Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad
dc.contributor.advisor | Franco Cardona, Carlos Jaime | |
dc.contributor.author | Cardona Suarez, Gustavo Alberto | |
dc.coverage.region | Llanos orientales - Colombia | |
dc.date.accessioned | 2024-05-06T15:37:02Z | |
dc.date.available | 2024-05-06T15:37:02Z | |
dc.date.issued | 2024-05 | |
dc.description | ilustraciones, gráficos | spa |
dc.description.abstract | Este Trabajo Final evalúa la viabilidad técnica y económica de implementar un sistema de producción de combustibles sintéticos basados en electricidad, en los Llanos Orientales de Colombia. El caso de estudio parte de un yacimiento de crudo extrapesado que, debido a su baja viscosidad, requiere ser diluido con nafta para su transporte, aumentando los costos y huella de carbono. Adicionalmente, también se produce gas no comercial con un 50% de CO2. Considerando la disponibilidad de CO2 y la posibilidad de producir hidrógeno verde, se evaluó una solución técnico-económica para producir un combustible sintético con baja huella de carbono. La evaluación comprende tres tipos de combustible sintético: DME (Dimetil éter), gasolina y Diesel, con el fin de determinar cuál tendría el menor costo de producción. El cálculo del Costo Nivelado de Energía (LCOE) reveló que en todos los casos su valor es superior al de los combustibles fósiles. Adicionalmente, más del 70% del costo de producción está representado por el costo de la energía. Se concluyó que la viabilidad económica de los combustibles sintéticos estará condicionada a un costo de energía inferior a 175 COP/KWh para DME, 55 COP/KWh para gasolina y 25 COP/KWh para diésel. En caso de reducir el costo asociado al CO2 esta viabilidad se alcanzaría con costos menores a 300 COP/KWh, 160 COP/KWh y 140 COP/KWh, respectivamente. No obstante, debido a que la proyección del costo de energía es de 515 COP/KWh para el caso de estudio, la producción de estos combustibles sintéticos no es viable económicamente. (Tomado de la fuente) | spa |
dc.description.abstract | This Final Work evaluates the technical and economic feasibility of implementing an electricity-based synthetic fuel production system in the Llanos Orientales Basin of Colombia. The case study includes an extra-heavy crude oil field that, due to its low viscosity, requires dilution with naphtha for transportation, increasing costs and carbon footprint. In addition, non-commercial gas with 50% CO2 is also produced. Considering the availability of CO2 and the possibility of producing green hydrogen, a technical-economic solution was evaluated to produce a synthetic fuel with a low carbon footprint. The evaluation includes three types of synthetic fuel: DME (Dimethyl Ether), gasoline and Diesel, in order to determine which would have the lowest production cost. The calculation of the Levelized Cost of Energy (LCOE) revealed that in all cases, its value is higher than that fossil fuels. Furthermore, more than 70% of the production cost is represented by the cost of energy. It was concluded that the economic viability of synthetic fuels will be conditional on an energy cost less than 175 COP/KWh for DME, 55 COP/KWh for gasoline and 25 COP/KWh for diesel. If the associated cost of CO2 is reduced, this viability would be achieved with costs less than 300 COP/KWh, 160 COP/KWh and 140 COP/KWh, respectively. However, due to the energy cost projection is 515 COP/KWh for the case study, the production of these synthetic fuels is not economically viable. | eng |
dc.description.curriculararea | Ingeniería De Sistemas E Informática.Sede Medellín | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en ingeniería – Sistemas Energéticos | spa |
dc.format.extent | 87 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86024 | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Sistemas Energéticos | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Alsunousi, M., & Kayabasi, E. (2023). The role of hydrogen in synthetic fuel production strategies. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.11.359 | spa |
dc.relation.references | Andreoni, P., Aleluia Reis, L., Drouet, L., Dessens, O., Fragkos, P., Pietzcker, R., Pye, S., Rodrigues, R., & Tavoni, M. (2023). Fossil extraction bans and carbon taxes: Assessing their interplay through multiple models. iScience, 26(4), 106377. https://doi.org/10.1016/j.isci.2023.106377 | spa |
dc.relation.references | Arcos, J. M. M., & Santos, D. M. F. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3(1), 25–46. https://doi.org/10.3390/gases3010002 | spa |
dc.relation.references | Arraga, D., Cruz, L., Montt, R., & Pantoja, G. (2019). Proyecto de producción de combustible sintético a partir de CO2 en el campo Cerro Gordo. Tesis de Maestría Universidad de los Andes. | spa |
dc.relation.references | Bellotti, D., Rivarolo, M., & Magistri, L. (2022). A comparative techno-economic and sensitivity analysis of Power-to-X processes from different energy sources. Energy Conversion and Management, 260, 115565. https://doi.org/10.1016/j.enconman.2022.115565 | spa |
dc.relation.references | Brynolf, S., Taljegard, M., Grahn, M., & Hansson, J. (2018). Electrofuels for the transport sector: A review of production costs. En Renewable and Sustainable Energy Reviews (Vol. 81, pp. 1887-1905). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.288 | spa |
dc.relation.references | Burdack, A., Duarte-Herrera, L., López-Jiménez, G., Polklas, T., & Vasco-Echeverri, O. (2023). Techno-economic calculation of green hydrogen production and export from Colombia. International Journal of Hydrogen Energy, 48(5), 1685-1700. https://doi.org/10.1016/j.ijhydene.2022.10.064 | spa |
dc.relation.references | Chakraborty, J. P., Singh, S., & Maity, S. K. (2021). Advances in the conversion of methanol to gasoline. En Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels. https://doi.org/10.1016/B978-0-12-823306-1.00008-X | spa |
dc.relation.references | Clausen, L. R., Elmegaard, B., & Houbak, N. (2010). Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy, 35(12). https://doi.org/10.1016/j.energy.2010.09.004 | spa |
dc.relation.references | Daiyan, R., Macgill, I., & Amal, R. (2020). Opportunities and Challenges for Renewable Power-to-X. ACS Energy Letters, 5(12), 3843-3847. https://doi.org/10.1021/acsenergylett.0c02249 | spa |
dc.relation.references | Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H., & Fendt, S. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. En Energy and Environmental Science (Vol. 13, Número 10, pp. 3207-3252). Royal Society of Chemistry. https://doi.org/10.1039/d0ee01187h | spa |
dc.relation.references | Dimartino, B. B., Cameron, B. G., & Rubin, J. S. (2023). Direct Air Capture as a Carbon Removal Solution: Analyzing Scale-Up, Cost Reduction, and Pathways for Acceleration. | spa |
dc.relation.references | Do, T. N., & Kim, J. (2020a). Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Conversion and Management, 214, 112866. https://doi.org/10.1016/j.enconman.2020.112866 | spa |
dc.relation.references | Do, T. N., & Kim, J. (2020b). Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Conversion and Management, 214, 112866. https://doi.org/10.1016/J.ENCONMAN.2020.112866 | spa |
dc.relation.references | Dziejarski, B., Krzyżyńska, R., & Andersson, K. (2023). Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, 342, 127776. https://doi.org/10.1016/j.fuel.2023.127776 | spa |
dc.relation.references | García, C. A., Moncada, J., Aristizábal, V., & Cardona, C. A. (2017). Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case. International Journal of Hydrogen Energy, 42(9), 5849-5864. https://doi.org/10.1016/j.ijhydene.2017.01.073 | spa |
dc.relation.references | Ghiat, I., & Al-Ansari, T. (2021). A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. Journal of CO2 Utilization, 45, 101432. https://doi.org/10.1016/j.jcou.2020.101432 | spa |
dc.relation.references | González Velandia, L. C., John Ramiro Agudelo Santamaria, A., & Coasesora María Luisa Botero Vega, D. (2023). Comparative analysis of greenhouse emissions based on life cycle assessment of alternative fuels for transportation sector-A systematic literature review. www.udea.edu.co | spa |
dc.relation.references | Gonzalez-Garay, A., Heuberger-Austin, C., Fu, X., Klokkenburg, M., Zhang, D., van der Made, A., & Shah, N. (2022). Unravelling the potential of sustainable aviation fuels to decarbonise the aviation sector. Energy and Environmental Science, 15(8). https://doi.org/10.1039/d1ee03437e | spa |
dc.relation.references | Grubert, E. (2023). Water consumption from electrolytic hydrogen in a carbon-neutral US energy system. Cleaner Production Letters, 4, 100037. https://doi.org/10.1016/j.clpl.2023.100037 | spa |
dc.relation.references | Guilera, J., Ramon Morante, J., & Andreu, T. (2018). Economic viability of SNG production from power and CO2. Energy Conversion and Management, 162, 218-224. https://doi.org/10.1016/j.enconman.2018.02.037 | spa |
dc.relation.references | Hombach, L. E., Doré, L., Heidgen, K., Maas, H., Wallington, T. J., & Walther, G. (2023). Economic and environmental assessment of current (2015) and future (2030) use of E-fuels in light-duty vehicles in Germany. Journal of Cleaner Production, 207. https://doi.org/10.1016/j.jclepro.2018.09.261 | spa |
dc.relation.references | Huber, D., Birkelbach, F., & Hofmann, R. (2024). Unlocking the potential of synthetic fuel production: Coupled optimization of heat exchanger network and operating parameters of a 1 MW power-to-liquid plant. Chemical Engineering Science, 284, 119506. https://doi.org/10.1016/j.ces.2023.119506 | spa |
dc.relation.references | Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. In Energy Conversion and Management (Vol. 291). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2023.117294 | spa |
dc.relation.references | Iguarán, R. (2021). Proyecto de viabilidad de Power-to-Gas: Producción de gas natural sintético en Manaure, La Guajira – Colombia. Universitat de Barcelona . | spa |
dc.relation.references | International Energy Agency (IEA). (2019). The Future of Hydrogen. https://www.iea.org/reports/the-future-of-hydrogen | spa |
dc.relation.references | International Energy Agency (IEA). (2021). World Energy Outlook 2021 Resumen ejecutivo. www.iea.org/weo | spa |
dc.relation.references | Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.743114 | spa |
dc.relation.references | Khan, U., Ogbaga, C. C., Abiodun, O.-A. O., Adeleke, A. A., Ikubanni, P. P., Okoye, P. U., & Okolie, J. A. (2023). Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Science & Technology, 8, 100125. https://doi.org/10.1016/j.ccst.2023.100125 | spa |
dc.relation.references | Kim, C. Y., Kim, C. R., Kim, D. K., & Cho, S. H. (2020). Analysis of challenges due to changes in net load curve in South Korea by integrating ders. Electronics (Switzerland), 9(8), 1-18. https://doi.org/10.3390/electronics9081310 | spa |
dc.relation.references | Lewandowska-Bernat, A., & Desideri, U. (2018). Opportunities of power-to-gas technology in different energy systems architectures. Applied Energy, 228, 57-67. https://doi.org/10.1016/j.apenergy.2018.06.001 | spa |
dc.relation.references | Ley 1715 de 2014. Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional., Congreso de la República de Colombia (2014). | spa |
dc.relation.references | Ley 2099 de 2021.Por medio de la cual se dictan disposiciones para la transicion energetica, la dinamizacion del mercado energetico, la reactivacion economica del pais y se dictan otras disposiciones., Congreso de la República de Colombia (2021). | spa |
dc.relation.references | Nadaleti, W. C., de Souza, E. G., & Lourenço, V. A. (2022). Green hydrogen-based pathways and alternatives: Towards the renewable energy transition in South America’s regions–Part B. International Journal of Hydrogen Energy, 47(1), 1-15. https://doi.org/10.1016/j.ijhydene.2021.05.113 | spa |
dc.relation.references | Nemmour, A., Inayat, A., Janajreh, I., & Ghenai, C. (2023). Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. En International Journal of Hydrogen Energy. Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2023.03.240 | spa |
dc.relation.references | Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20(1), 153-188. https://doi.org/10.1007/s10311-021-01322-8 | spa |
dc.relation.references | Ram, V., & Salkuti, S. R. (2023). An Overview of Major Synthetic Fuels. Energies, 16(6), 2834. https://doi.org/10.3390/en16062834 | spa |
dc.relation.references | Ren, J., & Dong, L. (2018). Evaluation of electricity supply sustainability and security: Multi-criteria decision analysis approach. Journal of Cleaner Production, 172, 438-453. https://doi.org/10.1016/j.jclepro.2017.10.167 | spa |
dc.relation.references | Riera, J. A., Lima, R. M., & Knio, O. M. (2023). A review of hydrogen production and supply chain modeling and optimization. In International Journal of Hydrogen Energy (Vol. 48, Issue 37, pp. 13731–13755). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2022.12.242 | spa |
dc.relation.references | Robinson, M. L. (2014). Marketing Big Oil. Palgrave Macmillan US. https://doi.org/10.1057/9781137388070 | spa |
dc.relation.references | Rodríguez, F. (2022). Evaluación de la sostenibilidad de las diferentes biomasas para la producción de energía eléctrica en la Central Bioeléctrica Ciro Redondo. Universidad D Cienfuegos. | spa |
dc.relation.references | Royal Society. (2021). Sustainable synthetic carbon based fuels for transport. | spa |
dc.relation.references | Royal Society (Great Britain). (2019). Sustainable synthetic carbon based fuels for transport. | spa |
dc.relation.references | Schemme, S., Breuer, J. L., Köller, M., Meschede, S., Walman, F., Samsun, R. C., Peters, R., & Stolten, D. (2020). H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. International Journal of Hydrogen Energy, 45(8), 5395-5414. https://doi.org/10.1016/j.ijhydene.2019.05.028 | spa |
dc.relation.references | Skov, I. R., & Schneider, N. (2022). Incentive structures for power-to-X and e-fuel pathways for transport in EU and member states. Energy Policy, 168. https://doi.org/10.1016/j.enpol.2022.113121 | spa |
dc.relation.references | Stewart A. Isaacs, Mark D. Staples, Florian Allroggen, Dharik S. Mallapragada, Christoph P. Falter, and Steven R. H. Barrett (2021) Environmental and Economic Performance of Hybrid Power-to-Liquid and Biomass-to-Liquid Fuel Production in the United States. Environmental Science & Technology 2021 55 (12), 8247-8257 https://pubs.acs.org/doi/abs/10.1021/acs.est.0c07674 | spa |
dc.relation.references | Sorrenti, I., Harild Rasmussen, T. B., You, S., & Wu, Q. (2022). The role of power-to-X in hybrid renewable energy systems: A comprehensive review. En Renewable and Sustainable Energy Reviews (Vol. 165). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112380 | spa |
dc.relation.references | Su-ungkavatin, P., Tiruta-Barna, L., & Hamelin, L. (2023). Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems. En Progress in Energy and Combustion Science (Vol. 96). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2023.101073 | spa |
dc.relation.references | The World Bank Group. (2024). Inflation, consumer prices (annual %) - United States. | spa |
dc.relation.references | Uribe, I., Zacarías, X., Lozano, M., & Álvarez, K. (2023). Percepción del rol docente y clases en línea en el contexto de la pandemia por covid-19 en estudiantes universitarios. Tempus Psicológico, 6(2). https://doi.org/10.30554/tempuspsi.6.2.4691.2023 | spa |
dc.relation.references | UPME (2023) Proyección de precios de los energéticos para generación eléctrica julio de 2023 diciembre 2050. Unidad de Planeación Minero Energética, Subdirección de hidrocarburos.https://www1.upme.gov.co/sipg/Publicaciones_SIPG/Proyeccion_precios_energeticos_I_semestre_2023_vf.pdf | spa |
dc.relation.references | Vanegas, D. (2022). Modelo De Análisis Para Evaluación De Tecnologías Que Viabilizan El Transporte De Crudo Pesado Por Oleoductos. Tesis Maestria Pontificia Universidad Javeriana. | spa |
dc.relation.references | Vázquez, F. V., Koponen, J., Ruuskanen, V., Bajamundi, C., Kosonen, A., Simell, P., Ahola, J., Frilund, C., Elfving, J., Reinikainen, M., Heikkinen, N., Kauppinen, J., & Piermartini, P. (2018). Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization, 28, 235-246. https://doi.org/10.1016/j.jcou.2018.09.026 | spa |
dc.relation.references | Wang, T., Cao, X., & Jiao, L. (2022). PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. En Carbon Neutrality (Vol. 1, Número 1). Springer. https://doi.org/10.1007/s43979-022-00022-8 | spa |
dc.relation.references | Wulf, C., Zapp, P., & Schreiber, A. (2020). Review of Power-to-X Demonstration Projects in Europe. En Frontiers in Energy Research (Vol. 8). https://doi.org/10.3389/fenrg.2020.00191 | spa |
dc.relation.references | Zhou, G., Kong, Y., Qian, X., Zhang, Q., Ma, Y., & Wu, D. (2023). Explosion dynamics and sensitivity analysis of blended LPG/DME clean fuel promoted by H2 in a confined elongated space. Fuel, 331. https://doi.org/10.1016/j.fuel.2022.125816 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados | spa |
dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica | spa |
dc.subject.lemb | Combustibles sintéticos - Producción - Llanos Orientales - Colombia | |
dc.subject.lemb | Producción de energía eléctrica - Llanos Orientales - Colombia | |
dc.subject.lemb | Combustibles sintéticos - Costos de producción | |
dc.subject.proposal | Combustibles sintéticos, | spa |
dc.subject.proposal | e-fuels | spa |
dc.subject.proposal | Hidrógeno | spa |
dc.subject.proposal | Captura de CO2 | spa |
dc.subject.proposal | Power to X | spa |
dc.subject.proposal | Power to Liquids | spa |
dc.subject.proposal | Synthetic fuel | eng |
dc.title | Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad | spa |
dc.title.translated | Technical-economic evaluation of a fuel production system based on electricity | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 98671119.2024.pdf
- Tamaño:
- 1.56 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Sistemas Energéticos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: