Parametric computational model of endochondral ossification
dc.contributor.advisor | Garzón Alvarado, Diego Alexander | spa |
dc.contributor.author | Bustamante Porras, Cristian Rodrigo | spa |
dc.contributor.researchgroup | Grupo de Modelado y Métodos Numéricos en Ingeniería (GNUM) | spa |
dc.date.accessioned | 2025-07-03T20:45:35Z | |
dc.date.available | 2025-07-03T20:45:35Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, fotografías | spa |
dc.description.abstract | La osificación endocondral es el principal mecanismo de crecimiento de los huesos largos, regulado por la interacción entre fuerzas mecánicas, señales bioquímicas y diferenciación celular. En esta tesis se propone una aproximación de crecimiento basada en un modelo acoplado que integra tres componentes fundamentales: (1) estímulos mecánicos, a través de un modelo elástico en deformación plana para predecir los patrones de osificación en función de la geometría y carga aplicada; (2) factores bioquímicos, mediante una formulación de difusiónreacción para la dinámica espacial de Ihh y PTHrP; y (3) actividad celular, representada mediante índices de osificación basados en la distribución de tensiones y señales locales. Se consideran distintas geometrías de articulaciones construidas mediante parametrizaciones de B-Splines Racionales No Uniformes (NURBS, por sus siglas en inglés), abarcando desde formas cóncavas hasta convexas, así como frentes de osificación en diferentes etapas. Además, se exploran dos escenarios de historia de carga: uno con contacto único y otro con doble contacto, representando configuraciones como la metacarpofalángica, tibiofemoral, humerocubital y humerorradial. Los resultados predicen la localización y forma de centros secundarios de osificación (SOC), demostrando que la forma y carga determinan la progresión del crecimiento óseo. La contribución principal radica en el desarrollo de un marco paramétrico computacional, altamente personalizable, para modelar de forma integrada el ambiente mecanobiológico del crecimiento óseo (Texto tomado de la fuente). | spa |
dc.description.abstract | Endochondral ossification is the key mechanism governing the longitudinal growth of long bones, regulated by a complex interplay of mechanical stimuli, biochemical gradients, and cellular differentiation. In this thesis, we propose a growth approximation based on a coupled model that integrates three essential components: (1) mechanical stimuli, using linear elastic plane strain models to predict ossification patterns based on shape and loading; (2) biochemical regulation, through a reaction–diffusion framework for spatial dynamics of Ihh and PTHrP; and (3) cellular response, via ossification indices driven by stress distributions and signaling activity. Joint geometries constructed using Non-Uniform Rational B-Splines (NURBS) parameterizations, ranging from concave to convex shapes, with varying degrees of ossification front progression. Two distinct loading history modes are evaluated: a single contact and a dual contact scenario, resembling the mechanical configurations of joints such as the metacarpophalangeal, tibiofemoral, humeroulnar, and humeroradial. The model predicts the emergence and shape of Secondary Ossification Centers (SOC), highlighting how geometry and load collectively drive bone growth. The primary contribution of this work is the development of a parametric computational framework with a wide range of customizable inputs, enabling detailed simulation of the mechanobiological environment governing bone development. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería Mecánica | spa |
dc.description.methods | The methodology starts with a CAD-generated geometric model that delineates cartilage and bone areas using NURBS curves, offering design flexibility via control points. Seven geometric variables—comprising angles and lengths—are left unspecified, while parabolic pressure distributions are applied along the articular surface. Each pressure is described by two geometry-dependent parameters (location and extent) and one load-related parameter representing intensity. A further variable governs the maximum applied force, with all others scaled proportionally. A two-dimensional parametric domain defined by p and q is used to generate varying combinations of geometries and loading conditions. Load placement is dictated by the geometry, simplifying simulation. These cases are analyzed via the Finite Element Method under plane strain assumptions and isotropic material properties, employing bilinear quadrilateral elements and convergence checks to ensure solution validity. The ossification index (OI) is then calculated to predict potential zones for secondary ossification center (SOC) formation, with outcomes consistent with known biological patterns. | spa |
dc.description.researcharea | Ingeniería de Diseño y Biomecánica | spa |
dc.format.extent | xiii, 64 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88287 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica | spa |
dc.relation.references | J. Gasser and M. Kneissel, ‘‘Bone Physiology and Biology,’’ in Bone Toxicology, Sep. 2017, pp. 27--94. | spa |
dc.relation.references | S. Standring, ‘‘Functional anatomy of the musculoskeletal system,’’ in Gray’s Anatomy, 41st ed. London: Elsevier, 2015. | spa |
dc.relation.references | FreeCAD Development Team, ‘‘Freecad: Open-source parametric 3-d cad modeler,’’ https://www.freecad.org, 2025, version 0.21.2. | spa |
dc.relation.references | G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009. | spa |
dc.relation.references | O. R. Bingol and A. Krishnamurthy, ‘‘NURBS-Python: An open-source object-oriented NURBS modeling framework in Python,’’ SoftwareX, vol. 9, pp. 85--94, 2019. | spa |
dc.relation.references | C. Geuzaine and J.-F. Remacle, ‘‘Gmsh: A 3d finite element mesh generator with builtin pre- and post-processing facilities,’’ International Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309--1331, 2009. | spa |
dc.relation.references | M. Smith, ABAQUS/Standard User’s Manual, Version 2017. United States: Dassault Systèmes Simulia Corp, 2009. | spa |
dc.relation.references | Électricité de France (EDF), ‘‘code_aster: Finite element analysis of structures and thermomechanics for studies and research,’’ https://www.code-aster.org, 1989--2017, open-source finite element solver. | spa |
dc.relation.references | J. Ahrens, B. Geveci, and C. Law, ‘‘ParaView: An end-user tool for large data visualization,’’ in Visualization Handbook. Elsevier, 2005. | spa |
dc.relation.references | J. Ahrens, B. Geveci, and C. Law, ŚŚParaView: An end-user tool for large data visualization,’’ in Visualization Handbook. Elsevier, 2005 | spa |
dc.relation.references | J. Brankovic, M. Vrecl, G. Fazarinc, and J. Jan, ‘‘Bone tissue morphology of rat offspring lactationally exposed to polychlorinated biphenyl 169 and 155,’’ Scientific Reports, vol. 10, Nov. 2020. 40 | spa |
dc.relation.references | J. C. Nguyen, B. K. Markhardt, A. C. Merrow, and J. R. Dwek, ‘‘Imaging of Pediatric Growth Plate Disturbances,’’ RadioGraphics, vol. 37, no. 6, pp. 1791--1812, Oct. 2017. | spa |
dc.relation.references | S. M. Sadeghian, F. D. Shapiro, and S. J. Shefelbine, ‘‘Computational model of endochondral ossification: Simulating growth of a long bone,’’ Bone, vol. 153, p. 116132, 2021. | spa |
dc.relation.references | Y. Yang, ‘‘Skeletal morphogenesis during embryonic development,’’ Critical Reviews™ in Eukaryotic Gene Expression, vol. 19, no. 3, pp. 197--218, 2009. | spa |
dc.relation.references | H. F. Cardoso, V. Pereira, and L. Rios, ‘‘Chronology of fusion of the primary and secondary ossification centers in the human sacrum and age estimation in child and adolescent skeletons,’’ American Journal of Physical Anthropology, vol. 153, no. 2, pp. 214--225, 2014. | spa |
dc.relation.references | M. R. Allen and D. B. Burr, ‘‘Bone growth, modeling, and remodeling,’’ in Basic and Applied Bone Biology (Second Edition), 2nd ed., D. B. Burr and M. R. Allen, Eds. Academic Press, 2019, pp. 85--100. | spa |
dc.relation.references | M. Xie, P. Gol’din, A. N. Herdina, J. Estefa, E. V. Medvedeva, L. Li, P. T. Newton, S. Kotova, B. Shavkuta, A. Saxena, L. T. Shumate, B. D. Metscher, K. Großschmidt, S. Nishimori, A. Akovantseva, A. P. Usanova, A. D. Kurenkova, A. Kumar, I. L. Arregui, P. Tafforeau, K. Fried, M. Carlström, A. Simon, C. Gasser, H. M. Kronenberg, M. Bastepe, K. L. Cooper, P. Timashev, S. Sanchez, I. Adameyko, A. Eriksson, and A. S. Chagin, ‘‘Secondary ossification center induces and protects growth plate structure,’’ eLife, vol. 9, p. e55212, Oct. 2020. | spa |
dc.relation.references | K. M. Márquez-Flórez, J. R. Monaghan, S. J. Shefelbine, A. Ramirez-Martínez, and D. A. Garzón-Alvarado, ‘‘A computational model for the joint onset and development,’’ Journal of Theoretical Biology, vol. 454, pp. 345--356, 2018. | spa |
dc.relation.references | S. S. Stevens, G. S. Beaupré, and D. R. Carter, ‘‘Computer model of endochondral growth and ossification in long bones: Biological and mechanobiological influences.’’ Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 17, no. 5, pp. 646--653, Sep. 1999. | spa |
dc.relation.references | J. J. Vaca-González, M. Moncayo-Donoso, J. Guevara, Y. Hata, S. J. Shefelbine, and D. A. Garzón-Alvarado, ‘‘Mechanobiological modeling of endochondral ossification: An experimental and computational analysis,’’ Biomechanics and modeling in mechanobiology, vol. 17, no. 3, pp. 853--875, Jan. 2018. | spa |
dc.relation.references | H. M. Kronenberg, ‘‘Developmental regulation of the growth plate.’’ Nature, vol. 423, no. 6937, pp. 332--336, May 2003. | spa |
dc.relation.references | E. Zelzer, R. Mamluk, N. Ferrara, R. S. Johnson, E. Schipani, and B. R. Olsen, ‘‘VEGFA is necessary for chondrocyte survival during bone development.’’ Development (Cambridge, England), vol. 131, no. 9, pp. 2161--2171, May 2004. 41 | spa |
dc.relation.references | J. Álvarez, L. Costales, R. Serra, M. Balbín, and J. M. López, ‘‘Expression Patterns of Matrix Metalloproteinases and Vascular Endothelial Growth Factor During Epiphyseal Ossification,’’ Journal of Bone and Mineral Research, vol. 20, no. 6, pp. 1011--1021, Jun. 2005. | spa |
dc.relation.references | P. Aghajanian, W. Xing, S. Cheng, and S. Mohan, ‘‘Epiphyseal bone formation occurs via thyroid hormone regulation of chondrocyte to osteoblast transdifferentiation,’’ Scientific Reports, vol. 7, no. 1, p. 10432, Sep. 2017. | spa |
dc.relation.references | A. F. Carrera-Pinzón, K. Márquez-Flórez, R. H. Kraft, S. Ramtani, and D. A. GarzónAlvarado, ‘‘Computational model of a synovial joint morphogenesis,’’ Biomechanics and Modeling in Mechanobiology, vol. 19, no. 5, pp. 1389--1402, Oct. 2020. | spa |
dc.relation.references | J. H. Heegaard, G. S. Beaupré, and D. R. Carter, ‘‘Mechanically modulated cartilage growth may regulate joint surface morphogenesis,’’ Journal of Orthopaedic Research, vol. 17, no. 4, pp. 509--517, 1999. | spa |
dc.relation.references | M. Giorgi, A. Carriero, S. J. Shefelbine, and N. C. Nowlan, ‘‘Mechanobiological simulations of prenatal joint morphogenesis,’’ Journal of Biomechanics, vol. 47, no. 5, pp. 989--995, 2014. | spa |
dc.relation.references | L. Peinado Cortés, J. Vanegas Acosta, and D. Garzón Alvarado, ‘‘A mechanobiological model of epiphysis structures formation,’’ Journal of Theoretical Biology, vol. 287, pp. 13--25, 2011. | spa |
dc.relation.references | D. A. Garzón-Alvarado, JM. García-Aznar, and M. Doblaré, ‘‘Appearance and location of secondary ossification centres may be explained by a reaction--diffusion mechanism,’’ Computers in biology and medicine, vol. 39, no. 6, pp. 554--561, 2009. | spa |
dc.relation.references | B. Clarke, ‘‘Normal Bone Anatomy and Physiology,’’ Clinical Journal of the American Society of Nephrology, vol. 3, no. Supplement_3, 2008. | spa |
dc.relation.references | V. Šromová, D. Sobola, and P. Kaspar, ‘‘A brief review of bone cell function and importance,’’ Cells, vol. 12, no. 2576, 2023. | spa |
dc.relation.references | D. W. I. Buck and G. A. Dumanian, ‘‘Bone Biology and Physiology: Part I. The Fundamentals,’’ Plastic and Reconstructive Surgery, vol. 129, no. 6, 2012. | spa |
dc.relation.references | J. M. T. Thompson, M. C. H. van der Meulen, and P. J. Prendergast, ‘‘Mechanics in skeletal development, adaptation and disease,’’ Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, no. 1766, pp. 565--578, 2000. | spa |
dc.relation.references | M. Pines and S. Hurwitz, ‘‘The role of the growth plate in longitudinal bone growth1,’’ Poultry Science, vol. 70, no. 8, pp. 1806--1814, 1991. 42 | spa |
dc.relation.references | J. A. Ogden, R. N. Hensinger, and N. McCollough, ‘‘Diagnostic Imaging,’’ in Skeletal Injury in the Child, 3rd ed. Springer, 2000, p. 128. | spa |
dc.relation.references | E. Comellas and S. J. Shefelbine, ‘‘The role of computational models in mechanobiology of growing bone,’’ Frontiers in Bioengineering and Biotechnology, vol. 10, 2022. | spa |
dc.relation.references | K. Marquez-Florez, S. Arroyave-Tobon, L. Tadrist, and J.-M. Linares, ‘‘Elbow dimensions in quadrupedal mammals driven by lubrication regime,’’ Scientific Reports, vol. 14, no. 1, p. 2177, Jan. 2024. | spa |
dc.relation.references | M. Wong and D. R. Carter, ‘‘A theoretical model of endochondral ossification and bone architectural construction in long bone ontogeny.’’ Anatomy and embryology, vol. 181, no. 6, pp. 523--532, 1990. | spa |
dc.relation.references | M. Giorgi, A. Carriero, S. J. Shefelbine, and N. C. Nowlan, ‘‘Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: Application to hip dysplasia.’’ Journal of biomechanics, vol. 48, no. 12, pp. 3390--3397, Sep. 2015. | spa |
dc.relation.references | D. A. Garzon-Alvarado, M. L. Gutiérrez, and L. F. Calixto, ‘‘A computational model of clavicle bone formation: A mechano-biochemical hypothesis,’’ Bone, vol. 61, pp. 132--137, 2014. | spa |
dc.relation.references | D. A. Garzón-Alvarado, ‘‘A biochemical strategy for simulation of endochondral and intramembranous ossification,’’ Computer Methods in Biomechanics and Biomedical Engineering, vol. 17, no. 11, pp. 1237--1247, 2014. | spa |
dc.relation.references | T. Ogura, T. Minas, A. Tsuchiya, and S. Mizuno, ‘‘Effects of hydrostatic pressure and deviatoric stress on human articular chondrocytes for designing neo-cartilage construct,’’ Journal of Tissue Engineering and Regenerative Medicine, vol. 13, no. 7, pp. 1143--1152, 2019. | spa |
dc.relation.references | R. L. Smith, D. R. Carter, and D. J. Schurman, ‘‘Pressure and shear differentially alter human articular chondrocyte metabolism: A review.’’ Clinical orthopaedics and related research, no. 427 Suppl, pp. S89--95, Oct. 2004. | spa |
dc.relation.references | E. Hodder, F. Guppy, D. Covill, and P. Bush, ‘‘The effect of hydrostatic pressure on proteoglycan production in articular cartilage in vitro: A meta-analysis,’’ Osteoarthritis and Cartilage, vol. 28, no. 8, pp. 1007--1019, 2020. | spa |
dc.relation.references | C. Kiani, L. Chen, Y. J. Wu, A. J. Yee, and B. B. Yang, ‘‘Structure and function of aggrecan,’’ Cell Research, vol. 12, no. 1, pp. 19--32, Mar. 2002. | spa |
dc.relation.references | S. Provot and E. Schipani, ‘‘Molecular mechanisms of endochondral bone development,’’ Biochemical and Biophysical Research Communications, vol. 328, no. 3, pp. 658--665, 2005. | spa |
dc.relation.references | U. I. Chung, E. Schipani, A. P. McMahon, and H. M. Kronenberg, ‘‘Indian hedgehog couples chondrogenesis to osteogenesis in endochondral bone development.’’ The Journal of clinical investigation, vol. 107, no. 3, pp. 295--304, Feb. 2001. 43 | spa |
dc.relation.references | J. M. Kindblom, O. Nilsson, T. Hurme, C. Ohlsson, and L. Sävendahl, ‘‘Expression and localization of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development.’’ The Journal of endocrinology, vol. 174, no. 2, pp. R1--6, Aug. 2002. | spa |
dc.relation.references | E. Mau, H. Whetstone, C. Yu, S. Hopyan, J. S. Wunder, and B. A. Alman, ‘‘PTHrP regulates growth plate chondrocyte differentiation and proliferation in a Gli3 dependent manner utilizing hedgehog ligand dependent and independent mechanisms,’’ Developmental Biology, vol. 305, no. 1, pp. 28--39, 2007. | spa |
dc.relation.references | B. St-Jacques, M. Hammerschmidt, and A. P. McMahon, ‘‘Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation.’’ Genes & development, vol. 13, no. 16, pp. 2072--2086, Aug. 1999. | spa |
dc.relation.references | M. C. Fisher, C. Meyer, G. Garber, and C. N. Dealy, ‘‘Role of IGFBP2, IGF-I and IGF-II in regulating long bone growth,’’ Bone, vol. 37, no. 6, pp. 741--750, 2005. | spa |
dc.relation.references | A. Vortkamp, K. Lee, B. Lanske, G. V. Segre, H. M. Kronenberg, and C. J. Tabin, ‘‘Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein.’’ Science (New York, N.Y.), vol. 273, no. 5275, pp. 613--622, Aug. 1996. | spa |
dc.relation.references | F. Forriol and F. Shapiro, ‘‘Bone development: Interaction of molecular components and biophysical forces.’’ Clinical orthopaedics and related research, no. 432, pp. 14--33, Mar. 2005. | spa |
dc.relation.references | D. A. Garzón-Alvarado, J. M. García-Aznar, and M. Doblaré, ‘‘A reaction-diffusion model for long bones growth.’’ Biomechanics and modeling in mechanobiology, vol. 8, no. 5, pp. 381--395, Oct. 2009. | spa |
dc.relation.references | K. Hata, Y. Takahata, T. Murakami, and R. Nishimura, ‘‘Transcriptional network controlling endochondral ossification,’’ Journal of Bone Metabolism, vol. 24, no. 2, p. 75, 2017. | spa |
dc.relation.references | R. Nishimura, K. Hata, K. Ono, R. Takashima, M. Yoshida, and T. Yoneda, ‘‘Regulation of endochondral ossification by transcription factors,’’ Journal of Oral Biosciences, vol. 54, no. 4, pp. 180--183, 2012. | spa |
dc.relation.references | E. Mackie, Y. Ahmed, L. Tatarczuch, K.-S. Chen, and M. Mirams, ‘‘Endochondral ossification: How cartilage is converted into bone in the developing skeleton,’’ The International Journal of Biochemistry & Cell Biology, vol. 40, no. 1, pp. 46--62, 2008. | spa |
dc.relation.references | B. C. L. Mangiavini, G. M. Peretti and N. Maffulli, ‘‘Epidermal growth factor signalling pathway in endochondral ossification: An evidence-based narrative review,’’ Annals of Medicine, vol. 54, no. 1, pp. 37--50, 2022. | spa |
dc.relation.references | F. Shapiro, ‘‘Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts.’’ European cells & materials, vol. 15, pp. 53--76, Apr. 2008. 44 | spa |
dc.relation.references | M. Herrero and J. López, ‘‘Bone Formation: Biological Aspects and Modelling Problems,’’ Journal of Theoretical Medicine, vol. 6, Mar. 2005. | spa |
dc.relation.references | A. Mehboob, I. Barsoum, H. Mehboob, R. K. Abu Al-Rub, and A. Ouldyerou, ‘‘Topology optimization and biomechanical evaluation of bone plates for tibial bone fractures considering bone healing,’’ Virtual and Physical Prototyping, vol. 19, no. 1, p. e2391475, Dec. 2024. | spa |
dc.relation.references | D. R. Carter and M. Wong, ‘‘Modelling cartilage mechanobiology,’’ Phil. Trans. R. Soc. Lond. B, vol. 358, pp. 1461--1471, 2003. | spa |
dc.relation.references | W. Hayes and A. Bodine, ‘‘Flow-independent viscoelastic properties of articular cartilage matrix,’’ Journal of Biomechanics, vol. 11, no. 8, pp. 407--419, 1978. | spa |
dc.relation.references | A. Fasano, M. Herrero, J. López, and E. Medina, ‘‘On the dynamics of the growth plate in primary ossification,’’ Journal of Theoretical Biology, vol. 265, no. 4, pp. 543--553, 2010. | spa |
dc.relation.references | J. Stoop, Y. Yokoyama, and T. Adachi, ‘‘Timing of resting zone parathyroid hormonerelated protein expression affects maintenance of the growth plate during secondary ossification: A computational study,’’ Biomechanics and Modeling in Mechanobiology, vol. 24, no. 1, pp. 125--137, Feb. 2025. | spa |
dc.relation.references | P. Aghajanian and S. Mohan, ‘‘The art of building bone: Emerging role of chondrocyteto-osteoblast transdifferentiation in endochondral ossification,’’ Bone Research, vol. 6, no. 1, p. 19, Jun. 2018. | spa |
dc.relation.references | W. Lin and K. Miao, ‘‘A Channel Correction and Spatial Attention Framework for Anterior Cruciate Ligament Tear with Ordinal Loss,’’ Applied Sciences, vol. 13, p. 5005, Apr. 2023. | spa |
dc.relation.references | I. Kjellin, ‘‘Developmental Variants | Radsource,’’ Oct. 2009. | spa |
dc.relation.references | J. Watson, K. Setayesh, and M. R. Hutchinson, ‘‘Acute Upper Extremity Injuries in Pediatric and Adolescent Sports,’’ in Injury in Pediatric and Adolescent Sports: Epidemiology, Treatment and Prevention, D. Caine and L. Purcell, Eds. Cham: Springer International Publishing, 2016, pp. 121--134. | spa |
dc.relation.references | M. L. Richardson, ‘‘Radiographic Anatomy of the Skeleton: Elbow -- Anteroposterior (AP) View, Labelled,’’ http://uwmsk.org/RadAnat/ElbowAPLabelled.html, 1997. | spa |
dc.relation.references | FazoilI. Ataullakhanov, GeorgiiT. Guria, VasiliiI. Sarbash, and RimmaI. Volkova, ‘‘Spatiotemporal dynamics of clotting and pattern formation in human blood,’’ Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1425, no. 3, pp. 453--468, Nov. 1998. | spa |
dc.relation.references | J. Brouwers, C. van Donkelaar, B. Sengers, and R. Huiskes, ‘‘Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone?’’ Journal of Biomechanics, vol. 39, no. 15, pp. 2774--2782, 2006. 45 | spa |
dc.relation.references | W. Cao, M. N. Helder, N. Bravenboer, G. Wu, J. Jin, C. M. ten Bruggenkate, J. KleinNulend, and E. A. J. M. Schulten, ‘‘Is There a Governing Role of Osteocytes in Bone Tissue Regeneration?’’ Current Osteoporosis Reports, vol. 18, no. 5, pp. 541--550, Oct. 2020. | spa |
dc.relation.references | D. R. Carter and M. Wong, ‘‘Mechanical stresses and endochondral ossification in the chondroepiphysis.’’ Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 6, no. 1, pp. 148--154, 1988. | spa |
dc.relation.references | H. A. Castro-Abril, M. L. Gutiérrez, and D. A. Garzón-Alvarado, ‘‘Proximal femoral growth plate mechanical behavior: Comparison between different developmental stages,’’ Computers in Biology and Medicine, vol. 76, pp. 192--201, 2016. | spa |
dc.relation.references | A. S. Chagin and P. T. Newton, ‘‘Postnatal skeletal growth is driven by the epiphyseal stem cell niche: Potential implications to pediatrics,’’ Pediatric Research, vol. 87, no. 6, pp. 986--990, May 2020. | spa |
dc.relation.references | G. N. de Boer, N. Raske, S. Soltanahmadi, M. G. Bryant, and R. W. Hewson, ‘‘Compliant-poroelastic lubrication in cartilage-on-cartilage line contacts,’’ Tribology Materials, Surfaces & Interfaces, vol. 14, no. 3, pp. 151--165, Jul. 2020. | spa |
dc.relation.references | G. N. de Boer, N. Raske, S. Soltanahmadi, D. Dowson, M. G. Bryant, and R. W. Hewson, ‘‘A porohyperelastic lubrication model for articular cartilage in the natural synovial joint,’’ Tribology International, vol. 149, p. 105760, Sep. 2020. | spa |
dc.relation.references | M. T. E. a. I. Disorders, ‘‘Physeal Fractures of the Elbow,’’ Jan. 2024. | spa |
dc.relation.references | M. Fan, N. Geng, X. Li, D. Yin, Y. Yang, R. Jiang, C. Chen, N. Feng, L. Liang, X. Li, F. Luo, H. Qi, Q. Tan, Y. Xie, and F. Guo, ‘‘IRE1α regulates the PTHrP-IHH feedback loop to orchestrate chondrocyte hypertrophy and cartilage mineralization,’’ Genes & Diseases, vol. 11, no. 1, pp. 464--478, Jan. 2024. | spa |
dc.relation.references | C. Galeano, ‘‘Solución de la ecuación de elasticidad con elementos finitos,’’ Bogotá, 2021. | spa |
dc.relation.references | D. A. Garzón-Alvarado, ‘‘Can the size of the epiphysis determine the number of secondary ossification centers? A mathematical approach,’’ Computer Methods in Biomechanics and Biomedical Engineering, vol. 14, no. 9, pp. 819--826, 2011. | spa |
dc.relation.references | A. Jackson and W. Gu, ‘‘Transport properties of cartilaginous tissues,’’ Current rheumatology reviews, vol. 5, no. 1, p. 40, Feb. 2009. | spa |
dc.relation.references | C. Jaimes, N. A. Chauvin, J. Delgado, and D. Jaramillo, ‘‘MR Imaging of Normal Epiphyseal Development and Common Epiphyseal Disorders,’’ RadioGraphics, vol. 34, no. 2, pp. 449--471, Mar. 2014. | spa |
dc.relation.references | H. Khayyeri and P. J. Prendergast, ‘‘The emergence of mechanoregulated endochondral ossification in evolution,’’ Journal of Biomechanics, vol. 46, no. 4, pp. 731--737, 2013. 46 | spa |
dc.relation.references | T. Kobayashi, D. W. Soegiarto, Y. Yang, B. Lanske, E. Schipani, A. P. McMahon, and H. M. Kronenberg, ‘‘Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP.’’ The Journal of clinical investigation, vol. 115, no. 7, pp. 1734--1742, Jul. 2005. | spa |
dc.relation.references | T. Komori, ‘‘Regulation of osteoblast differentiation by transcription factors.’’ Journal of cellular biochemistry, vol. 99, no. 5, pp. 1233--1239, Dec. 2006. | spa |
dc.relation.references | H. M. Kronenberg and U. Chung, ‘‘The parathyroid hormone-related protein and Indian hedgehog feedback loop in the growth plate.’’ Novartis Foundation symposium, vol. 232, pp. 144--52; discussion 152--157, 2001. | spa |
dc.relation.references | K. Márquez-Flórez, S. Shefelbine, A. Ramírez-Martínez, and D. Garzón-Alvarado, ‘‘Computational model for the patella onset,’’ PLOS ONE, vol. 13, no. 12, p. e0207770, Dec. 2018. | spa |
dc.relation.references | J. A. Mérida-Velasco, I. Sánchez-Montesinos, J. Espín-Ferra, J. F. Rodríguez-Vázquez, J. R. Mérida-Velasco, and J. Jiménez-Collado, ‘‘Development of the human knee joint,’’ The Anatomical Record, vol. 248, no. 2, pp. 269--278, Jun. 1997. | spa |
dc.relation.references | J. A. Mérida-Velasco, I. Sánchez-Montesinos, J. Espín-Ferra, J. R. Mérida-Velasco, J. F. Rodríguez-Vázquez, and J. Jiménez-Collado, ‘‘Development of the human elbow joint,’’ The Anatomical Record, vol. 258, no. 2, pp. 166--175, Feb. 2000. | spa |
dc.relation.references | S. Morini, M. A. Continenza, G. Ricciardi, E. Gaudio, and L. Pannarale, ‘‘Development of the microcirculation of the secondary ossification center in rat humeral head.’’ The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology, vol. 278, no. 1, pp. 419--427, May 2004. | spa |
dc.relation.references | R. J. a. C. Premanandan, ‘‘Bone growth,’’ https://ohiostate.pressbooks.pub/vethisto/chapter/5bone-growth/, Aug. 2017. | spa |
dc.relation.references | D. Quexada-Rodríguez, O. Trabelsi, M.-C. Hobatho, S. Ramtani, and D. GarzónAlvarado, ‘‘Influence of growth plate morphology on bone trabecular groups, a framework computational approach,’’ Bone, vol. 171, p. 116742, 2023. | spa |
dc.relation.references | N. B. Rooks, T. F. Besier, and M. T. Y. Schneider, ‘‘A Parameter Sensitivity Analysis on Multiple Finite Element Knee Joint Models,’’ Frontiers in Bioengineering and Biotechnology, vol. 10, 2022. | spa |
dc.relation.references | S. Shefelbine, ‘‘Mechanical Regulation of Bone Growth Fronts and Growth Plates,’’ Ph.D. dissertation, Stanford University, Stanford, CA, USA, 2002. | spa |
dc.relation.references | S. J. Shefelbine and D. R. Carter, ‘‘Mechanobiological predictions of growth front morphology in developmental hip dysplasia,’’ Journal of Orthopaedic Research, vol. 22, no. 2, pp. 346--352, 2004. 47 | spa |
dc.relation.references | S. Sundaramurthy and J. J. Mao, ‘‘Modulation of endochondral development of the distal femoral condyle by mechanical loading.’’ Journal of orthopaedic research : official publication of the Orthopaedic Research Society, vol. 24, no. 2, pp. 229--241, Feb. 2006. | spa |
dc.relation.references | U. F. O. Themes, ‘‘Elbow,’’ https://radiologykey.com/elbow-4/, Feb. 2016. | spa |
dc.relation.references | M. C. van der Meulen and R. Huiskes, ‘‘Why mechanobiology?: A survey article,’’ Journal of Biomechanics, vol. 35, no. 4, pp. 401--414, 2002. | spa |
dc.relation.references | P. Weidemüller, M. Kholmatov, E. Petsalaki, and J. B. Zaugg, ‘‘Transcription factors: Bridge between cell signaling and gene regulation,’’ PROTEOMICS, vol. 21, no. 23-24, p. 2000034, Dec. 2021. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::623 - Ingeniería militar y náutica | spa |
dc.subject.lemb | OSIFICACION ENDOCONDRAL | spa |
dc.subject.lemb | Endochondral ossification | eng |
dc.subject.lemb | MODELADO EN MEDICINA | spa |
dc.subject.lemb | Moulage in medicine | eng |
dc.subject.lemb | FUERZA Y ENERGIA | spa |
dc.subject.lemb | Force and energy | eng |
dc.subject.lemb | TRANSDUCCION DE LA SEÑAL CELULAR | spa |
dc.subject.lemb | Cellular signal transduction | eng |
dc.subject.lemb | MENSAJEROS SECUNDARIOS (BIOQUIMICA) | spa |
dc.subject.lemb | Second messengers (Biochemistry) | eng |
dc.subject.lemb | OSIFICACION | spa |
dc.subject.lemb | Ossification | eng |
dc.subject.proposal | Osificación endocondral | spa |
dc.subject.proposal | Crecimiento óseo | spa |
dc.subject.proposal | Factores mecánicos y bioquímicos | spa |
dc.subject.proposal | NURBS | spa |
dc.subject.proposal | Elementos finitos | spa |
dc.subject.proposal | Centro de osificación | spa |
dc.subject.proposal | Endochondral ossification | eng |
dc.subject.proposal | Bone growth | eng |
dc.subject.proposal | Mechanical and biochemical regulation | eng |
dc.subject.proposal | Finite element modeling | eng |
dc.subject.proposal | Ossification center | eng |
dc.title | Parametric computational model of endochondral ossification | eng |
dc.title.translated | Modelo paramétrico computacional de la osificación endocondral | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1049659523.2025.pdf
- Tamaño:
- 22.08 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Mecánica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: