Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad

dc.contributor.advisorFranco Cardona, Carlos Jaime
dc.contributor.authorCardona Suarez, Gustavo Alberto
dc.coverage.regionLlanos orientales - Colombia
dc.date.accessioned2024-05-06T15:37:02Z
dc.date.available2024-05-06T15:37:02Z
dc.date.issued2024-05
dc.descriptionilustraciones, gráficosspa
dc.description.abstractEste Trabajo Final evalúa la viabilidad técnica y económica de implementar un sistema de producción de combustibles sintéticos basados en electricidad, en los Llanos Orientales de Colombia. El caso de estudio parte de un yacimiento de crudo extrapesado que, debido a su baja viscosidad, requiere ser diluido con nafta para su transporte, aumentando los costos y huella de carbono. Adicionalmente, también se produce gas no comercial con un 50% de CO2. Considerando la disponibilidad de CO2 y la posibilidad de producir hidrógeno verde, se evaluó una solución técnico-económica para producir un combustible sintético con baja huella de carbono. La evaluación comprende tres tipos de combustible sintético: DME (Dimetil éter), gasolina y Diesel, con el fin de determinar cuál tendría el menor costo de producción. El cálculo del Costo Nivelado de Energía (LCOE) reveló que en todos los casos su valor es superior al de los combustibles fósiles. Adicionalmente, más del 70% del costo de producción está representado por el costo de la energía. Se concluyó que la viabilidad económica de los combustibles sintéticos estará condicionada a un costo de energía inferior a 175 COP/KWh para DME, 55 COP/KWh para gasolina y 25 COP/KWh para diésel. En caso de reducir el costo asociado al CO2 esta viabilidad se alcanzaría con costos menores a 300 COP/KWh, 160 COP/KWh y 140 COP/KWh, respectivamente. No obstante, debido a que la proyección del costo de energía es de 515 COP/KWh para el caso de estudio, la producción de estos combustibles sintéticos no es viable económicamente. (Tomado de la fuente)spa
dc.description.abstractThis Final Work evaluates the technical and economic feasibility of implementing an electricity-based synthetic fuel production system in the Llanos Orientales Basin of Colombia. The case study includes an extra-heavy crude oil field that, due to its low viscosity, requires dilution with naphtha for transportation, increasing costs and carbon footprint. In addition, non-commercial gas with 50% CO2 is also produced. Considering the availability of CO2 and the possibility of producing green hydrogen, a technical-economic solution was evaluated to produce a synthetic fuel with a low carbon footprint. The evaluation includes three types of synthetic fuel: DME (Dimethyl Ether), gasoline and Diesel, in order to determine which would have the lowest production cost. The calculation of the Levelized Cost of Energy (LCOE) revealed that in all cases, its value is higher than that fossil fuels. Furthermore, more than 70% of the production cost is represented by the cost of energy. It was concluded that the economic viability of synthetic fuels will be conditional on an energy cost less than 175 COP/KWh for DME, 55 COP/KWh for gasoline and 25 COP/KWh for diesel. If the associated cost of CO2 is reduced, this viability would be achieved with costs less than 300 COP/KWh, 160 COP/KWh and 140 COP/KWh, respectively. However, due to the energy cost projection is 515 COP/KWh for the case study, the production of these synthetic fuels is not economically viable.eng
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en ingeniería – Sistemas Energéticosspa
dc.format.extent87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86024
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Sistemas Energéticosspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlsunousi, M., & Kayabasi, E. (2023). The role of hydrogen in synthetic fuel production strategies. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.11.359spa
dc.relation.referencesAndreoni, P., Aleluia Reis, L., Drouet, L., Dessens, O., Fragkos, P., Pietzcker, R., Pye, S., Rodrigues, R., & Tavoni, M. (2023). Fossil extraction bans and carbon taxes: Assessing their interplay through multiple models. iScience, 26(4), 106377. https://doi.org/10.1016/j.isci.2023.106377spa
dc.relation.referencesArcos, J. M. M., & Santos, D. M. F. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3(1), 25–46. https://doi.org/10.3390/gases3010002spa
dc.relation.referencesArraga, D., Cruz, L., Montt, R., & Pantoja, G. (2019). Proyecto de producción de combustible sintético a partir de CO2 en el campo Cerro Gordo. Tesis de Maestría Universidad de los Andes.spa
dc.relation.referencesBellotti, D., Rivarolo, M., & Magistri, L. (2022). A comparative techno-economic and sensitivity analysis of Power-to-X processes from different energy sources. Energy Conversion and Management, 260, 115565. https://doi.org/10.1016/j.enconman.2022.115565spa
dc.relation.referencesBrynolf, S., Taljegard, M., Grahn, M., & Hansson, J. (2018). Electrofuels for the transport sector: A review of production costs. En Renewable and Sustainable Energy Reviews (Vol. 81, pp. 1887-1905). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.288spa
dc.relation.referencesBurdack, A., Duarte-Herrera, L., López-Jiménez, G., Polklas, T., & Vasco-Echeverri, O. (2023). Techno-economic calculation of green hydrogen production and export from Colombia. International Journal of Hydrogen Energy, 48(5), 1685-1700. https://doi.org/10.1016/j.ijhydene.2022.10.064spa
dc.relation.referencesChakraborty, J. P., Singh, S., & Maity, S. K. (2021). Advances in the conversion of methanol to gasoline. En Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels. https://doi.org/10.1016/B978-0-12-823306-1.00008-Xspa
dc.relation.referencesClausen, L. R., Elmegaard, B., & Houbak, N. (2010). Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy, 35(12). https://doi.org/10.1016/j.energy.2010.09.004spa
dc.relation.referencesDaiyan, R., Macgill, I., & Amal, R. (2020). Opportunities and Challenges for Renewable Power-to-X. ACS Energy Letters, 5(12), 3843-3847. https://doi.org/10.1021/acsenergylett.0c02249spa
dc.relation.referencesDieterich, V., Buttler, A., Hanel, A., Spliethoff, H., & Fendt, S. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. En Energy and Environmental Science (Vol. 13, Número 10, pp. 3207-3252). Royal Society of Chemistry. https://doi.org/10.1039/d0ee01187hspa
dc.relation.referencesDimartino, B. B., Cameron, B. G., & Rubin, J. S. (2023). Direct Air Capture as a Carbon Removal Solution: Analyzing Scale-Up, Cost Reduction, and Pathways for Acceleration.spa
dc.relation.referencesDo, T. N., & Kim, J. (2020a). Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Conversion and Management, 214, 112866. https://doi.org/10.1016/j.enconman.2020.112866spa
dc.relation.referencesDo, T. N., & Kim, J. (2020b). Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Conversion and Management, 214, 112866. https://doi.org/10.1016/J.ENCONMAN.2020.112866spa
dc.relation.referencesDziejarski, B., Krzyżyńska, R., & Andersson, K. (2023). Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, 342, 127776. https://doi.org/10.1016/j.fuel.2023.127776spa
dc.relation.referencesGarcía, C. A., Moncada, J., Aristizábal, V., & Cardona, C. A. (2017). Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case. International Journal of Hydrogen Energy, 42(9), 5849-5864. https://doi.org/10.1016/j.ijhydene.2017.01.073spa
dc.relation.referencesGhiat, I., & Al-Ansari, T. (2021). A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. Journal of CO2 Utilization, 45, 101432. https://doi.org/10.1016/j.jcou.2020.101432spa
dc.relation.referencesGonzález Velandia, L. C., John Ramiro Agudelo Santamaria, A., & Coasesora María Luisa Botero Vega, D. (2023). Comparative analysis of greenhouse emissions based on life cycle assessment of alternative fuels for transportation sector-A systematic literature review. www.udea.edu.cospa
dc.relation.referencesGonzalez-Garay, A., Heuberger-Austin, C., Fu, X., Klokkenburg, M., Zhang, D., van der Made, A., & Shah, N. (2022). Unravelling the potential of sustainable aviation fuels to decarbonise the aviation sector. Energy and Environmental Science, 15(8). https://doi.org/10.1039/d1ee03437espa
dc.relation.referencesGrubert, E. (2023). Water consumption from electrolytic hydrogen in a carbon-neutral US energy system. Cleaner Production Letters, 4, 100037. https://doi.org/10.1016/j.clpl.2023.100037spa
dc.relation.referencesGuilera, J., Ramon Morante, J., & Andreu, T. (2018). Economic viability of SNG production from power and CO2. Energy Conversion and Management, 162, 218-224. https://doi.org/10.1016/j.enconman.2018.02.037spa
dc.relation.referencesHombach, L. E., Doré, L., Heidgen, K., Maas, H., Wallington, T. J., & Walther, G. (2023). Economic and environmental assessment of current (2015) and future (2030) use of E-fuels in light-duty vehicles in Germany. Journal of Cleaner Production, 207. https://doi.org/10.1016/j.jclepro.2018.09.261spa
dc.relation.referencesHuber, D., Birkelbach, F., & Hofmann, R. (2024). Unlocking the potential of synthetic fuel production: Coupled optimization of heat exchanger network and operating parameters of a 1 MW power-to-liquid plant. Chemical Engineering Science, 284, 119506. https://doi.org/10.1016/j.ces.2023.119506spa
dc.relation.referencesIncer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. In Energy Conversion and Management (Vol. 291). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2023.117294spa
dc.relation.referencesIguarán, R. (2021). Proyecto de viabilidad de Power-to-Gas: Producción de gas natural sintético en Manaure, La Guajira – Colombia. Universitat de Barcelona .spa
dc.relation.referencesInternational Energy Agency (IEA). (2019). The Future of Hydrogen. https://www.iea.org/reports/the-future-of-hydrogenspa
dc.relation.referencesInternational Energy Agency (IEA). (2021). World Energy Outlook 2021 Resumen ejecutivo. www.iea.org/weospa
dc.relation.referencesKabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.743114spa
dc.relation.referencesKhan, U., Ogbaga, C. C., Abiodun, O.-A. O., Adeleke, A. A., Ikubanni, P. P., Okoye, P. U., & Okolie, J. A. (2023). Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Science & Technology, 8, 100125. https://doi.org/10.1016/j.ccst.2023.100125spa
dc.relation.referencesKim, C. Y., Kim, C. R., Kim, D. K., & Cho, S. H. (2020). Analysis of challenges due to changes in net load curve in South Korea by integrating ders. Electronics (Switzerland), 9(8), 1-18. https://doi.org/10.3390/electronics9081310spa
dc.relation.referencesLewandowska-Bernat, A., & Desideri, U. (2018). Opportunities of power-to-gas technology in different energy systems architectures. Applied Energy, 228, 57-67. https://doi.org/10.1016/j.apenergy.2018.06.001spa
dc.relation.referencesLey 1715 de 2014. Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional., Congreso de la República de Colombia (2014).spa
dc.relation.referencesLey 2099 de 2021.Por medio de la cual se dictan disposiciones para la transicion energetica, la dinamizacion del mercado energetico, la reactivacion economica del pais y se dictan otras disposiciones., Congreso de la República de Colombia (2021).spa
dc.relation.referencesNadaleti, W. C., de Souza, E. G., & Lourenço, V. A. (2022). Green hydrogen-based pathways and alternatives: Towards the renewable energy transition in South America’s regions–Part B. International Journal of Hydrogen Energy, 47(1), 1-15. https://doi.org/10.1016/j.ijhydene.2021.05.113spa
dc.relation.referencesNemmour, A., Inayat, A., Janajreh, I., & Ghenai, C. (2023). Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. En International Journal of Hydrogen Energy. Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2023.03.240spa
dc.relation.referencesOsman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20(1), 153-188. https://doi.org/10.1007/s10311-021-01322-8spa
dc.relation.referencesRam, V., & Salkuti, S. R. (2023). An Overview of Major Synthetic Fuels. Energies, 16(6), 2834. https://doi.org/10.3390/en16062834spa
dc.relation.referencesRen, J., & Dong, L. (2018). Evaluation of electricity supply sustainability and security: Multi-criteria decision analysis approach. Journal of Cleaner Production, 172, 438-453. https://doi.org/10.1016/j.jclepro.2017.10.167spa
dc.relation.referencesRiera, J. A., Lima, R. M., & Knio, O. M. (2023). A review of hydrogen production and supply chain modeling and optimization. In International Journal of Hydrogen Energy (Vol. 48, Issue 37, pp. 13731–13755). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2022.12.242spa
dc.relation.referencesRobinson, M. L. (2014). Marketing Big Oil. Palgrave Macmillan US. https://doi.org/10.1057/9781137388070spa
dc.relation.referencesRodríguez, F. (2022). Evaluación de la sostenibilidad de las diferentes biomasas para la producción de energía eléctrica en la Central Bioeléctrica Ciro Redondo. Universidad D Cienfuegos.spa
dc.relation.referencesRoyal Society. (2021). Sustainable synthetic carbon based fuels for transport.spa
dc.relation.referencesRoyal Society (Great Britain). (2019). Sustainable synthetic carbon based fuels for transport.spa
dc.relation.referencesSchemme, S., Breuer, J. L., Köller, M., Meschede, S., Walman, F., Samsun, R. C., Peters, R., & Stolten, D. (2020). H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. International Journal of Hydrogen Energy, 45(8), 5395-5414. https://doi.org/10.1016/j.ijhydene.2019.05.028spa
dc.relation.referencesSkov, I. R., & Schneider, N. (2022). Incentive structures for power-to-X and e-fuel pathways for transport in EU and member states. Energy Policy, 168. https://doi.org/10.1016/j.enpol.2022.113121spa
dc.relation.referencesStewart A. Isaacs, Mark D. Staples, Florian Allroggen, Dharik S. Mallapragada, Christoph P. Falter, and Steven R. H. Barrett (2021) Environmental and Economic Performance of Hybrid Power-to-Liquid and Biomass-to-Liquid Fuel Production in the United States. Environmental Science & Technology 2021 55 (12), 8247-8257 https://pubs.acs.org/doi/abs/10.1021/acs.est.0c07674spa
dc.relation.referencesSorrenti, I., Harild Rasmussen, T. B., You, S., & Wu, Q. (2022). The role of power-to-X in hybrid renewable energy systems: A comprehensive review. En Renewable and Sustainable Energy Reviews (Vol. 165). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112380spa
dc.relation.referencesSu-ungkavatin, P., Tiruta-Barna, L., & Hamelin, L. (2023). Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems. En Progress in Energy and Combustion Science (Vol. 96). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2023.101073spa
dc.relation.referencesThe World Bank Group. (2024). Inflation, consumer prices (annual %) - United States.spa
dc.relation.referencesUribe, I., Zacarías, X., Lozano, M., & Álvarez, K. (2023). Percepción del rol docente y clases en línea en el contexto de la pandemia por covid-19 en estudiantes universitarios. Tempus Psicológico, 6(2). https://doi.org/10.30554/tempuspsi.6.2.4691.2023spa
dc.relation.referencesUPME (2023) Proyección de precios de los energéticos para generación eléctrica julio de 2023 diciembre 2050. Unidad de Planeación Minero Energética, Subdirección de hidrocarburos.https://www1.upme.gov.co/sipg/Publicaciones_SIPG/Proyeccion_precios_energeticos_I_semestre_2023_vf.pdfspa
dc.relation.referencesVanegas, D. (2022). Modelo De Análisis Para Evaluación De Tecnologías Que Viabilizan El Transporte De Crudo Pesado Por Oleoductos. Tesis Maestria Pontificia Universidad Javeriana.spa
dc.relation.referencesVázquez, F. V., Koponen, J., Ruuskanen, V., Bajamundi, C., Kosonen, A., Simell, P., Ahola, J., Frilund, C., Elfving, J., Reinikainen, M., Heikkinen, N., Kauppinen, J., & Piermartini, P. (2018). Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization, 28, 235-246. https://doi.org/10.1016/j.jcou.2018.09.026spa
dc.relation.referencesWang, T., Cao, X., & Jiao, L. (2022). PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. En Carbon Neutrality (Vol. 1, Número 1). Springer. https://doi.org/10.1007/s43979-022-00022-8spa
dc.relation.referencesWulf, C., Zapp, P., & Schreiber, A. (2020). Review of Power-to-X Demonstration Projects in Europe. En Frontiers in Energy Research (Vol. 8). https://doi.org/10.3389/fenrg.2020.00191spa
dc.relation.referencesZhou, G., Kong, Y., Qian, X., Zhang, Q., Ma, Y., & Wu, D. (2023). Explosion dynamics and sensitivity analysis of blended LPG/DME clean fuel promoted by H2 in a confined elongated space. Fuel, 331. https://doi.org/10.1016/j.fuel.2022.125816spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.lembCombustibles sintéticos - Producción - Llanos Orientales - Colombia
dc.subject.lembProducción de energía eléctrica - Llanos Orientales - Colombia
dc.subject.lembCombustibles sintéticos - Costos de producción
dc.subject.proposalCombustibles sintéticos,spa
dc.subject.proposale-fuelsspa
dc.subject.proposalHidrógenospa
dc.subject.proposalCaptura de CO2spa
dc.subject.proposalPower to Xspa
dc.subject.proposalPower to Liquidsspa
dc.subject.proposalSynthetic fueleng
dc.titleEvaluación técnico-económica de un sistema de producción de combustibles basados en electricidadspa
dc.title.translatedTechnical-economic evaluation of a fuel production system based on electricityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
98671119.2024.pdf
Tamaño:
1.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Sistemas Energéticos

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: