dc.relation.referencesVicente, M. A., Lambert, J.-F. (2003). Al-pillaring of saponite with the Al polycation [Al13(OH)24 (H2O)24]15+ using a new synthetic route. Clays & Clay Minerals, 51: 168-171.spa
dc.relation.referencesMarković, M., Marinović, S., Mudrinić, T., Mojović, Z., Ajduković, M., Milutinović-Nikolić, A., Banković, P. (2018). Cobalt impregnated pillared montmorillonite in the peroxymonosulfate induced catalytic oxidation of tartrazine. Reaction Kinetics, Mechanisms and Catalysis, 125(2): 827-841.spa
dc.relation.referencesVicente, M. A., Belver, C., Trujillano, R., Rives, V., Álvarez, A. C., Lambert, J. F., Korili, S. A., Gandía, L. M., Gil, A. (2004). Preparation and characterisation of Mn- and Co-supported catalysts derived from Al-pillared clays and Mn- and Co-complexes. Applied Catalysis A: General, 267(1-2): 47-58.spa
dc.relation.referencesMushtaq, M., Tan, I., Ismail, L., Nadeem, M., Sagir, M., Azam, R., Hashmet, M. (2014). Influence of PZC (Point of Zero Charge) on the static adsorption of anionic surfactants on a malaysian sandstone. Journal of Dispersion Science and Technology, 35(3): 343-349.spa
dc.relation.referencesBakatula, E. N., Richard, D., Neculita, C. M., Zagury, G. J. (2018). Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research, 25(8): 7823-7833.spa
dc.relation.referencesGouttal, K., Benghalem, A., Mimanne, G., Karim, B. (2018). Removal of organic matter from wastewater using M/Al-pillared clays (M = Fe or Mn) as coagulants. Water Science & Technology, 78(3): 534-544.spa
dc.relation.referencesMnasri, S., Hamdi, N., Frini-Srasra, N., Srasra, E. (2017). Acid–base properties of pillared interlayered clays with single and mixed Zr–Al oxide pillars prepared from Tunisian-interstratified illite–smectite. Arabian Journal of Chemistry, 10(8): 1175-1183.spa
dc.relation.referencesLambert, J. F., Poncelet, G. (1997). Acidity in pillared clays: Origin and catalytic manifestations. Topics in Catalysis, 4(1): 43-56.spa
dc.relation.referencesMohamed, M. A., Jaafar, J., Ismal, A. F., Othman, M. H. D., Rahman, M. A. (2017). Chapter 1. Fourier transform infrared (FTIR) spectroscopy: development, techniques, and application in the analyses of fats and oils, In: Fourier Transform Infrared Spectroscopy Elsevier, pg. 1-36.spa
dc.relation.referencesPiqué, T. M., Vázquez, A. (2012). Uso de Espectroscopía Infrarroja con Transformada de Fourier (FTIR) en el estudio de la hidratación del cemento. Concreto y Cemento: Investigación y Desarrollo, 3(2): 62-71.spa
dc.relation.referencesMadejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1): 1-10.spa
dc.relation.referencesDjomgoue, P., Njopwouo, D. (2013). FT-IR spectroscopy applied for surface clays characterization. Journal of Surface Engineered Materials and Advanced Technology, 03: 275-282.spa
dc.relation.referencesRezende, J. C. T., Ramos, V. H. S., Oliveira, H., Oliveira, R., De Jesus, E. (2018). Removal of Cr(VI) from aqueous solutions using clay from calumbi geological formation, N. Sra. Socorro, SE State, Brazil. Materials Science Forum, 912: 1-6.spa
dc.relation.referencesLouati, S., Baklouti, S., Samet, B. (2016). Geopolymers based on phosphoric acid and Illito-Kaolinitic clay. Advances in Materials Science and Engineering, 2016: 1-7.spa
dc.relation.referencesThommes, M., Kaneko, K., Neimark, A., Olivier, J., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87: 1052-1069.spa
dc.relation.referencesMacías-Quiroga, I. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2018). Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018: 1-11.spa
dc.relation.referencesKumar, K. V., Gadipelli, S., Wood, B., Ramisetty, K. A., Stewart, A. A., Howard, C. A., Brett, D. J. L., Rodriguez-Reinoso, F. (2019). Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. Journal of Materials Chemistry A, 7(17): 10104-10137.spa
dc.relation.referencesKadeche, A., Ramdani, A., Adjdir, M., Guendouzi, A., Taleb, S., Kaid, M., Deratani, A. (2020). Preparation, characterization and application of Fe-pillared bentonite to the removal of Coomassie blue dye from aqueous solutions. Research on Chemical Intermediates, 46(11): 4985-5008.spa
dc.relation.referencesMacías‑Quiroga, I. F., Pérez‑Flórez, A., Arcila, J. S., Giraldo‑Goméz, G. I., Sanabria‑Gonzalez, N. R. (2021). Synthesis and characterization of Co/Al‑PILCs for the oxidation of an azo dye using the bicarbonate‑activated hydrogen peroxide system. Catalysis Letters, 7: 152.spa
dc.relation.referencesRemy, M. J., Vieira Coelho, A. C., Poncelet, G. (1996). Surface area and microporosity of 1.8 nm pillared clays from the nitrogen adsorption isotherm. Microporous Materials, 7(6): 287-297.spa
dc.relation.referencesFaraldos, M., Goberna, C. (2011). Técnicas de Análisis y Caracterización de Materiales. CSIC Consejo Superior de Investigación Científicas: ESP, pg. 1023.spa
dc.relation.referencesBevziuk, K., Chebotarev, A., Snigur, D., Bazel, Y., Fizer, M., Sidey, V. (2017). Spectrophotometric and theoretical studies of the protonation of Allura Red AC and Ponceau 4R. Journal of Molecular Structure, 1144: 216-224.spa
dc.relation.referencesRodríguez, M. C., Schenone, A., Silvina, S., Marsili, N. (2013). Cuantificación simultánea de colorantes en bebidas deportivas utilizando espectroscopia visible y PLS–1. Facultad de Bioquímica y Ciencias Biológicas, 17: 74-84.spa
dc.relation.referencesMiller, J. N., Miller, J. C. (2002). Estadística y Quimiometría para Química Analítica. Prentice Hall: Madrid, ESP, pg. 286.spa
dc.relation.referencesBehera, S. K., Meena, H., Chakraborty, S., Meikap, B. C. (2018). Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology, 28(4): 621-629.spa
dc.relation.referencesGutiérrez Pulido, H., Salazar, R. (2012). Análisis y Diseño de Experimentos. Mc Graw Hill: MEX, pg. 506.spa
dc.relation.referencesJawad, A., Chen, Z., Yin, G. (2016). Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): 810-825.spa
dc.relation.referencesGuo, X., Li, H., Zhao, S. (2015). Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: 90-100.spa
dc.relation.referencesXu, A., Li, X., Ye, S., Yin, G., Zeng, Q. (2011). Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): 37-43.spa
dc.relation.referencesHerney-Ramirez, J., Lampinen, M., Vicente, M. A., Costa, C. A., Madeira, L. M. (2008). Experimental design to optimize the oxidation of orange II dye solution using a clay-based fenton-like catalyst. Industrial & Engineering Chemistry Research, 47(2): 284-294.spa
dc.relation.referencesMacías-Quiroga, I. F., Rojas-Méndez, E. F., Giraldo-Gómez, G. I., Sanabria-González, N. R. (2020). Experimental data of a catalytic decolorization of ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, 30: 105463.spa
dc.relation.referencesPunathil, S., Ghime, D., Mohapatra, T., Thakur, C., Ghosh, P. (2020). Fixed bed reactor for removal of methylene blue dye using heterogeneous fenton catalyst. Journal of Hazardous, Toxic, and Radioactive Waste, 24: 04020037.spa
dc.relation.referencesFragoso, C. T., Battisti, R., Miranda, C., de Jesus, P. C. (2009). Kinetic of the degradation of C.I. Food Yellow 3 and C.I. Food Yellow 4 azo dyes by the oxidation with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical, 301(1): 93-97.spa
dc.relation.referencesEl Haddad, M., Abdelmajid, R., Rachid, L., Rachid, M., Nabil, S. (2014). Use of Fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions. Journal of Materials and Environmental Science, 5: 2028-2508.spa
dc.relation.referencesZuorro, A., Lavecchia, R. (2014). Evaluation of UV/H2O2 advanced oxidation process (AOP) for the degradation of diazo dye Reactive Green 19 in aqueous solution. Desalination and Water Treatment, 52(7-9): 1571-1577.spa
dc.relation.referencesLaftani, Y., Boussaoud, A., Chatib, B., El Makhfouk, M., Hachkar, M., Khayar, M. (2019). Comparison of advanced oxidation processes for degrading Ponceau S dye. Application of photo-Fenton process. Macedonian Journal of Chemistry and Chemical Engineering, 38(2): 197-205.spa
dc.relation.referencesAttri, P., Garg, S., Ratan, J. K., Giri, A. S. (2022). Comparative study using advanced oxidation processes for the degradation of model dyes mixture: Reaction kinetics and biodegradability assay. Materials Today: Proceedings, 57: 1533-1538.spa
dc.relation.referencesKumar, V., Singh, K., Shah, M. P. (2021). Chapter 1. Advanced Oxidation Processes for Complex Wastewater Treatment, In: Advanced Oxidation Processes for Effluent Treatment Plants. Shah, M. P. (Ed). Elsevier: Oxford, GBR, pg. 1-31.spa
dc.relation.referencesRamirez, J. H., Costa, C. A., Madeira, L. M., Mata, G., Vicente, M. A., Rojas-Cervantes, M. L., López-Peinado, A. J., Martín-Aranda, R. M. (2007). Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 71(1): 44-56.spa
dc.relation.referencesThiam, A., Sirés, I., Brillas, E. (2015). Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton. Water Research, 81: 178-187.spa
dc.relation.referencesZhou, Z., Liang, Z., Liu, Y., Ma, Y., Zhu, X., Zhang, X., Li, Q., Ren, Z. J. C. E., Intensification, P. P. (2017). Intensification of degradation of Sunset Yellow using packed bed in a pulsed high-voltage hybrid gas-liquid discharge system: Optimization of operating parameters, degradation mechanism and pathways. Chemical Engineering and Processing - Process Intensification, 115: 23-33.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.proposalRojo alluraspa
dc.subject.proposalPeróxido de hidrógeno activado con bicarbonatospa
dc.subject.proposalCo/Al-PILCspa
dc.subject.proposalDecoloraciónspa
dc.subject.proposalColorante azospa
dc.subject.proposalProcesos de oxidación avanzadosspa
dc.subject.proposalAllura redeng
dc.subject.proposalBicarbonate activated hydrogen peroxideeng
dc.subject.proposalKineticseng
dc.subject.proposalDiscolorationeng
dc.subject.proposalImpregnationeng
dc.subject.proposalAzo dyeseng
dc.subject.proposalAdvanced oxidation processeseng
dc.subject.proposalChromatographyeng
dc.titleOxidación catalítica en medio heterogéneo de un colorante azoico empleando el sistema peróxido activado con bicarbonatospa
dc.title.translatedCatalytic oxidation of an azo dye in a heterogeneous medium using the peroxide system activated with bicarbonateeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleDesarrollo científico y tecnológico de un tratamiento emergente para la oxidación catalítica de efluentes coloreados de la industria de alimentosspa
oaire.fundernameHermesspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053849584.2023.pdf
Tamaño:
2.32 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería – Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: