Caracterización molecular y diagnóstico temprano de Lasiodiplodia sp. y Ceratocystis sp. en plantas de cacao y aguacate

dc.contributor.advisorGonzález Almario, Adrianaspa
dc.contributor.advisorJaimes Suárez, Yeirme Yanethspa
dc.contributor.authorLaverde Arias, Laura Valentinaspa
dc.contributor.researchgroupGenética de Rasgos de Interés Agronómicospa
dc.date.accessioned2025-04-09T14:39:08Z
dc.date.available2025-04-09T14:39:08Z
dc.date.issued2024
dc.descriptionilustraciones, fotografías a color, tablasspa
dc.description.abstractLasiodiplodia sp. y Ceratocystis sp. son parásitos facultativos que se caracterizan por permanecer en estados de latencia prolongados y colonizar el sistema vascular de las plantas sin producir síntomas en las primeras etapas de infección. El inóculo puede ser dispersado a través de material vegetal de propagación aparentemente sano, y por ende, resulta necesario desarrollar técnicas para detectar de manera temprana estos patógenos cuando la densidad de inóculo es muy baja y la planta no presenta sintomatología. El objetivo de esta investigación fue caracterizar molecularmente los aislados de una colección de Lasiodiplodia sp. y Ceratocystis sp. provenientes de muestras de Theobroma cacao L. y Persea americana Mill. con el fin de identificar marcadores específicos y diseñar una PCR para el diagnóstico temprano de estos patógenos a partir de tallos de plántulas infectadas. Para ello, se amplificaron las regiones ITS y los genes β-tubulina y TEF-1α y con base en las secuencias obtenidas se realizaron los análisis filogenéticos respectivos para llegar a la identificación a nivel de especie de cada uno de los aislados. Posteriormente, con tres de los aislados fúngicos se realizó la inoculación de plántulas de T. cacao y P. americana bajo condiciones semicontroladas y finalmente, la estandarización de una PCR anidada para el diagnóstico temprano. Las filogenias multigen demostraron que L. subglobosa es un patógeno compartido entre T. cacao y P. americana y que los marcadores β-tubulina y TEF-1α no presentan suficiente resolución para determinar las especies de Ceratocystis. Dada la dificultad en la distinción de especies crípticas de ambos patógenos, se utilizó la región ITS para diseñar una PCR-anidada género-específica para el diagnóstico temprano en tallos de plántulas infectados con los patógenos. El límite de detección de la prueba fue de 3.869 ng/μL para Lasiodiplodia sp. y de 221.5 pg/μL para Ceratocystis sp., y no se observaron amplificaciones inespecíficas frente al ácido nucleico de otros géneros fúngicos. También se demostró que la prueba desarrollada detectó los patógenos en tallos provenientes de plántulas asintomáticas inoculadas artificialmente a partir de los 7 dpi para Lasiodiplodia sp. y 9 dpi para Ceratocystis sp., por lo cual se propone su uso como herramienta de tamizaje para verificar que los injertos para propagar material vegetal se encuentren libres de inóculo (Texto tomado de la fuente).spa
dc.description.abstractLasiodiplodia sp. and Ceratocystis sp. are facultative parasites characterized by prolonged dormancy and the ability to colonize the vascular system of plants without displaying symptoms in the early stages of infection. The inoculum can be spread through apparently healthy plant propagation material, and therefore, it is necessary to develop techniques for early detection of these pathogens when the inoculum density is low, and the plant remains asymptomatic. This research aimed to molecularly characterize isolates from a collection of Lasiodiplodia sp. and Ceratocystis sp. from samples of Theobroma cacao L. and Persea americana Mill. to identify specific markers and design a PCR for early diagnosis of these pathogens in infected seedling stems. For this purpose, ITS regions and the β-tubulin and TEF-1α genes were amplified and based on the sequence obtained, the respective phylogenetic analyses were carried out to allow a species-level classification of the isolates. Subsequently, three of the fungal isolates were inoculated in T. cacao and P. americana seedlings under semi-controlled conditions, and finally a nested PCR was standardized for early diagnosis. Multigene phylogenies revealed that L. subglobosa is a common pathogen of T. cacao and P. americana, and that the β-tubulin and TEF-1α markers do not provide sufficient resolution to identify Ceratocystis species. Given the difficulty in distinguishing cryptic species of both pathogens, the ITS region was used to develop a genus-specific nested PCR for early diagnosis in strains. The detection limit of the test was 3,869 ng/μL for Lasiodiplodia sp. and 221.5 pg/μL for Ceratocystis sp. and no unspecific amplifications using the nucleic acid of other fungal genera were observed. It was also demonstrated that the developed test detected pathogens in stems from asymptomatic artificially inoculated seedlings at 7 dpi for Lasiodiplodia sp. and 9 dpi for Ceratocystis sp. and therefore its use is proposed as a screening tool to verify that grafts for propagating plant material are free of inoculum.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Agrariasspa
dc.description.researchareaFitopatologíaspa
dc.description.sponsorshipCentro de Investigación La Suiza - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)spa
dc.format.extent79 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87910
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAlves, A., Crous, P., Correia, A., & Phillips, A. (2008). Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity, 28, 1–13. https://ci.nii.ac.jp/naid/20000758535spa
dc.relation.referencesAnsari, M., & Butt, T. (2011). Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi. Journal Of Applied Microbiology, 110(6), 1460-1469. https://doi.org/10.1111/j.1365-2672.2011.04994.xspa
dc.relation.referencesArgôlo Magalhães, D. M, Luz, E. D. M. N., Lopes, U. V., Niella, A. R. R., & Damaceno, V. O. (2016). Leaf disc method for screening Ceratocystis wilt resistance in cacao. Tropical Plant Pathology, 41(3), 155–161. https://doi.org/10.1007/s40858-016-0081-9spa
dc.relation.referencesAdu-Acheampong, R., Archer, S., & Leather, S. (2011). Resistance to dieback disease caused by Fusarium and Lasiodiplodia species in cacao (Theobroma cacao L.) genotypes. Experimental Agriculture, 48(01), 85–98. https://doi.org/10.1017/s0014479711000883spa
dc.relation.referencesAvenot, H. F., Vega, D., Arpaia, M. L., & Michailides, T. J. (2022). Prevalence, Identity, Pathogenicity, and Infection Dynamics of Botryosphaeriaceae Causing Avocado Branch Canker in California. Phytopathology, 113(6), 1034-1047. https://doi.org/10.1094/phyto-11-21-0459-rspa
dc.relation.referencesAzevedo-Nogueira, F., Rego, C., Gonçalves, H. M. R., Fortes, A. M., Gramaje, D., & Martins-Lopes, P. (2022). The road to molecular identification and detection of fungal grapevine trunk diseases. Frontiers In Plant Science, 13. https://doi.org/10.3389/fpls.2022.960289spa
dc.relation.referencesBaker, C. J., Harrington, T. C., Krauss, U., & Alfenas, A. C. (2003). Genetic Variability and Host Specialization in the Latin American Clade of Ceratocystis fimbriata. Phytopathology, 93(10), 1274-1284. https://doi.org/10.1094/phyto.2003.93.10.1274spa
dc.relation.referencesBarnes, I., Fourie, A., Wingfield, M., Harrington, T., McNew, D., Sugiyama, L., Luiz, B., Heller, W., & Keith, L. (2018). New Ceratocystis species associated with rapid death of Metrosideros polymorpha in Hawai`i. Persoonia - Molecular Phylogeny And Evolution Of Fungi, 40(1), 154-181. https://doi.org/10.3767/persoonia.2018.40.07spa
dc.relation.referencesBarros, N. O. (1970). El cacao en Colombia. Instituto Colombiano Agropecuario. Disponible en https://repository.agrosavia.cospa
dc.relation.referencesCantú-Treviño K. G. (2022). Etiología de la muerte regresiva de árboles de aguacate en Sabinas Hidalgo, Nuevo León. [Tesis de Maestría, Universidad Autónoma de Nuevo León]. http://eprints.uanl.mx/spa
dc.relation.referencesCarrero Gutiérrez, M. (2023). Caracterización morfológica y molecular de aislamientos de Ceratocystis sp. provenientes de cultivos de cacao en Colombia. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/85043spa
dc.relation.referencesDe Silva, N. I., Phillips, A. J. L., Liu, J., Lumyong, S., & Hyde, K. D. (2019). Phylogeny and morphology of Lasiodiplodia species associated with Magnolia forest plants. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-50804-xspa
dc.relation.referencesDettman, J. R., & Eggertson, Q. (2022). New molecular markers for distinguishing the main phylogenetic lineages within Alternaria section Alternaria. Canadian Journal Of Plant Pathology, 44(5), 754-766. https://doi.org/10.1080/07060661.2022.2061605spa
dc.relation.referencesDheepa R., Goplakrishnan C., Kamalakannan A. and Nakkeeran S. (2018). Influence of culture media and environmental factors on mycelial growth and sporulation of Lasiodiplodia theobromae in coconut. J Pharmacogn Phytochem;7(1):2729-2732. https://www.phytojournal.com/archives/2018/vol7issue1/PartAL/7-1-149-672.pdfspa
dc.relation.referencesDita, M. A., Waalwijk, C., Buddenhagen, I. W., Souza, M. T., Jr, & Kema, G. H. J. (2010). A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen. Plant Pathology, 59(2), 348–357. https://doi.org/10.1111/j.1365-3059.2009.02221.xspa
dc.relation.referencesDoyle, J. J. & Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19: 11-15.spa
dc.relation.referencesEngelbrecht, C. J. B., & Harrington, T. C. (2005). Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia, 97(1), 57-69. https://doi.org/10.1080/15572536.2006.11832839spa
dc.relation.referencesFood And Agriculture Organization Of The United Nations. (1998) FAOSTAT. [Rome?: FAO] [Software, E-Resource] Retrieved from the Library of Congress, https://lccn.loc.gov/2005617801.spa
dc.relation.referencesFedecacao. (2022). La producción cacaotera nacional sigue creciendo: en 2021 logra un nuevo récord histórico. Disponible en https://www.fedecacao.com.cospa
dc.relation.referencesFourie, A., Wingfield, M. J., Wingfield, B. D., & Barnes, I. (2014). Molecular markers delimit cryptic species in Ceratocystis sensu stricto. Mycological Progress, 14(1). https://doi.org/10.1007/s11557-014-1020-0spa
dc.relation.referencesGardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.xspa
dc.relation.referencesGlass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied And Environmental Microbiology, 61(4), 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995spa
dc.relation.referencesHall, T.A. (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.spa
dc.relation.referencesInstituto Colombiano Agropecuario. (2012). Manejo fitosanitario del cultivo del cacao (Theobroma cacao L.) - Medidas para la temporada invernal. Disponible en https://www.ica.gov.cospa
dc.relation.referencesInstituto Colombiano Agropecuario. (2017). Una radiografía de la problemática del cultivo de cacao en Santander. ICA comunica, periódico virtual. Disponible en https://www.ica.gov.cospa
dc.relation.referencesJiménez, W., Ramírez, A., López, J., & Alvarez, A. (2022). Análisis filogenético de aislamientos patogénicos de la familia botryosphaeriaceae en cacao (Theobroma cacao L.) en la zona de Los Ríos. Ciencia y Tecnología, 15(2), 45-54. https://doi.org/10.18779/cyt.v15i2.583spa
dc.relation.referencesKapp, J. R., Diss, T., Spicer, J., Gandy, M., Schrijver, I., Jennings, L. J., Li, M. M., Tsongalis, G. J., De Castro, D. G., Bridge, J. A., Wallace, A., Deignan, J. L., Hing, S., Butler, R., Verghese, E., Latham, G. J., & Hamoudi, R. A. (2014). Variation in pre-PCR processing of FFPE samples leads to discrepancies inBRAF and EGFRmutation detection: a diagnostic RING trial. Journal Of Clinical Pathology, 68(2), 111-118. https://doi.org/10.1136/jclinpath-2014-202644spa
dc.relation.referencesKenfaoui, J., Radouane, N., Mennani, M., Tahiri, A., Ghadraoui, L. E., Belabess, Z., Fontaine, F., Hamss, H. E., Amiri, S., Lahlali, R., & Barka, E. A. (2022). A Panoramic View on Grapevine Trunk Diseases Threats: Case of Eutypa Dieback, Botryosphaeria Dieback, and Esca Disease. Journal Of Fungi, 8(6), 595. https://doi.org/10.3390/jof8060595spa
dc.relation.referencesKuroda, K. (2008). Physiological Incidences Related to Symptom Development and Wilting Mechanism. En Springer eBooks (pp. 204-222). https://doi.org/10.1007/978-4-431-75655-2_21spa
dc.relation.referencesLiang, Y., Wu, C., Tsai, H., & Ni, H. (2021). Avocado Branch Canker Disease Caused by Lasiodiplodia theobromae and Lasiodiplodia pseudotheobromae in Taiwan. 台灣農業研究, 70(2), 81-97. https://doi.org/10.6156/jtar.202106_70(2).0001spa
dc.relation.referencesMachado, A. R., Pinho, D. B., & Pereira, O. L. (2014). Phylogeny, identification and pathogenicity of the Botryosphaeriaceae associated with collar and root rot of the biofuel plant Jatropha curcas in Brazil, with a description of new species of Lasiodiplodia. Fungal Diversity, 67(1), 231-247. https://doi.org/10.1007/s13225-013-0274-1spa
dc.relation.referencesMasago, K., Fujita, S., Oya, Y., Takahashi, Y., Matsushita, H., Sasaki, E., & Kuroda, H. (2021). Comparison between Fluorimetry (Qubit) and Spectrophotometry (NanoDrop) in the Quantification of DNA and RNA Extracted from Frozen and FFPE Tissues from Lung Cancer Patients: A Real-World Use of Genomic Tests. Medicina, 57(12), 1375. https://doi.org/10.3390/medicina57121375spa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural. (2021). Cadena de cacao. Dirección de Cadenas Agrícolas y Forestales, disponible en https://sioc.minagricultura.gov.cospa
dc.relation.referencesMontezano Fernandes, F., Azevedo, D. M. Q., Da Silva Guimarães, L. M., Oliveira, L. S. S., Alfenas, R. F., Júnior, J. H., & Alfenas, A. C. (2024). Genetically differentiated populations of Ceratocystis fimbriata species complex points to host specialization in Brazil. Plant Pathology, 73(7), 1823-1836. https://doi.org/10.1111/ppa.13951spa
dc.relation.referencesMuniz, C., Freire, F., Viana, F., Cardoso, J., Correia, D., Jalink, H., Kema, G., Da Silva, G., & Guedes, M. (2012). Polyclonal antibody‐based ELISA in combination with specific PCR amplification of internal transcribed spacer regions for the detection and quantitation of Lasiodiplodia theobromae, causal agent of gummosis in cashew nut plants. Annals Of Applied Biology, 160(3), 217-224. https://doi.org/10.1111/j.1744-7348.2012.00534.xspa
dc.relation.referencesNakasone, K. K., Peterson, S. W., & Jong, S. (2004). Preservation and distribution of fungal cultures. En Elsevier eBooks (pp. 37-47). https://doi.org/10.1016/b978-012509551-8/50006-4spa
dc.relation.referencesO’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2044–2049. https://doi.org/10.1073/pnas.95.5.2044spa
dc.relation.referencesPisco‐Ortiz, C., Rodríguez, E., Dávila‐Mora, L., Villabona‐Gelvez, A., & Zuluaga, P. (2024). First report of Lasiodiplodia theobromae causing dieback on Theobroma cacao in Colombia. New Disease Reports, 49(2). https://doi.org/10.1002/ndr2.12266spa
dc.relation.referencesPorebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1), 8–15. https://doi.org/10.1007/bf02772108spa
dc.relation.referencesQi, M., & Yang, Y. (2002). Quantification of Magnaporthe grisea During Infection of Rice Plants Using Real-Time Polymerase Chain Reaction and Northern Blot/Phosphoimaging Analyses. Phytopathology, 92(8), 870–876. https://doi.org/10.1094/phyto.2002.92.8.870spa
dc.relation.referencesRathnayaka, A., Chethana, K., Manawasinghe, I., Wijesinghe, S., De Silva, N., Tennakoon, D., Phillips, A., Liu, J., Jones, E., Wang, Y., & Hyde, K. (2023). Lasiodiplodia: Generic revision by providing molecular markers, geographical distribution and haplotype diversity. Mycosphere, 14(1), 1254-1339. https://doi.org/10.5943/mycosphere/14/1/1spa
dc.relation.referencesSaltarén, L. F., Varón de Agudelo, F., & Marmolejo, F. (1998a). Patógenos radicales en material de propagación de aguacate (Persea americana Mill.). Fitopatología Colombiana, 22(2), 52-58.spa
dc.relation.referencesSalvatore, M. M., Andolfi, A., & Nicoletti, R. (2020). The Thin Line between Pathogenicity and Endophytism: The Case of Lasiodiplodia theobromae. Agriculture, 10(10), 488. https://doi.org/10.3390/agriculture10100488spa
dc.relation.referencesSaha, A., Mandal, P., Dasgupta, S., & Saha, D. (2008). Influence of culture media and environmental factors on mycelial growth and sporulation of Lasiodiplodia theobromae (Pat.) Griffon and Maubl. PubMed, 29(3), 407-410. https://pubmed.ncbi.nlm.nih.gov/18972700spa
dc.relation.referencesSantos, R. M. F., Silva, S. D. V. M., Sena, K., Micheli, F., & Gramacho, K. P. (2013). Kinetics and Histopathology of the Cacao-Ceratocystis cacaofunesta Interaction. Tropical Plant Biology, 6(1), 37-45. https://doi.org/10.1007/s12042-012-9115-8spa
dc.relation.referencesSilva, S. D. V. M., Pinto, L. R. M., De Oliveira, B. F., Damaceno, V. O., Pires, J. L., & Dias, C. T. D. S. (2012). Resistência de progênies de cacaueiro à murcha-de-Ceratocystis. Tropical Plant Pathology, 37(3), 191-195. https://doi.org/10.1590/s1982-56762012000300005spa
dc.relation.referencesSlippers, B., and Wingfield, M. J. 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biol. Rev. 21:90-106. https://doi.org/10.1016/j.fbr.2007.06.002spa
dc.relation.referencesSteimel, J., Engelbrecht, C. J. B., & Harrington, T. C. (2004). Development and characterization of microsatellite markers for the fungus Ceratocystis fimbriata. Molecular Ecology Notes, 4(2), 215-218. https://doi.org/10.1111/j.1471-8286.2004.00621.xspa
dc.relation.referencesTamura K., Stecher G. & Kumar S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38:3022-3027spa
dc.relation.referencesTanović, B., Koščica, M., Hrustić, J., Mihajlović, M., Trkulja, V., & Delibašić, G. (2019). Botrytis squamosa - the causal agent of onion leaf blight in Bosnia and Herzegovina. Pesticidi I Fitomedicina, 34(1), 9–17. https://doi.org/10.2298/pif1901009tspa
dc.relation.referencesTraoré, D. (2009). Cocoa and Coffee Value Chains in West and Central Africa: Constraints and Options for Revenue-Raising Diversification. FAO - AAACP Paper Series, 3: pp 1-116. https://www.fao.org/fileadmin/templates/est/AAACP/westafrica/FAO_AAACP_Paper_Series_No_3_1_.pdfspa
dc.relation.referencesVan Wyk, M., Wingfield, B. D., Marin, M., & Wingfield, M. J. (2010). New Ceratocystis species infecting coffee, cacao, citrus and native trees in Colombia. Fungal Diversity, 40(1), 103–117. https://doi.org/10.1007/s13225-009-0005-9spa
dc.relation.referencesVilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172(8), 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990spa
dc.relation.referencesWilson, K. (2001). Preparation of Genomic DNA from Bacteria. Current Protocols In Molecular Biology, 56(1). https://doi.org/10.1002/0471142727.mb0204s56spa
dc.relation.referencesWoudenberg J. H. C., Aveskamp M. M., Gruyter J., Spiers A. G. & Crous P. W. (2009). Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia, 22(1), 56–62. https://doi.org/10.3767/003158509x427808spa
dc.relation.referencesBatista, E., Lopes, A., & Alves, A. (2021). What Do We Know about Botryosphaeriaceae? An Overview of a Worldwide Cured Dataset. Forests, 12(3), 313. https://doi.org/10.3390/f12030313spa
dc.relation.referencesBossu, J., Moigne, N. L., Corn, S., Trens, P., & Di Renzo, F. (2018). Sorption of water–ethanol mixtures by poplar wood: swelling and viscoelastic behaviour. Wood Science And Technology, 52(4), 987-1008. https://doi.org/10.1007/s00226-018-1022-1spa
dc.relation.referencesChen, S., Liu, R., Lei, Y., Morrell, J. J., & Yan, L. (2021). Accelerating thermal decomposition of wood cell wall with glycerol. Journal Of Materials Research And Technology, 11, 1637-1644. https://doi.org/10.1016/j.jmrt.2021.02.011spa
dc.relation.referencesDemeuse, K. L., Grode, A. S., & Szendrei, Z. (2016). Comparing qPCR and Nested PCR Diagnostic Methods for Aster Yellows Phytoplasma in Aster Leafhoppers. Plant Disease, 100(12), 2513-2519. https://doi.org/10.1094/pdis-12-15-1444-respa
dc.relation.referencesDharmaraj, K., Merrall, A. M., Pattemore, J. A., Mackie, J., Alexander, B. J. R., & Toome-Heller, M. (2021). A New Real-Time PCR Assay for Detecting Fungi in Genus Ceratocystis. Plant Disease, 106(2), 661-668. https://doi.org/10.1094/pdis-08-21-1639-respa
dc.relation.referencesDoyle, J. J. & Doyle, J. L. (1987) A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19: 11-15.spa
dc.relation.referencesEngelbrecht, J., Duong, T. A., & Van Den Berg, N. (2013). Development of a Nested Quantitative Real-Time PCR for Detecting Phytophthora cinnamomi in Persea americana Rootstocks. Plant Disease, 97(8), 1012–1017. https://doi.org/10.1094/pdis-11-12-1007-respa
dc.relation.referencesFatima, T., Srivastava, A., Hanur, V. S., & Rao, M. S. (2018). An Effective Wood DNA Extraction Protocol for Three Economic Important Timber Species of India. American Journal Of Plant Sciences, 09(02), 139-149. https://doi.org/10.4236/ajps.2018.92012spa
dc.relation.referencesHariharan, G., & Prasannath, K. (2021). Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Frontiers In Cellular And Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.600234spa
dc.relation.referencesHenson, J. M., & French, R. (1993). The Polymerase Chain Reaction and Plant Disease Diagnosis. Annual Review Of Phytopathology, 31(1), 81-109. https://doi.org/10.1146/annurev.py.31.090193.000501spa
dc.relation.referencesKiss, L. (2012). Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proceedings Of The National Academy Of Sciences, 109(27). https://doi.org/10.1073/pnas.1207143109spa
dc.relation.referencesLamarche, J., Stewart, D., Pelletier, G., Hamelin, R. C., & Tanguay, P. (2014). Real-time PCR detection and discrimination of the Ceratocystis coerulescens complex and of the fungal species from the Ceratocystis polonica complex validated on pure cultures and bark beetle vectors. Canadian Journal Of Forest Research, 44(9), 1103-1111. https://doi.org/10.1139/cjfr-2014-0082spa
dc.relation.referencesLu, Y., Jiao, L., He, T., Zhang, Y., Jiang, X., & Yin, Y. (2020). An optimized DNA extraction protocol for wood DNA barcoding of Pterocarpus erinaceus. IAWA Journal, 41(4), 644-659. https://doi.org/10.1163/22941932-bja10006spa
dc.relation.referencesLuchi, N., Ioos, R., & Santini, A. (2020b). Fast and reliable molecular methods to detect fungal pathogens in woody plants. Applied Microbiology And Biotechnology, 104(6), 2453-2468. https://doi.org/10.1007/s00253-020-10395-4spa
dc.relation.referencesNi, H., Yang, H., Chen, R., Hung, T., & Liou, R. (2012). A nested multiplex PCR for species-specific identification and detection of Botryosphaeriaceae species on mango. European Journal Of Plant Pathology, 133(4), 819-828. https://doi.org/10.1007/s10658-012-0003-8spa
dc.relation.referencesPinheiro, T., Litholdo, C., Jr, Sereno, M., Leal, G., Jr, Albuquerque, P., & Figueira, A. (2011). Establishing references for gene expression analyses by RT-qPCR in Theobroma cacao tissues. Genetics And Molecular Research, 10(4), 3291-3305. https://doi.org/10.4238/2011.november.17.4spa
dc.relation.referencesRachmayanti, Y., Leinemann, L., Gailing, O., & Finkeldey, R. (2009). DNA from processed and unprocessed wood: Factors influencing the isolation success. Forensic Science International Genetics, 3(3), 185-192. https://doi.org/10.1016/j.fsigen.2009.01.002spa
dc.relation.referencesUntergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M. & Rozen S. G. (2012). Primer3--new capabilities and interfaces. Nucleic Acids Res; 40(15):e115.spa
dc.relation.referencesWu, C. P., Chen, G. Y., Li, B., Su, H., An, Y. L., Zhen, S. Z., & Ye, J. R. (2009). Rapid and accurate detection of Ceratocystis fagacearum from stained wood and soil by nested and real‐time PCR. Forest Pathology, 41(1), 15-21. https://doi.org/10.1111/j.1439-0329.2009.00628.xspa
dc.relation.referencesXu, C., Zhang, H., Chi, F., Ji, Z., Dong, Q., Cao, K., & Zhou, Z. (2016). Species-specific PCR-based assays for identification and detection of Botryosphaeriaceae species causing stem blight on blueberry in China. Journal Of Integrative Agriculture, 15(3), 573-579. https://doi.org/10.1016/s2095-3119(15)61177-7spa
dc.relation.referencesYe J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S. & Madden T. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics; 13:134.spa
dc.relation.referencesZhang, W., Sathitsuksanoh, N., Simmons, B. A., Frazier, C. E., Barone, J. R., & Renneckar, S. (2016). Revealing the thermal sensitivity of lignin during glycerol thermal processing through structural analysis. RSC Advances, 6(36), 30234-30246. https://doi.org/10.1039/c6ra00745gspa
dc.relation.referencesAvilés, M., De los Santos, B., & Borrero, C. (2021). Increase of canker disease severity in blueberries caused by Neofusicoccum parvum or Lasiodiplodia theobromae due to interaction with Macrophomina phaseolina root infection. European Journal Of Plant Pathology, 159(3), 655-663. https://doi.org/10.1007/s10658-020-02195-3spa
dc.relation.referencesBurgess, T. I., Barber, P. A., Mohali, S., Pegg, G., De Beer, W., & Wingfield, M. J. (2006). Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia, 98(3), 423-435. https://doi.org/10.3852/mycologia.98.3.423spa
dc.relation.referencesCabrera, O. G., Molano, E. P. L., José, J., Álvarez, J. C., & Pereira, G. a. G. (2016). Ceratocystis Wilt Pathogens: History and Biology—Highlighting C. cacaofunesta, the Causal Agent of Wilt Disease of Cacao. In Springer eBooks (pp. 383–428). https://doi.org/10.1007/978-3-319-24789-2_12spa
dc.relation.referencesInstituto Colombiano Agropecuario. (2020). RESOLUCION No. 0780006. Disponible en https://www.ica.gov.cospa
dc.relation.referencesHarrington, T. C., Ferreira, M. A., Somasekhara, Y. M., Vickery, J., & Mayers, C. G. (2023). An expanded concept of Ceratocystis manginecans and five new species in the Latin American clade of Ceratocystis. Mycologia, 116(1), 184-212. https://doi.org/10.1080/00275514.2023.2284070spa
dc.relation.referencesRodríguez-Gálvez, E., Hilário, S., Batista, E., Lopes, A., & Alves, A. (2021). Lasiodiplodia species associated with dieback of avocado in the coastal area of Peru. European Journal Of Plant Pathology, 161(1), 219-232. https://doi.org/10.1007/s10658-021-02317-5spa
dc.relation.referencesSalvatore, M. M., Andolfi, A., & Nicoletti, R. (2020). The Thin Line between Pathogenicity and Endophytism: The Case of Lasiodiplodia theobromae. Agriculture, 10(10), 488. https://doi.org/10.3390/agriculture10100488spa
dc.relation.referencesSánchez-Díaz, B. S., Solís-Silvan, R., Del Rosario Fraire-Vázquez, A., Ruiz-Moreno, A. X., Ríos-Rodas, L., & Del Carmen Gerónimo-Torres, J. (2023). The dynamic of shade trees in cocoa agrosystems. Ingeniería Y Competitividad, 25(3). https://doi.org/10.25100/iyc.v25i3.12482spa
dc.relation.referencesSaucedo-Picazo, L. E., Hernández-Montiel, L. G., Flores-Estévez, N., Gerez-Fernández, P., Argüello-Ortiz, A. F., & Noa-Carrazana, J. C. (2022). Coinfection and in vitro interaction of Lasiodiplodia pseudotheobromae and Pestalotiopsis mangiferae associated with dieback in branches of mango (Mangifera indica) Manila variety, in Veracruz, Mexico. Revista Mexicana de Fitopatología, 40(3). https://doi.org/10.18781/r.mex.fit.2203-4spa
dc.relation.referencesTinoco-Jaramillo, L., Vargas-Tierras, Y., Habibi, N., Caicedo, C., Chanaluisa, A., Paredes-Arcos, F., Viera, W., Almeida, M., & Vásquez-Castillo, W. (2024). Agroforestry Systems of Cocoa (Theobroma cacao L.) in the Ecuadorian Amazon. Forests, 15(1), 195. https://doi.org/10.3390/f15010195spa
dc.relation.referencesZhao, W., Bai, J., McCollum, G., & Baldwin, E. (2014). High Incidence of Preharvest Colonization of Huanglongbing-Symptomatic Citrus sinensis Fruit by Lasiodiplodia theobromae (Diplodia natalensis) and Exacerbation of Postharvest Fruit Decay by That Fungus. Applied And Environmental Microbiology, 81(1), 364-372. https://doi.org/10.1128/aem.02972-14spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.lembCONSERVACION DE LAS PLANTASspa
dc.subject.lembPlant conservationeng
dc.subject.lembHONGOS FITOPATOGENOSspa
dc.subject.lembPhytopathogenic fungieng
dc.subject.lembHONGOS EN LA AGRICULTURAspa
dc.subject.lembFungi in agricultureeng
dc.subject.lembPLANTAS-ENFERMEDADES POR HONGOSspa
dc.subject.lembFungus diseases (Plants)eng
dc.subject.lembSISTEMA VASCULAR DE LAS PLANTASspa
dc.subject.lembVascular system of plantseng
dc.subject.lembCACAOspa
dc.subject.lembCacaoeng
dc.subject.lembAGUACATE-CONSERVACIONspa
dc.subject.lembAvocado - preservationeng
dc.subject.proposalTejido vascularspa
dc.subject.proposalAsintomáticospa
dc.subject.proposalSensibilidadspa
dc.subject.proposalTamizajespa
dc.subject.proposalVascular tissueeng
dc.subject.proposalAsymptomaticeng
dc.subject.proposalSensitivityeng
dc.subject.proposalScreeningeng
dc.titleCaracterización molecular y diagnóstico temprano de Lasiodiplodia sp. y Ceratocystis sp. en plantas de cacao y aguacatespa
dc.title.translatedMolecular characterization and early diagnosis of Lasiodiplodia sp. and Ceratocystis sp. in cocoa and avocado plantseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle"Fortalecimiento de las capacidades en ciencia, tecnología e innovación del Centro de Investigación La Suiza para el desarrollo de proyecto de fitosanidad y agroindustria en sistemas de producción priorizados en el departamento de Santander”spa
oaire.fundernameMinisterio de Agricultura y Desarrollo Ruralspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022443731.2024.pdf
Tamaño:
2.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias con énfasis en Fitopatología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: