Caracterización molecular y diagnóstico temprano de Lasiodiplodia sp. y Ceratocystis sp. en plantas de cacao y aguacate
dc.contributor.advisor | González Almario, Adriana | spa |
dc.contributor.advisor | Jaimes Suárez, Yeirme Yaneth | spa |
dc.contributor.author | Laverde Arias, Laura Valentina | spa |
dc.contributor.researchgroup | Genética de Rasgos de Interés Agronómico | spa |
dc.date.accessioned | 2025-04-09T14:39:08Z | |
dc.date.available | 2025-04-09T14:39:08Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones, fotografías a color, tablas | spa |
dc.description.abstract | Lasiodiplodia sp. y Ceratocystis sp. son parásitos facultativos que se caracterizan por permanecer en estados de latencia prolongados y colonizar el sistema vascular de las plantas sin producir síntomas en las primeras etapas de infección. El inóculo puede ser dispersado a través de material vegetal de propagación aparentemente sano, y por ende, resulta necesario desarrollar técnicas para detectar de manera temprana estos patógenos cuando la densidad de inóculo es muy baja y la planta no presenta sintomatología. El objetivo de esta investigación fue caracterizar molecularmente los aislados de una colección de Lasiodiplodia sp. y Ceratocystis sp. provenientes de muestras de Theobroma cacao L. y Persea americana Mill. con el fin de identificar marcadores específicos y diseñar una PCR para el diagnóstico temprano de estos patógenos a partir de tallos de plántulas infectadas. Para ello, se amplificaron las regiones ITS y los genes β-tubulina y TEF-1α y con base en las secuencias obtenidas se realizaron los análisis filogenéticos respectivos para llegar a la identificación a nivel de especie de cada uno de los aislados. Posteriormente, con tres de los aislados fúngicos se realizó la inoculación de plántulas de T. cacao y P. americana bajo condiciones semicontroladas y finalmente, la estandarización de una PCR anidada para el diagnóstico temprano. Las filogenias multigen demostraron que L. subglobosa es un patógeno compartido entre T. cacao y P. americana y que los marcadores β-tubulina y TEF-1α no presentan suficiente resolución para determinar las especies de Ceratocystis. Dada la dificultad en la distinción de especies crípticas de ambos patógenos, se utilizó la región ITS para diseñar una PCR-anidada género-específica para el diagnóstico temprano en tallos de plántulas infectados con los patógenos. El límite de detección de la prueba fue de 3.869 ng/μL para Lasiodiplodia sp. y de 221.5 pg/μL para Ceratocystis sp., y no se observaron amplificaciones inespecíficas frente al ácido nucleico de otros géneros fúngicos. También se demostró que la prueba desarrollada detectó los patógenos en tallos provenientes de plántulas asintomáticas inoculadas artificialmente a partir de los 7 dpi para Lasiodiplodia sp. y 9 dpi para Ceratocystis sp., por lo cual se propone su uso como herramienta de tamizaje para verificar que los injertos para propagar material vegetal se encuentren libres de inóculo (Texto tomado de la fuente). | spa |
dc.description.abstract | Lasiodiplodia sp. and Ceratocystis sp. are facultative parasites characterized by prolonged dormancy and the ability to colonize the vascular system of plants without displaying symptoms in the early stages of infection. The inoculum can be spread through apparently healthy plant propagation material, and therefore, it is necessary to develop techniques for early detection of these pathogens when the inoculum density is low, and the plant remains asymptomatic. This research aimed to molecularly characterize isolates from a collection of Lasiodiplodia sp. and Ceratocystis sp. from samples of Theobroma cacao L. and Persea americana Mill. to identify specific markers and design a PCR for early diagnosis of these pathogens in infected seedling stems. For this purpose, ITS regions and the β-tubulin and TEF-1α genes were amplified and based on the sequence obtained, the respective phylogenetic analyses were carried out to allow a species-level classification of the isolates. Subsequently, three of the fungal isolates were inoculated in T. cacao and P. americana seedlings under semi-controlled conditions, and finally a nested PCR was standardized for early diagnosis. Multigene phylogenies revealed that L. subglobosa is a common pathogen of T. cacao and P. americana, and that the β-tubulin and TEF-1α markers do not provide sufficient resolution to identify Ceratocystis species. Given the difficulty in distinguishing cryptic species of both pathogens, the ITS region was used to develop a genus-specific nested PCR for early diagnosis in strains. The detection limit of the test was 3,869 ng/μL for Lasiodiplodia sp. and 221.5 pg/μL for Ceratocystis sp. and no unspecific amplifications using the nucleic acid of other fungal genera were observed. It was also demonstrated that the developed test detected pathogens in stems from asymptomatic artificially inoculated seedlings at 7 dpi for Lasiodiplodia sp. and 9 dpi for Ceratocystis sp. and therefore its use is proposed as a screening tool to verify that grafts for propagating plant material are free of inoculum. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias Agrarias | spa |
dc.description.researcharea | Fitopatología | spa |
dc.description.sponsorship | Centro de Investigación La Suiza - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) | spa |
dc.format.extent | 79 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87910 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias | spa |
dc.relation.references | Alves, A., Crous, P., Correia, A., & Phillips, A. (2008). Morphological and molecular data reveal cryptic speciation in Lasiodiplodia theobromae. Fungal Diversity, 28, 1–13. https://ci.nii.ac.jp/naid/20000758535 | spa |
dc.relation.references | Ansari, M., & Butt, T. (2011). Effects of successive subculturing on stability, virulence, conidial yield, germination and shelf-life of entomopathogenic fungi. Journal Of Applied Microbiology, 110(6), 1460-1469. https://doi.org/10.1111/j.1365-2672.2011.04994.x | spa |
dc.relation.references | Argôlo Magalhães, D. M, Luz, E. D. M. N., Lopes, U. V., Niella, A. R. R., & Damaceno, V. O. (2016). Leaf disc method for screening Ceratocystis wilt resistance in cacao. Tropical Plant Pathology, 41(3), 155–161. https://doi.org/10.1007/s40858-016-0081-9 | spa |
dc.relation.references | Adu-Acheampong, R., Archer, S., & Leather, S. (2011). Resistance to dieback disease caused by Fusarium and Lasiodiplodia species in cacao (Theobroma cacao L.) genotypes. Experimental Agriculture, 48(01), 85–98. https://doi.org/10.1017/s0014479711000883 | spa |
dc.relation.references | Avenot, H. F., Vega, D., Arpaia, M. L., & Michailides, T. J. (2022). Prevalence, Identity, Pathogenicity, and Infection Dynamics of Botryosphaeriaceae Causing Avocado Branch Canker in California. Phytopathology, 113(6), 1034-1047. https://doi.org/10.1094/phyto-11-21-0459-r | spa |
dc.relation.references | Azevedo-Nogueira, F., Rego, C., Gonçalves, H. M. R., Fortes, A. M., Gramaje, D., & Martins-Lopes, P. (2022). The road to molecular identification and detection of fungal grapevine trunk diseases. Frontiers In Plant Science, 13. https://doi.org/10.3389/fpls.2022.960289 | spa |
dc.relation.references | Baker, C. J., Harrington, T. C., Krauss, U., & Alfenas, A. C. (2003). Genetic Variability and Host Specialization in the Latin American Clade of Ceratocystis fimbriata. Phytopathology, 93(10), 1274-1284. https://doi.org/10.1094/phyto.2003.93.10.1274 | spa |
dc.relation.references | Barnes, I., Fourie, A., Wingfield, M., Harrington, T., McNew, D., Sugiyama, L., Luiz, B., Heller, W., & Keith, L. (2018). New Ceratocystis species associated with rapid death of Metrosideros polymorpha in Hawai`i. Persoonia - Molecular Phylogeny And Evolution Of Fungi, 40(1), 154-181. https://doi.org/10.3767/persoonia.2018.40.07 | spa |
dc.relation.references | Barros, N. O. (1970). El cacao en Colombia. Instituto Colombiano Agropecuario. Disponible en https://repository.agrosavia.co | spa |
dc.relation.references | Cantú-Treviño K. G. (2022). Etiología de la muerte regresiva de árboles de aguacate en Sabinas Hidalgo, Nuevo León. [Tesis de Maestría, Universidad Autónoma de Nuevo León]. http://eprints.uanl.mx/ | spa |
dc.relation.references | Carrero Gutiérrez, M. (2023). Caracterización morfológica y molecular de aislamientos de Ceratocystis sp. provenientes de cultivos de cacao en Colombia. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/85043 | spa |
dc.relation.references | De Silva, N. I., Phillips, A. J. L., Liu, J., Lumyong, S., & Hyde, K. D. (2019). Phylogeny and morphology of Lasiodiplodia species associated with Magnolia forest plants. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-50804-x | spa |
dc.relation.references | Dettman, J. R., & Eggertson, Q. (2022). New molecular markers for distinguishing the main phylogenetic lineages within Alternaria section Alternaria. Canadian Journal Of Plant Pathology, 44(5), 754-766. https://doi.org/10.1080/07060661.2022.2061605 | spa |
dc.relation.references | Dheepa R., Goplakrishnan C., Kamalakannan A. and Nakkeeran S. (2018). Influence of culture media and environmental factors on mycelial growth and sporulation of Lasiodiplodia theobromae in coconut. J Pharmacogn Phytochem;7(1):2729-2732. https://www.phytojournal.com/archives/2018/vol7issue1/PartAL/7-1-149-672.pdf | spa |
dc.relation.references | Dita, M. A., Waalwijk, C., Buddenhagen, I. W., Souza, M. T., Jr, & Kema, G. H. J. (2010). A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen. Plant Pathology, 59(2), 348–357. https://doi.org/10.1111/j.1365-3059.2009.02221.x | spa |
dc.relation.references | Doyle, J. J. & Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19: 11-15. | spa |
dc.relation.references | Engelbrecht, C. J. B., & Harrington, T. C. (2005). Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia, 97(1), 57-69. https://doi.org/10.1080/15572536.2006.11832839 | spa |
dc.relation.references | Food And Agriculture Organization Of The United Nations. (1998) FAOSTAT. [Rome?: FAO] [Software, E-Resource] Retrieved from the Library of Congress, https://lccn.loc.gov/2005617801. | spa |
dc.relation.references | Fedecacao. (2022). La producción cacaotera nacional sigue creciendo: en 2021 logra un nuevo récord histórico. Disponible en https://www.fedecacao.com.co | spa |
dc.relation.references | Fourie, A., Wingfield, M. J., Wingfield, B. D., & Barnes, I. (2014). Molecular markers delimit cryptic species in Ceratocystis sensu stricto. Mycological Progress, 14(1). https://doi.org/10.1007/s11557-014-1020-0 | spa |
dc.relation.references | Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113-118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x | spa |
dc.relation.references | Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied And Environmental Microbiology, 61(4), 1323-1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995 | spa |
dc.relation.references | Hall, T.A. (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98. | spa |
dc.relation.references | Instituto Colombiano Agropecuario. (2012). Manejo fitosanitario del cultivo del cacao (Theobroma cacao L.) - Medidas para la temporada invernal. Disponible en https://www.ica.gov.co | spa |
dc.relation.references | Instituto Colombiano Agropecuario. (2017). Una radiografía de la problemática del cultivo de cacao en Santander. ICA comunica, periódico virtual. Disponible en https://www.ica.gov.co | spa |
dc.relation.references | Jiménez, W., Ramírez, A., López, J., & Alvarez, A. (2022). Análisis filogenético de aislamientos patogénicos de la familia botryosphaeriaceae en cacao (Theobroma cacao L.) en la zona de Los Ríos. Ciencia y Tecnología, 15(2), 45-54. https://doi.org/10.18779/cyt.v15i2.583 | spa |
dc.relation.references | Kapp, J. R., Diss, T., Spicer, J., Gandy, M., Schrijver, I., Jennings, L. J., Li, M. M., Tsongalis, G. J., De Castro, D. G., Bridge, J. A., Wallace, A., Deignan, J. L., Hing, S., Butler, R., Verghese, E., Latham, G. J., & Hamoudi, R. A. (2014). Variation in pre-PCR processing of FFPE samples leads to discrepancies inBRAF and EGFRmutation detection: a diagnostic RING trial. Journal Of Clinical Pathology, 68(2), 111-118. https://doi.org/10.1136/jclinpath-2014-202644 | spa |
dc.relation.references | Kenfaoui, J., Radouane, N., Mennani, M., Tahiri, A., Ghadraoui, L. E., Belabess, Z., Fontaine, F., Hamss, H. E., Amiri, S., Lahlali, R., & Barka, E. A. (2022). A Panoramic View on Grapevine Trunk Diseases Threats: Case of Eutypa Dieback, Botryosphaeria Dieback, and Esca Disease. Journal Of Fungi, 8(6), 595. https://doi.org/10.3390/jof8060595 | spa |
dc.relation.references | Kuroda, K. (2008). Physiological Incidences Related to Symptom Development and Wilting Mechanism. En Springer eBooks (pp. 204-222). https://doi.org/10.1007/978-4-431-75655-2_21 | spa |
dc.relation.references | Liang, Y., Wu, C., Tsai, H., & Ni, H. (2021). Avocado Branch Canker Disease Caused by Lasiodiplodia theobromae and Lasiodiplodia pseudotheobromae in Taiwan. 台灣農業研究, 70(2), 81-97. https://doi.org/10.6156/jtar.202106_70(2).0001 | spa |
dc.relation.references | Machado, A. R., Pinho, D. B., & Pereira, O. L. (2014). Phylogeny, identification and pathogenicity of the Botryosphaeriaceae associated with collar and root rot of the biofuel plant Jatropha curcas in Brazil, with a description of new species of Lasiodiplodia. Fungal Diversity, 67(1), 231-247. https://doi.org/10.1007/s13225-013-0274-1 | spa |
dc.relation.references | Masago, K., Fujita, S., Oya, Y., Takahashi, Y., Matsushita, H., Sasaki, E., & Kuroda, H. (2021). Comparison between Fluorimetry (Qubit) and Spectrophotometry (NanoDrop) in the Quantification of DNA and RNA Extracted from Frozen and FFPE Tissues from Lung Cancer Patients: A Real-World Use of Genomic Tests. Medicina, 57(12), 1375. https://doi.org/10.3390/medicina57121375 | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2021). Cadena de cacao. Dirección de Cadenas Agrícolas y Forestales, disponible en https://sioc.minagricultura.gov.co | spa |
dc.relation.references | Montezano Fernandes, F., Azevedo, D. M. Q., Da Silva Guimarães, L. M., Oliveira, L. S. S., Alfenas, R. F., Júnior, J. H., & Alfenas, A. C. (2024). Genetically differentiated populations of Ceratocystis fimbriata species complex points to host specialization in Brazil. Plant Pathology, 73(7), 1823-1836. https://doi.org/10.1111/ppa.13951 | spa |
dc.relation.references | Muniz, C., Freire, F., Viana, F., Cardoso, J., Correia, D., Jalink, H., Kema, G., Da Silva, G., & Guedes, M. (2012). Polyclonal antibody‐based ELISA in combination with specific PCR amplification of internal transcribed spacer regions for the detection and quantitation of Lasiodiplodia theobromae, causal agent of gummosis in cashew nut plants. Annals Of Applied Biology, 160(3), 217-224. https://doi.org/10.1111/j.1744-7348.2012.00534.x | spa |
dc.relation.references | Nakasone, K. K., Peterson, S. W., & Jong, S. (2004). Preservation and distribution of fungal cultures. En Elsevier eBooks (pp. 37-47). https://doi.org/10.1016/b978-012509551-8/50006-4 | spa |
dc.relation.references | O’Donnell, K., Kistler, H. C., Cigelnik, E., & Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 2044–2049. https://doi.org/10.1073/pnas.95.5.2044 | spa |
dc.relation.references | Pisco‐Ortiz, C., Rodríguez, E., Dávila‐Mora, L., Villabona‐Gelvez, A., & Zuluaga, P. (2024). First report of Lasiodiplodia theobromae causing dieback on Theobroma cacao in Colombia. New Disease Reports, 49(2). https://doi.org/10.1002/ndr2.12266 | spa |
dc.relation.references | Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1), 8–15. https://doi.org/10.1007/bf02772108 | spa |
dc.relation.references | Qi, M., & Yang, Y. (2002). Quantification of Magnaporthe grisea During Infection of Rice Plants Using Real-Time Polymerase Chain Reaction and Northern Blot/Phosphoimaging Analyses. Phytopathology, 92(8), 870–876. https://doi.org/10.1094/phyto.2002.92.8.870 | spa |
dc.relation.references | Rathnayaka, A., Chethana, K., Manawasinghe, I., Wijesinghe, S., De Silva, N., Tennakoon, D., Phillips, A., Liu, J., Jones, E., Wang, Y., & Hyde, K. (2023). Lasiodiplodia: Generic revision by providing molecular markers, geographical distribution and haplotype diversity. Mycosphere, 14(1), 1254-1339. https://doi.org/10.5943/mycosphere/14/1/1 | spa |
dc.relation.references | Saltarén, L. F., Varón de Agudelo, F., & Marmolejo, F. (1998a). Patógenos radicales en material de propagación de aguacate (Persea americana Mill.). Fitopatología Colombiana, 22(2), 52-58. | spa |
dc.relation.references | Salvatore, M. M., Andolfi, A., & Nicoletti, R. (2020). The Thin Line between Pathogenicity and Endophytism: The Case of Lasiodiplodia theobromae. Agriculture, 10(10), 488. https://doi.org/10.3390/agriculture10100488 | spa |
dc.relation.references | Saha, A., Mandal, P., Dasgupta, S., & Saha, D. (2008). Influence of culture media and environmental factors on mycelial growth and sporulation of Lasiodiplodia theobromae (Pat.) Griffon and Maubl. PubMed, 29(3), 407-410. https://pubmed.ncbi.nlm.nih.gov/18972700 | spa |
dc.relation.references | Santos, R. M. F., Silva, S. D. V. M., Sena, K., Micheli, F., & Gramacho, K. P. (2013). Kinetics and Histopathology of the Cacao-Ceratocystis cacaofunesta Interaction. Tropical Plant Biology, 6(1), 37-45. https://doi.org/10.1007/s12042-012-9115-8 | spa |
dc.relation.references | Silva, S. D. V. M., Pinto, L. R. M., De Oliveira, B. F., Damaceno, V. O., Pires, J. L., & Dias, C. T. D. S. (2012). Resistência de progênies de cacaueiro à murcha-de-Ceratocystis. Tropical Plant Pathology, 37(3), 191-195. https://doi.org/10.1590/s1982-56762012000300005 | spa |
dc.relation.references | Slippers, B., and Wingfield, M. J. 2007. Botryosphaeriaceae as endophytes and latent pathogens of woody plants: Diversity, ecology and impact. Fungal Biol. Rev. 21:90-106. https://doi.org/10.1016/j.fbr.2007.06.002 | spa |
dc.relation.references | Steimel, J., Engelbrecht, C. J. B., & Harrington, T. C. (2004). Development and characterization of microsatellite markers for the fungus Ceratocystis fimbriata. Molecular Ecology Notes, 4(2), 215-218. https://doi.org/10.1111/j.1471-8286.2004.00621.x | spa |
dc.relation.references | Tamura K., Stecher G. & Kumar S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38:3022-3027 | spa |
dc.relation.references | Tanović, B., Koščica, M., Hrustić, J., Mihajlović, M., Trkulja, V., & Delibašić, G. (2019). Botrytis squamosa - the causal agent of onion leaf blight in Bosnia and Herzegovina. Pesticidi I Fitomedicina, 34(1), 9–17. https://doi.org/10.2298/pif1901009t | spa |
dc.relation.references | Traoré, D. (2009). Cocoa and Coffee Value Chains in West and Central Africa: Constraints and Options for Revenue-Raising Diversification. FAO - AAACP Paper Series, 3: pp 1-116. https://www.fao.org/fileadmin/templates/est/AAACP/westafrica/FAO_AAACP_Paper_Series_No_3_1_.pdf | spa |
dc.relation.references | Van Wyk, M., Wingfield, B. D., Marin, M., & Wingfield, M. J. (2010). New Ceratocystis species infecting coffee, cacao, citrus and native trees in Colombia. Fungal Diversity, 40(1), 103–117. https://doi.org/10.1007/s13225-009-0005-9 | spa |
dc.relation.references | Vilgalys, R., & Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172(8), 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990 | spa |
dc.relation.references | Wilson, K. (2001). Preparation of Genomic DNA from Bacteria. Current Protocols In Molecular Biology, 56(1). https://doi.org/10.1002/0471142727.mb0204s56 | spa |
dc.relation.references | Woudenberg J. H. C., Aveskamp M. M., Gruyter J., Spiers A. G. & Crous P. W. (2009). Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia, 22(1), 56–62. https://doi.org/10.3767/003158509x427808 | spa |
dc.relation.references | Batista, E., Lopes, A., & Alves, A. (2021). What Do We Know about Botryosphaeriaceae? An Overview of a Worldwide Cured Dataset. Forests, 12(3), 313. https://doi.org/10.3390/f12030313 | spa |
dc.relation.references | Bossu, J., Moigne, N. L., Corn, S., Trens, P., & Di Renzo, F. (2018). Sorption of water–ethanol mixtures by poplar wood: swelling and viscoelastic behaviour. Wood Science And Technology, 52(4), 987-1008. https://doi.org/10.1007/s00226-018-1022-1 | spa |
dc.relation.references | Chen, S., Liu, R., Lei, Y., Morrell, J. J., & Yan, L. (2021). Accelerating thermal decomposition of wood cell wall with glycerol. Journal Of Materials Research And Technology, 11, 1637-1644. https://doi.org/10.1016/j.jmrt.2021.02.011 | spa |
dc.relation.references | Demeuse, K. L., Grode, A. S., & Szendrei, Z. (2016). Comparing qPCR and Nested PCR Diagnostic Methods for Aster Yellows Phytoplasma in Aster Leafhoppers. Plant Disease, 100(12), 2513-2519. https://doi.org/10.1094/pdis-12-15-1444-re | spa |
dc.relation.references | Dharmaraj, K., Merrall, A. M., Pattemore, J. A., Mackie, J., Alexander, B. J. R., & Toome-Heller, M. (2021). A New Real-Time PCR Assay for Detecting Fungi in Genus Ceratocystis. Plant Disease, 106(2), 661-668. https://doi.org/10.1094/pdis-08-21-1639-re | spa |
dc.relation.references | Doyle, J. J. & Doyle, J. L. (1987) A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochemical Bulletin, 19: 11-15. | spa |
dc.relation.references | Engelbrecht, J., Duong, T. A., & Van Den Berg, N. (2013). Development of a Nested Quantitative Real-Time PCR for Detecting Phytophthora cinnamomi in Persea americana Rootstocks. Plant Disease, 97(8), 1012–1017. https://doi.org/10.1094/pdis-11-12-1007-re | spa |
dc.relation.references | Fatima, T., Srivastava, A., Hanur, V. S., & Rao, M. S. (2018). An Effective Wood DNA Extraction Protocol for Three Economic Important Timber Species of India. American Journal Of Plant Sciences, 09(02), 139-149. https://doi.org/10.4236/ajps.2018.92012 | spa |
dc.relation.references | Hariharan, G., & Prasannath, K. (2021). Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Frontiers In Cellular And Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.600234 | spa |
dc.relation.references | Henson, J. M., & French, R. (1993). The Polymerase Chain Reaction and Plant Disease Diagnosis. Annual Review Of Phytopathology, 31(1), 81-109. https://doi.org/10.1146/annurev.py.31.090193.000501 | spa |
dc.relation.references | Kiss, L. (2012). Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proceedings Of The National Academy Of Sciences, 109(27). https://doi.org/10.1073/pnas.1207143109 | spa |
dc.relation.references | Lamarche, J., Stewart, D., Pelletier, G., Hamelin, R. C., & Tanguay, P. (2014). Real-time PCR detection and discrimination of the Ceratocystis coerulescens complex and of the fungal species from the Ceratocystis polonica complex validated on pure cultures and bark beetle vectors. Canadian Journal Of Forest Research, 44(9), 1103-1111. https://doi.org/10.1139/cjfr-2014-0082 | spa |
dc.relation.references | Lu, Y., Jiao, L., He, T., Zhang, Y., Jiang, X., & Yin, Y. (2020). An optimized DNA extraction protocol for wood DNA barcoding of Pterocarpus erinaceus. IAWA Journal, 41(4), 644-659. https://doi.org/10.1163/22941932-bja10006 | spa |
dc.relation.references | Luchi, N., Ioos, R., & Santini, A. (2020b). Fast and reliable molecular methods to detect fungal pathogens in woody plants. Applied Microbiology And Biotechnology, 104(6), 2453-2468. https://doi.org/10.1007/s00253-020-10395-4 | spa |
dc.relation.references | Ni, H., Yang, H., Chen, R., Hung, T., & Liou, R. (2012). A nested multiplex PCR for species-specific identification and detection of Botryosphaeriaceae species on mango. European Journal Of Plant Pathology, 133(4), 819-828. https://doi.org/10.1007/s10658-012-0003-8 | spa |
dc.relation.references | Pinheiro, T., Litholdo, C., Jr, Sereno, M., Leal, G., Jr, Albuquerque, P., & Figueira, A. (2011). Establishing references for gene expression analyses by RT-qPCR in Theobroma cacao tissues. Genetics And Molecular Research, 10(4), 3291-3305. https://doi.org/10.4238/2011.november.17.4 | spa |
dc.relation.references | Rachmayanti, Y., Leinemann, L., Gailing, O., & Finkeldey, R. (2009). DNA from processed and unprocessed wood: Factors influencing the isolation success. Forensic Science International Genetics, 3(3), 185-192. https://doi.org/10.1016/j.fsigen.2009.01.002 | spa |
dc.relation.references | Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M. & Rozen S. G. (2012). Primer3--new capabilities and interfaces. Nucleic Acids Res; 40(15):e115. | spa |
dc.relation.references | Wu, C. P., Chen, G. Y., Li, B., Su, H., An, Y. L., Zhen, S. Z., & Ye, J. R. (2009). Rapid and accurate detection of Ceratocystis fagacearum from stained wood and soil by nested and real‐time PCR. Forest Pathology, 41(1), 15-21. https://doi.org/10.1111/j.1439-0329.2009.00628.x | spa |
dc.relation.references | Xu, C., Zhang, H., Chi, F., Ji, Z., Dong, Q., Cao, K., & Zhou, Z. (2016). Species-specific PCR-based assays for identification and detection of Botryosphaeriaceae species causing stem blight on blueberry in China. Journal Of Integrative Agriculture, 15(3), 573-579. https://doi.org/10.1016/s2095-3119(15)61177-7 | spa |
dc.relation.references | Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S. & Madden T. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics; 13:134. | spa |
dc.relation.references | Zhang, W., Sathitsuksanoh, N., Simmons, B. A., Frazier, C. E., Barone, J. R., & Renneckar, S. (2016). Revealing the thermal sensitivity of lignin during glycerol thermal processing through structural analysis. RSC Advances, 6(36), 30234-30246. https://doi.org/10.1039/c6ra00745g | spa |
dc.relation.references | Avilés, M., De los Santos, B., & Borrero, C. (2021). Increase of canker disease severity in blueberries caused by Neofusicoccum parvum or Lasiodiplodia theobromae due to interaction with Macrophomina phaseolina root infection. European Journal Of Plant Pathology, 159(3), 655-663. https://doi.org/10.1007/s10658-020-02195-3 | spa |
dc.relation.references | Burgess, T. I., Barber, P. A., Mohali, S., Pegg, G., De Beer, W., & Wingfield, M. J. (2006). Three new Lasiodiplodia spp. from the tropics, recognized based on DNA sequence comparisons and morphology. Mycologia, 98(3), 423-435. https://doi.org/10.3852/mycologia.98.3.423 | spa |
dc.relation.references | Cabrera, O. G., Molano, E. P. L., José, J., Álvarez, J. C., & Pereira, G. a. G. (2016). Ceratocystis Wilt Pathogens: History and Biology—Highlighting C. cacaofunesta, the Causal Agent of Wilt Disease of Cacao. In Springer eBooks (pp. 383–428). https://doi.org/10.1007/978-3-319-24789-2_12 | spa |
dc.relation.references | Instituto Colombiano Agropecuario. (2020). RESOLUCION No. 0780006. Disponible en https://www.ica.gov.co | spa |
dc.relation.references | Harrington, T. C., Ferreira, M. A., Somasekhara, Y. M., Vickery, J., & Mayers, C. G. (2023). An expanded concept of Ceratocystis manginecans and five new species in the Latin American clade of Ceratocystis. Mycologia, 116(1), 184-212. https://doi.org/10.1080/00275514.2023.2284070 | spa |
dc.relation.references | Rodríguez-Gálvez, E., Hilário, S., Batista, E., Lopes, A., & Alves, A. (2021). Lasiodiplodia species associated with dieback of avocado in the coastal area of Peru. European Journal Of Plant Pathology, 161(1), 219-232. https://doi.org/10.1007/s10658-021-02317-5 | spa |
dc.relation.references | Salvatore, M. M., Andolfi, A., & Nicoletti, R. (2020). The Thin Line between Pathogenicity and Endophytism: The Case of Lasiodiplodia theobromae. Agriculture, 10(10), 488. https://doi.org/10.3390/agriculture10100488 | spa |
dc.relation.references | Sánchez-Díaz, B. S., Solís-Silvan, R., Del Rosario Fraire-Vázquez, A., Ruiz-Moreno, A. X., Ríos-Rodas, L., & Del Carmen Gerónimo-Torres, J. (2023). The dynamic of shade trees in cocoa agrosystems. Ingeniería Y Competitividad, 25(3). https://doi.org/10.25100/iyc.v25i3.12482 | spa |
dc.relation.references | Saucedo-Picazo, L. E., Hernández-Montiel, L. G., Flores-Estévez, N., Gerez-Fernández, P., Argüello-Ortiz, A. F., & Noa-Carrazana, J. C. (2022). Coinfection and in vitro interaction of Lasiodiplodia pseudotheobromae and Pestalotiopsis mangiferae associated with dieback in branches of mango (Mangifera indica) Manila variety, in Veracruz, Mexico. Revista Mexicana de Fitopatología, 40(3). https://doi.org/10.18781/r.mex.fit.2203-4 | spa |
dc.relation.references | Tinoco-Jaramillo, L., Vargas-Tierras, Y., Habibi, N., Caicedo, C., Chanaluisa, A., Paredes-Arcos, F., Viera, W., Almeida, M., & Vásquez-Castillo, W. (2024). Agroforestry Systems of Cocoa (Theobroma cacao L.) in the Ecuadorian Amazon. Forests, 15(1), 195. https://doi.org/10.3390/f15010195 | spa |
dc.relation.references | Zhao, W., Bai, J., McCollum, G., & Baldwin, E. (2014). High Incidence of Preharvest Colonization of Huanglongbing-Symptomatic Citrus sinensis Fruit by Lasiodiplodia theobromae (Diplodia natalensis) and Exacerbation of Postharvest Fruit Decay by That Fungus. Applied And Environmental Microbiology, 81(1), 364-372. https://doi.org/10.1128/aem.02972-14 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.lemb | CONSERVACION DE LAS PLANTAS | spa |
dc.subject.lemb | Plant conservation | eng |
dc.subject.lemb | HONGOS FITOPATOGENOS | spa |
dc.subject.lemb | Phytopathogenic fungi | eng |
dc.subject.lemb | HONGOS EN LA AGRICULTURA | spa |
dc.subject.lemb | Fungi in agriculture | eng |
dc.subject.lemb | PLANTAS-ENFERMEDADES POR HONGOS | spa |
dc.subject.lemb | Fungus diseases (Plants) | eng |
dc.subject.lemb | SISTEMA VASCULAR DE LAS PLANTAS | spa |
dc.subject.lemb | Vascular system of plants | eng |
dc.subject.lemb | CACAO | spa |
dc.subject.lemb | Cacao | eng |
dc.subject.lemb | AGUACATE-CONSERVACION | spa |
dc.subject.lemb | Avocado - preservation | eng |
dc.subject.proposal | Tejido vascular | spa |
dc.subject.proposal | Asintomático | spa |
dc.subject.proposal | Sensibilidad | spa |
dc.subject.proposal | Tamizaje | spa |
dc.subject.proposal | Vascular tissue | eng |
dc.subject.proposal | Asymptomatic | eng |
dc.subject.proposal | Sensitivity | eng |
dc.subject.proposal | Screening | eng |
dc.title | Caracterización molecular y diagnóstico temprano de Lasiodiplodia sp. y Ceratocystis sp. en plantas de cacao y aguacate | spa |
dc.title.translated | Molecular characterization and early diagnosis of Lasiodiplodia sp. and Ceratocystis sp. in cocoa and avocado plants | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | "Fortalecimiento de las capacidades en ciencia, tecnología e innovación del Centro de Investigación La Suiza para el desarrollo de proyecto de fitosanidad y agroindustria en sistemas de producción priorizados en el departamento de Santander” | spa |
oaire.fundername | Ministerio de Agricultura y Desarrollo Rural | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022443731.2024.pdf
- Tamaño:
- 2.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Agrarias con énfasis en Fitopatología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: