Parametric computational model of endochondral ossification

dc.contributor.advisorGarzón Alvarado, Diego Alexanderspa
dc.contributor.authorBustamante Porras, Cristian Rodrigospa
dc.contributor.researchgroupGrupo de Modelado y Métodos Numéricos en Ingeniería (GNUM)spa
dc.date.accessioned2025-07-03T20:45:35Z
dc.date.available2025-07-03T20:45:35Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLa osificación endocondral es el principal mecanismo de crecimiento de los huesos largos, regulado por la interacción entre fuerzas mecánicas, señales bioquímicas y diferenciación celular. En esta tesis se propone una aproximación de crecimiento basada en un modelo acoplado que integra tres componentes fundamentales: (1) estímulos mecánicos, a través de un modelo elástico en deformación plana para predecir los patrones de osificación en función de la geometría y carga aplicada; (2) factores bioquímicos, mediante una formulación de difusiónreacción para la dinámica espacial de Ihh y PTHrP; y (3) actividad celular, representada mediante índices de osificación basados en la distribución de tensiones y señales locales. Se consideran distintas geometrías de articulaciones construidas mediante parametrizaciones de B-Splines Racionales No Uniformes (NURBS, por sus siglas en inglés), abarcando desde formas cóncavas hasta convexas, así como frentes de osificación en diferentes etapas. Además, se exploran dos escenarios de historia de carga: uno con contacto único y otro con doble contacto, representando configuraciones como la metacarpofalángica, tibiofemoral, humerocubital y humerorradial. Los resultados predicen la localización y forma de centros secundarios de osificación (SOC), demostrando que la forma y carga determinan la progresión del crecimiento óseo. La contribución principal radica en el desarrollo de un marco paramétrico computacional, altamente personalizable, para modelar de forma integrada el ambiente mecanobiológico del crecimiento óseo (Texto tomado de la fuente).spa
dc.description.abstractEndochondral ossification is the key mechanism governing the longitudinal growth of long bones, regulated by a complex interplay of mechanical stimuli, biochemical gradients, and cellular differentiation. In this thesis, we propose a growth approximation based on a coupled model that integrates three essential components: (1) mechanical stimuli, using linear elastic plane strain models to predict ossification patterns based on shape and loading; (2) biochemical regulation, through a reaction–diffusion framework for spatial dynamics of Ihh and PTHrP; and (3) cellular response, via ossification indices driven by stress distributions and signaling activity. Joint geometries constructed using Non-Uniform Rational B-Splines (NURBS) parameterizations, ranging from concave to convex shapes, with varying degrees of ossification front progression. Two distinct loading history modes are evaluated: a single contact and a dual contact scenario, resembling the mechanical configurations of joints such as the metacarpophalangeal, tibiofemoral, humeroulnar, and humeroradial. The model predicts the emergence and shape of Secondary Ossification Centers (SOC), highlighting how geometry and load collectively drive bone growth. The primary contribution of this work is the development of a parametric computational framework with a wide range of customizable inputs, enabling detailed simulation of the mechanobiological environment governing bone development.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería Mecánicaspa
dc.description.methodsThe methodology starts with a CAD-generated geometric model that delineates cartilage and bone areas using NURBS curves, offering design flexibility via control points. Seven geometric variables—comprising angles and lengths—are left unspecified, while parabolic pressure distributions are applied along the articular surface. Each pressure is described by two geometry-dependent parameters (location and extent) and one load-related parameter representing intensity. A further variable governs the maximum applied force, with all others scaled proportionally. A two-dimensional parametric domain defined by p and q is used to generate varying combinations of geometries and loading conditions. Load placement is dictated by the geometry, simplifying simulation. These cases are analyzed via the Finite Element Method under plane strain assumptions and isotropic material properties, employing bilinear quadrilateral elements and convergence checks to ensure solution validity. The ossification index (OI) is then calculated to predict potential zones for secondary ossification center (SOC) formation, with outcomes consistent with known biological patterns.spa
dc.description.researchareaIngeniería de Diseño y Biomecánicaspa
dc.format.extentxiii, 64 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88287
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesJ. Gasser and M. Kneissel, ‘‘Bone Physiology and Biology,’’ in Bone Toxicology, Sep. 2017, pp. 27--94.spa
dc.relation.referencesS. Standring, ‘‘Functional anatomy of the musculoskeletal system,’’ in Gray’s Anatomy, 41st ed. London: Elsevier, 2015.spa
dc.relation.referencesFreeCAD Development Team, ‘‘Freecad: Open-source parametric 3-d cad modeler,’’ https://www.freecad.org, 2025, version 0.21.2.spa
dc.relation.referencesG. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009.spa
dc.relation.referencesO. R. Bingol and A. Krishnamurthy, ‘‘NURBS-Python: An open-source object-oriented NURBS modeling framework in Python,’’ SoftwareX, vol. 9, pp. 85--94, 2019.spa
dc.relation.referencesC. Geuzaine and J.-F. Remacle, ‘‘Gmsh: A 3d finite element mesh generator with builtin pre- and post-processing facilities,’’ International Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309--1331, 2009.spa
dc.relation.referencesM. Smith, ABAQUS/Standard User’s Manual, Version 2017. United States: Dassault Systèmes Simulia Corp, 2009.spa
dc.relation.referencesÉlectricité de France (EDF), ‘‘code_aster: Finite element analysis of structures and thermomechanics for studies and research,’’ https://www.code-aster.org, 1989--2017, open-source finite element solver.spa
dc.relation.referencesJ. Ahrens, B. Geveci, and C. Law, ‘‘ParaView: An end-user tool for large data visualization,’’ in Visualization Handbook. Elsevier, 2005.spa
dc.relation.referencesJ. Ahrens, B. Geveci, and C. Law, ŚŚParaView: An end-user tool for large data visualization,’’ in Visualization Handbook. Elsevier, 2005spa
dc.relation.referencesJ. Brankovic, M. Vrecl, G. Fazarinc, and J. Jan, ‘‘Bone tissue morphology of rat offspring lactationally exposed to polychlorinated biphenyl 169 and 155,’’ Scientific Reports, vol. 10, Nov. 2020. 40spa
dc.relation.referencesJ. C. Nguyen, B. K. Markhardt, A. C. Merrow, and J. R. Dwek, ‘‘Imaging of Pediatric Growth Plate Disturbances,’’ RadioGraphics, vol. 37, no. 6, pp. 1791--1812, Oct. 2017.spa
dc.relation.referencesS. M. Sadeghian, F. D. Shapiro, and S. J. Shefelbine, ‘‘Computational model of endochondral ossification: Simulating growth of a long bone,’’ Bone, vol. 153, p. 116132, 2021.spa
dc.relation.referencesY. Yang, ‘‘Skeletal morphogenesis during embryonic development,’’ Critical Reviews™ in Eukaryotic Gene Expression, vol. 19, no. 3, pp. 197--218, 2009.spa
dc.relation.referencesH. F. Cardoso, V. Pereira, and L. Rios, ‘‘Chronology of fusion of the primary and secondary ossification centers in the human sacrum and age estimation in child and adolescent skeletons,’’ American Journal of Physical Anthropology, vol. 153, no. 2, pp. 214--225, 2014.spa
dc.relation.referencesM. R. Allen and D. B. Burr, ‘‘Bone growth, modeling, and remodeling,’’ in Basic and Applied Bone Biology (Second Edition), 2nd ed., D. B. Burr and M. R. Allen, Eds. Academic Press, 2019, pp. 85--100.spa
dc.relation.referencesM. Xie, P. Gol’din, A. N. Herdina, J. Estefa, E. V. Medvedeva, L. Li, P. T. Newton, S. Kotova, B. Shavkuta, A. Saxena, L. T. Shumate, B. D. Metscher, K. Großschmidt, S. Nishimori, A. Akovantseva, A. P. Usanova, A. D. Kurenkova, A. Kumar, I. L. Arregui, P. Tafforeau, K. Fried, M. Carlström, A. Simon, C. Gasser, H. M. Kronenberg, M. Bastepe, K. L. Cooper, P. Timashev, S. Sanchez, I. Adameyko, A. Eriksson, and A. S. Chagin, ‘‘Secondary ossification center induces and protects growth plate structure,’’ eLife, vol. 9, p. e55212, Oct. 2020.spa
dc.relation.referencesK. M. Márquez-Flórez, J. R. Monaghan, S. J. Shefelbine, A. Ramirez-Martínez, and D. A. Garzón-Alvarado, ‘‘A computational model for the joint onset and development,’’ Journal of Theoretical Biology, vol. 454, pp. 345--356, 2018.spa
dc.relation.referencesS. S. Stevens, G. S. Beaupré, and D. R. Carter, ‘‘Computer model of endochondral growth and ossification in long bones: Biological and mechanobiological influences.’’ Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 17, no. 5, pp. 646--653, Sep. 1999.spa
dc.relation.referencesJ. J. Vaca-González, M. Moncayo-Donoso, J. Guevara, Y. Hata, S. J. Shefelbine, and D. A. Garzón-Alvarado, ‘‘Mechanobiological modeling of endochondral ossification: An experimental and computational analysis,’’ Biomechanics and modeling in mechanobiology, vol. 17, no. 3, pp. 853--875, Jan. 2018.spa
dc.relation.referencesH. M. Kronenberg, ‘‘Developmental regulation of the growth plate.’’ Nature, vol. 423, no. 6937, pp. 332--336, May 2003.spa
dc.relation.referencesE. Zelzer, R. Mamluk, N. Ferrara, R. S. Johnson, E. Schipani, and B. R. Olsen, ‘‘VEGFA is necessary for chondrocyte survival during bone development.’’ Development (Cambridge, England), vol. 131, no. 9, pp. 2161--2171, May 2004. 41spa
dc.relation.referencesJ. Álvarez, L. Costales, R. Serra, M. Balbín, and J. M. López, ‘‘Expression Patterns of Matrix Metalloproteinases and Vascular Endothelial Growth Factor During Epiphyseal Ossification,’’ Journal of Bone and Mineral Research, vol. 20, no. 6, pp. 1011--1021, Jun. 2005.spa
dc.relation.referencesP. Aghajanian, W. Xing, S. Cheng, and S. Mohan, ‘‘Epiphyseal bone formation occurs via thyroid hormone regulation of chondrocyte to osteoblast transdifferentiation,’’ Scientific Reports, vol. 7, no. 1, p. 10432, Sep. 2017.spa
dc.relation.referencesA. F. Carrera-Pinzón, K. Márquez-Flórez, R. H. Kraft, S. Ramtani, and D. A. GarzónAlvarado, ‘‘Computational model of a synovial joint morphogenesis,’’ Biomechanics and Modeling in Mechanobiology, vol. 19, no. 5, pp. 1389--1402, Oct. 2020.spa
dc.relation.referencesJ. H. Heegaard, G. S. Beaupré, and D. R. Carter, ‘‘Mechanically modulated cartilage growth may regulate joint surface morphogenesis,’’ Journal of Orthopaedic Research, vol. 17, no. 4, pp. 509--517, 1999.spa
dc.relation.referencesM. Giorgi, A. Carriero, S. J. Shefelbine, and N. C. Nowlan, ‘‘Mechanobiological simulations of prenatal joint morphogenesis,’’ Journal of Biomechanics, vol. 47, no. 5, pp. 989--995, 2014.spa
dc.relation.referencesL. Peinado Cortés, J. Vanegas Acosta, and D. Garzón Alvarado, ‘‘A mechanobiological model of epiphysis structures formation,’’ Journal of Theoretical Biology, vol. 287, pp. 13--25, 2011.spa
dc.relation.referencesD. A. Garzón-Alvarado, JM. García-Aznar, and M. Doblaré, ‘‘Appearance and location of secondary ossification centres may be explained by a reaction--diffusion mechanism,’’ Computers in biology and medicine, vol. 39, no. 6, pp. 554--561, 2009.spa
dc.relation.referencesB. Clarke, ‘‘Normal Bone Anatomy and Physiology,’’ Clinical Journal of the American Society of Nephrology, vol. 3, no. Supplement_3, 2008.spa
dc.relation.referencesV. Šromová, D. Sobola, and P. Kaspar, ‘‘A brief review of bone cell function and importance,’’ Cells, vol. 12, no. 2576, 2023.spa
dc.relation.referencesD. W. I. Buck and G. A. Dumanian, ‘‘Bone Biology and Physiology: Part I. The Fundamentals,’’ Plastic and Reconstructive Surgery, vol. 129, no. 6, 2012.spa
dc.relation.referencesJ. M. T. Thompson, M. C. H. van der Meulen, and P. J. Prendergast, ‘‘Mechanics in skeletal development, adaptation and disease,’’ Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, no. 1766, pp. 565--578, 2000.spa
dc.relation.referencesM. Pines and S. Hurwitz, ‘‘The role of the growth plate in longitudinal bone growth1,’’ Poultry Science, vol. 70, no. 8, pp. 1806--1814, 1991. 42spa
dc.relation.referencesJ. A. Ogden, R. N. Hensinger, and N. McCollough, ‘‘Diagnostic Imaging,’’ in Skeletal Injury in the Child, 3rd ed. Springer, 2000, p. 128.spa
dc.relation.referencesE. Comellas and S. J. Shefelbine, ‘‘The role of computational models in mechanobiology of growing bone,’’ Frontiers in Bioengineering and Biotechnology, vol. 10, 2022.spa
dc.relation.referencesK. Marquez-Florez, S. Arroyave-Tobon, L. Tadrist, and J.-M. Linares, ‘‘Elbow dimensions in quadrupedal mammals driven by lubrication regime,’’ Scientific Reports, vol. 14, no. 1, p. 2177, Jan. 2024.spa
dc.relation.referencesM. Wong and D. R. Carter, ‘‘A theoretical model of endochondral ossification and bone architectural construction in long bone ontogeny.’’ Anatomy and embryology, vol. 181, no. 6, pp. 523--532, 1990.spa
dc.relation.referencesM. Giorgi, A. Carriero, S. J. Shefelbine, and N. C. Nowlan, ‘‘Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: Application to hip dysplasia.’’ Journal of biomechanics, vol. 48, no. 12, pp. 3390--3397, Sep. 2015.spa
dc.relation.referencesD. A. Garzon-Alvarado, M. L. Gutiérrez, and L. F. Calixto, ‘‘A computational model of clavicle bone formation: A mechano-biochemical hypothesis,’’ Bone, vol. 61, pp. 132--137, 2014.spa
dc.relation.referencesD. A. Garzón-Alvarado, ‘‘A biochemical strategy for simulation of endochondral and intramembranous ossification,’’ Computer Methods in Biomechanics and Biomedical Engineering, vol. 17, no. 11, pp. 1237--1247, 2014.spa
dc.relation.referencesT. Ogura, T. Minas, A. Tsuchiya, and S. Mizuno, ‘‘Effects of hydrostatic pressure and deviatoric stress on human articular chondrocytes for designing neo-cartilage construct,’’ Journal of Tissue Engineering and Regenerative Medicine, vol. 13, no. 7, pp. 1143--1152, 2019.spa
dc.relation.referencesR. L. Smith, D. R. Carter, and D. J. Schurman, ‘‘Pressure and shear differentially alter human articular chondrocyte metabolism: A review.’’ Clinical orthopaedics and related research, no. 427 Suppl, pp. S89--95, Oct. 2004.spa
dc.relation.referencesE. Hodder, F. Guppy, D. Covill, and P. Bush, ‘‘The effect of hydrostatic pressure on proteoglycan production in articular cartilage in vitro: A meta-analysis,’’ Osteoarthritis and Cartilage, vol. 28, no. 8, pp. 1007--1019, 2020.spa
dc.relation.referencesC. Kiani, L. Chen, Y. J. Wu, A. J. Yee, and B. B. Yang, ‘‘Structure and function of aggrecan,’’ Cell Research, vol. 12, no. 1, pp. 19--32, Mar. 2002.spa
dc.relation.referencesS. Provot and E. Schipani, ‘‘Molecular mechanisms of endochondral bone development,’’ Biochemical and Biophysical Research Communications, vol. 328, no. 3, pp. 658--665, 2005.spa
dc.relation.referencesU. I. Chung, E. Schipani, A. P. McMahon, and H. M. Kronenberg, ‘‘Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development.’’ The Journal of clinical investigation, vol. 107, no. 3, pp. 295--304, Feb. 2001. 43spa
dc.relation.referencesJ. M. Kindblom, O. Nilsson, T. Hurme, C. Ohlsson, and L. Sävendahl, ‘‘Expression and localization of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development.’’ The Journal of endocrinology, vol. 174, no. 2, pp. R1--6, Aug. 2002.spa
dc.relation.referencesE. Mau, H. Whetstone, C. Yu, S. Hopyan, J. S. Wunder, and B. A. Alman, ‘‘PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms,’’ Developmental Biology, vol. 305, no. 1, pp. 28--39, 2007.spa
dc.relation.referencesB. St-Jacques, M. Hammerschmidt, and A. P. McMahon, ‘‘Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation.’’ Genes & development, vol. 13, no. 16, pp. 2072--2086, Aug. 1999.spa
dc.relation.referencesM. C. Fisher, C. Meyer, G. Garber, and C. N. Dealy, ‘‘Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth,’’ Bone, vol. 37, no. 6, pp. 741--750, 2005.spa
dc.relation.referencesA. Vortkamp, K. Lee, B. Lanske, G. V. Segre, H. M. Kronenberg, and C. J. Tabin, ‘‘Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein.’’ Science (New York, N.Y.), vol. 273, no. 5275, pp. 613--622, Aug. 1996.spa
dc.relation.referencesF. Forriol and F. Shapiro, ‘‘Bone development: Interaction of molecular components and biophysical forces.’’ Clinical orthopaedics and related research, no. 432, pp. 14--33, Mar. 2005.spa
dc.relation.referencesD. A. Garzón-Alvarado, J. M. García-Aznar, and M. Doblaré, ‘‘A reaction-diffusion model for long bones growth.’’ Biomechanics and modeling in mechanobiology, vol. 8, no. 5, pp. 381--395, Oct. 2009.spa
dc.relation.referencesK. Hata, Y. Takahata, T. Murakami, and R. Nishimura, ‘‘Transcriptional network controlling endochondral ossification,’’ Journal of Bone Metabolism, vol. 24, no. 2, p. 75, 2017.spa
dc.relation.referencesR. Nishimura, K. Hata, K. Ono, R. Takashima, M. Yoshida, and T. Yoneda, ‘‘Regulation of endochondral ossification by transcription factors,’’ Journal of Oral Biosciences, vol. 54, no. 4, pp. 180--183, 2012.spa
dc.relation.referencesE. Mackie, Y. Ahmed, L. Tatarczuch, K.-S. Chen, and M. Mirams, ‘‘Endochondral ossification: How cartilage is converted into bone in the developing skeleton,’’ The International Journal of Biochemistry & Cell Biology, vol. 40, no. 1, pp. 46--62, 2008.spa
dc.relation.referencesB. C. L. Mangiavini, G. M. Peretti and N. Maffulli, ‘‘Epidermal growth factor signalling pathway in endochondral ossification: An evidence-based narrative review,’’ Annals of Medicine, vol. 54, no. 1, pp. 37--50, 2022.spa
dc.relation.referencesF. Shapiro, ‘‘Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts.’’ European cells & materials, vol. 15, pp. 53--76, Apr. 2008. 44spa
dc.relation.referencesM. Herrero and J. López, ‘‘Bone Formation: Biological Aspects and Modelling Problems,’’ Journal of Theoretical Medicine, vol. 6, Mar. 2005.spa
dc.relation.referencesA. Mehboob, I. Barsoum, H. Mehboob, R. K. Abu Al-Rub, and A. Ouldyerou, ‘‘Topology optimization and biomechanical evaluation of bone plates for tibial bone fractures considering bone healing,’’ Virtual and Physical Prototyping, vol. 19, no. 1, p. e2391475, Dec. 2024.spa
dc.relation.referencesD. R. Carter and M. Wong, ‘‘Modelling cartilage mechanobiology,’’ Phil. Trans. R. Soc. Lond. B, vol. 358, pp. 1461--1471, 2003.spa
dc.relation.referencesW. Hayes and A. Bodine, ‘‘Flow-independent viscoelastic properties of articular cartilage matrix,’’ Journal of Biomechanics, vol. 11, no. 8, pp. 407--419, 1978.spa
dc.relation.referencesA. Fasano, M. Herrero, J. López, and E. Medina, ‘‘On the dynamics of the growth plate in primary ossification,’’ Journal of Theoretical Biology, vol. 265, no. 4, pp. 543--553, 2010.spa
dc.relation.referencesJ. Stoop, Y. Yokoyama, and T. Adachi, ‘‘Timing of resting zone parathyroid hormonerelated protein expression affects maintenance of the growth plate during secondary ossification: A computational study,’’ Biomechanics and Modeling in Mechanobiology, vol. 24, no. 1, pp. 125--137, Feb. 2025.spa
dc.relation.referencesP. Aghajanian and S. Mohan, ‘‘The art of building bone: Emerging role of chondrocyteto-osteoblast transdifferentiation in endochondral ossification,’’ Bone Research, vol. 6, no. 1, p. 19, Jun. 2018.spa
dc.relation.referencesW. Lin and K. Miao, ‘‘A Channel Correction and Spatial Attention Framework for Anterior Cruciate Ligament Tear with Ordinal Loss,’’ Applied Sciences, vol. 13, p. 5005, Apr. 2023.spa
dc.relation.referencesI. Kjellin, ‘‘Developmental Variants | Radsource,’’ Oct. 2009.spa
dc.relation.referencesJ. Watson, K. Setayesh, and M. R. Hutchinson, ‘‘Acute Upper Extremity Injuries in Pediatric and Adolescent Sports,’’ in Injury in Pediatric and Adolescent Sports: Epidemiology, Treatment and Prevention, D. Caine and L. Purcell, Eds. Cham: Springer International Publishing, 2016, pp. 121--134.spa
dc.relation.referencesM. L. Richardson, ‘‘Radiographic Anatomy of the Skeleton: Elbow -- Anteroposterior (AP) View, Labelled,’’ http://uwmsk.org/RadAnat/ElbowAPLabelled.html, 1997.spa
dc.relation.referencesFazoilI. Ataullakhanov, GeorgiiT. Guria, VasiliiI. Sarbash, and RimmaI. Volkova, ‘‘Spatiotemporal dynamics of clotting and pattern formation in human blood,’’ Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1425, no. 3, pp. 453--468, Nov. 1998.spa
dc.relation.referencesJ. Brouwers, C. van Donkelaar, B. Sengers, and R. Huiskes, ‘‘Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone?’’ Journal of Biomechanics, vol. 39, no. 15, pp. 2774--2782, 2006. 45spa
dc.relation.referencesW. Cao, M. N. Helder, N. Bravenboer, G. Wu, J. Jin, C. M. ten Bruggenkate, J. KleinNulend, and E. A. J. M. Schulten, ‘‘Is There a Governing Role of Osteocytes in Bone Tissue Regeneration?’’ Current Osteoporosis Reports, vol. 18, no. 5, pp. 541--550, Oct. 2020.spa
dc.relation.referencesD. R. Carter and M. Wong, ‘‘Mechanical stresses and endochondral ossification in the chondroepiphysis.’’ Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 6, no. 1, pp. 148--154, 1988.spa
dc.relation.referencesH. A. Castro-Abril, M. L. Gutiérrez, and D. A. Garzón-Alvarado, ‘‘Proximal femoral growth plate mechanical behavior: Comparison between different developmental stages,’’ Computers in Biology and Medicine, vol. 76, pp. 192--201, 2016.spa
dc.relation.referencesA. S. Chagin and P. T. Newton, ‘‘Postnatal skeletal growth is driven by the epiphyseal stem cell niche: Potential implications to pediatrics,’’ Pediatric Research, vol. 87, no. 6, pp. 986--990, May 2020.spa
dc.relation.referencesG. N. de Boer, N. Raske, S. Soltanahmadi, M. G. Bryant, and R. W. Hewson, ‘‘Compliant-poroelastic lubrication in cartilage-on-cartilage line contacts,’’ Tribology Materials, Surfaces & Interfaces, vol. 14, no. 3, pp. 151--165, Jul. 2020.spa
dc.relation.referencesG. N. de Boer, N. Raske, S. Soltanahmadi, D. Dowson, M. G. Bryant, and R. W. Hewson, ‘‘A porohyperelastic lubrication model for articular cartilage in the natural synovial joint,’’ Tribology International, vol. 149, p. 105760, Sep. 2020.spa
dc.relation.referencesM. T. E. a. I. Disorders, ‘‘Physeal Fractures of the Elbow,’’ Jan. 2024.spa
dc.relation.referencesM. Fan, N. Geng, X. Li, D. Yin, Y. Yang, R. Jiang, C. Chen, N. Feng, L. Liang, X. Li, F. Luo, H. Qi, Q. Tan, Y. Xie, and F. Guo, ‘‘IRE1α regulates the PTHrP-IHH feedback loop to orchestrate chondrocyte hypertrophy and cartilage mineralization,’’ Genes & Diseases, vol. 11, no. 1, pp. 464--478, Jan. 2024.spa
dc.relation.referencesC. Galeano, ‘‘Solución de la ecuación de elasticidad con elementos finitos,’’ Bogotá, 2021.spa
dc.relation.referencesD. A. Garzón-Alvarado, ‘‘Can the size of the epiphysis determine the number of secondary ossification centers? A mathematical approach,’’ Computer Methods in Biomechanics and Biomedical Engineering, vol. 14, no. 9, pp. 819--826, 2011.spa
dc.relation.referencesA. Jackson and W. Gu, ‘‘Transport properties of cartilaginous tissues,’’ Current rheumatology reviews, vol. 5, no. 1, p. 40, Feb. 2009.spa
dc.relation.referencesC. Jaimes, N. A. Chauvin, J. Delgado, and D. Jaramillo, ‘‘MR Imaging of Normal Epiphyseal Development and Common Epiphyseal Disorders,’’ RadioGraphics, vol. 34, no. 2, pp. 449--471, Mar. 2014.spa
dc.relation.referencesH. Khayyeri and P. J. Prendergast, ‘‘The emergence of mechanoregulated endochondral ossification in evolution,’’ Journal of Biomechanics, vol. 46, no. 4, pp. 731--737, 2013. 46spa
dc.relation.referencesT. Kobayashi, D. W. Soegiarto, Y. Yang, B. Lanske, E. Schipani, A. P. McMahon, and H. M. Kronenberg, ‘‘Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP.’’ The Journal of clinical investigation, vol. 115, no. 7, pp. 1734--1742, Jul. 2005.spa
dc.relation.referencesT. Komori, ‘‘Regulation of osteoblast differentiation by transcription factors.’’ Journal of cellular biochemistry, vol. 99, no. 5, pp. 1233--1239, Dec. 2006.spa
dc.relation.referencesH. M. Kronenberg and U. Chung, ‘‘The parathyroid hormone-related protein and Indian hedgehog feedback loop in the growth plate.’’ Novartis Foundation symposium, vol. 232, pp. 144--52; discussion 152--157, 2001.spa
dc.relation.referencesK. Márquez-Flórez, S. Shefelbine, A. Ramírez-Martínez, and D. Garzón-Alvarado, ‘‘Computational model for the patella onset,’’ PLOS ONE, vol. 13, no. 12, p. e0207770, Dec. 2018.spa
dc.relation.referencesJ. A. Mérida-Velasco, I. Sánchez-Montesinos, J. Espín-Ferra, J. F. Rodríguez-Vázquez, J. R. Mérida-Velasco, and J. Jiménez-Collado, ‘‘Development of the human knee joint,’’ The Anatomical Record, vol. 248, no. 2, pp. 269--278, Jun. 1997.spa
dc.relation.referencesJ. A. Mérida-Velasco, I. Sánchez-Montesinos, J. Espín-Ferra, J. R. Mérida-Velasco, J. F. Rodríguez-Vázquez, and J. Jiménez-Collado, ‘‘Development of the human elbow joint,’’ The Anatomical Record, vol. 258, no. 2, pp. 166--175, Feb. 2000.spa
dc.relation.referencesS. Morini, M. A. Continenza, G. Ricciardi, E. Gaudio, and L. Pannarale, ‘‘Development of the microcirculation of the secondary ossification center in rat humeral head.’’ The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology, vol. 278, no. 1, pp. 419--427, May 2004.spa
dc.relation.referencesR. J. a. C. Premanandan, ‘‘Bone growth,’’ https://ohiostate.pressbooks.pub/vethisto/chapter/5bone-growth/, Aug. 2017.spa
dc.relation.referencesD. Quexada-Rodríguez, O. Trabelsi, M.-C. Hobatho, S. Ramtani, and D. GarzónAlvarado, ‘‘Influence of growth plate morphology on bone trabecular groups, a framework computational approach,’’ Bone, vol. 171, p. 116742, 2023.spa
dc.relation.referencesN. B. Rooks, T. F. Besier, and M. T. Y. Schneider, ‘‘A Parameter Sensitivity Analysis on Multiple Finite Element Knee Joint Models,’’ Frontiers in Bioengineering and Biotechnology, vol. 10, 2022.spa
dc.relation.referencesS. Shefelbine, ‘‘Mechanical Regulation of Bone Growth Fronts and Growth Plates,’’ Ph.D. dissertation, Stanford University, Stanford, CA, USA, 2002.spa
dc.relation.referencesS. J. Shefelbine and D. R. Carter, ‘‘Mechanobiological predictions of growth front morphology in developmental hip dysplasia,’’ Journal of Orthopaedic Research, vol. 22, no. 2, pp. 346--352, 2004. 47spa
dc.relation.referencesS. Sundaramurthy and J. J. Mao, ‘‘Modulation of endochondral development of the distal femoral condyle by mechanical loading.’’ Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 24, no. 2, pp. 229--241, Feb. 2006.spa
dc.relation.referencesU. F. O. Themes, ‘‘Elbow,’’ https://radiologykey.com/elbow-4/, Feb. 2016.spa
dc.relation.referencesM. C. van der Meulen and R. Huiskes, ‘‘Why mechanobiology?: A survey article,’’ Journal of Biomechanics, vol. 35, no. 4, pp. 401--414, 2002.spa
dc.relation.referencesP. Weidemüller, M. Kholmatov, E. Petsalaki, and J. B. Zaugg, ‘‘Transcription factors: Bridge between cell signaling and gene regulation,’’ PROTEOMICS, vol. 21, no. 23-24, p. 2000034, Dec. 2021.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::623 - Ingeniería militar y náuticaspa
dc.subject.lembOSIFICACION ENDOCONDRALspa
dc.subject.lembEndochondral ossificationeng
dc.subject.lembMODELADO EN MEDICINAspa
dc.subject.lembMoulage in medicineeng
dc.subject.lembFUERZA Y ENERGIAspa
dc.subject.lembForce and energyeng
dc.subject.lembTRANSDUCCION DE LA SEÑAL CELULARspa
dc.subject.lembCellular signal transductioneng
dc.subject.lembMENSAJEROS SECUNDARIOS (BIOQUIMICA)spa
dc.subject.lembSecond messengers (Biochemistry)eng
dc.subject.lembOSIFICACIONspa
dc.subject.lembOssificationeng
dc.subject.proposalOsificación endocondralspa
dc.subject.proposalCrecimiento óseospa
dc.subject.proposalFactores mecánicos y bioquímicosspa
dc.subject.proposalNURBSspa
dc.subject.proposalElementos finitosspa
dc.subject.proposalCentro de osificaciónspa
dc.subject.proposalEndochondral ossificationeng
dc.subject.proposalBone growtheng
dc.subject.proposalMechanical and biochemical regulationeng
dc.subject.proposalFinite element modelingeng
dc.subject.proposalOssification centereng
dc.titleParametric computational model of endochondral ossificationeng
dc.title.translatedModelo paramétrico computacional de la osificación endocondralspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1049659523.2025.pdf
Tamaño:
22.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: