Una aplicación en la evaluación del impacto del confinamiento estricto por la Covid-19 en la calidad del aire en la ciudad de Medellín basado en modelos Bayesianos Dinámicos Multivariados y Espaciales

dc.contributor.advisorRamírez, Isabel
dc.contributor.advisorCardona Jiménez, Johnatan
dc.contributor.authorPérez Aguirre, Carlos Andrés
dc.contributor.cvlac0001822280spa
dc.contributor.orcid00000-003-4937-1163spa
dc.contributor.orcid00000-002-3156-2482spa
dc.contributor.orcidCardona Jiménez, Johnatan [0000-0002-6370-8837]spa
dc.contributor.researchgroupGrupo de Investigación en Estadística Universidad Nacional de Colombia, Sede Medellínspa
dc.date.accessioned2023-04-26T19:27:51Z
dc.date.available2023-04-26T19:27:51Z
dc.date.issued2022-12-13
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn la ciudad de Medellín y demás municipios del Valle de Aburrá los episodios de altos niveles de contaminación en el aire han sido recurrentes en los últimos años. Múltiples estudios realizados por universidades de la región y entes gubernamentales han presentado evidencia del impacto negativo en la salud de los habitantes de la región asociado a varios tipos de contaminantes presentes en el aire. Las medidas de aislamiento provocadas por la pandemia SARS-CoV-2 (Covid-19) durante inicios del 2020 provocaron una reducción drástica del flujo vehicular. Así, en este proyecto proponemos e implementamos mediante un paquete en R un método estadístico basado en modelos dinámicos espacio-temporales para evaluar el impacto de la reducción del flujo vehicular en la presencia de contaminantes (PM 10, PM 2.5, NO, NO2, NOx). En esta tesis encontramos que se presenta una reducción en la concentración en el aire de los contaminantes previamente mencionados. (Texto tomado de la fuente)spa
dc.description.abstractIn the city of Medellín and other municipalities in the Aburrá Valley, episodes of high levels of air pollution have been recurrent in recent years. Multiple studies carried out by universities in the region and government entities 1, have presented evidence of the negative impact on the health of the inhabitants of the region associated with various types of pollutants present in the air. The isolation measures caused by the SARS-CoV-2 (Covid-19) pandemic during early 2020 caused a drastic reduction in vehicular flow. Thus, in this project we propose and implement in R pacakge a statistical method based on space-time dynamic models to assess the impact of reducing vehicular flow in the presence of pollutants (PM 10, PM 2.5, NO2, NOx). In this thesis we find that there is a reduction in the concentration in the air of the previously mentioned pollutants.eng
dc.description.curricularareaÁrea Curricular Estadísticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.description.researchareaEstadística Bayesianaspa
dc.format.extentxi, 86 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83794
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbadie, A. (2010). Difference-in-Difference Estimators, pages 36–39. Palgrave Macmillan UK, London.spa
dc.relation.referencesAlcaldía de Medellín (2020). Gaceta Oficial No4677. 2020(Marzo 20).spa
dc.relation.referencesAmeen, J. & Harrison, P. (1985). Normal discount bayesian models. Bayesian statistics, 2(2):271–198.spa
dc.relation.referencesBedoya, J. & Martínez, E. (2009). Calidad del aire en el valle de aburrá antioquia - colombia. page 9.spa
dc.relation.referencesBelasen, A. & Polachek, S. (2008). How hurricanes affect wages and employment in local labor markets. American Economic Review, 98.spa
dc.relation.referencesBernal, J. L., Cummins, S., & Gasparrini, A. (2016). Interrupted time series regression for the evaluation of public health interventions: a tutorial. International Journal of Epidemiology, 46(1):348–355.spa
dc.relation.referencesBox, G. E. P. & Tiao, G. C. (1975). Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association, 70(349):70–79.spa
dc.relation.referencesBriz-Redón, Á., Belenguer-Sapiña, C., & Serrano-Aroca, Á. (2021). Changes in air pollution during COVID-19 lockdown in Spain: A multi-city study. Journal of Environmental Sciences (China), 101:16–26.spa
dc.relation.referencesBrodersen, K. H., Gallusser, F., Koehler, J., Remy, N., & Scott, S. L. (2015). Inferring causal impact using Bayesian structural time-series models. The Annals of Applied Statistics, 9(1):247–274.spa
dc.relation.referencesCardenas, J. E. P. (2017). La calidad del aire en colombia: un problema de salud pública, un problema de todos. page 2.spa
dc.relation.referencesCardona-Jiménez, J. & de B. Pereira, C. A. (2021). Assessing dynamic effects on a bayesian matrix-variate dynamic linear model: An application to task-based fmri data analysis. Computational Statistics and Data Analysis, 163:107297.spa
dc.relation.referencesCarvalho, C., Masini, R., & Medeiros, M. C. (2018a). Arco: An artificial counterfactual approach for high-dimensional panel time-series data. Journal of econometrics, 207(2):352–380.spa
dc.relation.referencesCarvalho, C., Masini, R., & Medeiros, M. C. (2018b). Arco: An artificial counterfactual approach for high-dimensional panel time-series data. Journal of econometrics, 207(2):352– 380.spa
dc.relation.referencesContraloría General de Medellín (2019). Estado anual de los recursos naturales y del ambiente del municipio de medellín.spa
dc.relation.referencesDean, J. & Ghemawat, S. (2004). Mapreduce: Simplified data processing on large clusters. In OSDI’04: Sixth Symposium on Operating System Design and Implementation, pages 137–150, San Francisco, CA.spa
dc.relation.referencesGorai, A. K. & Goyal, P. (2015). A Review on Air Quality Indexing System. 9-2:13.spa
dc.relation.referencesGupta, A. K. & Nagar, D. K. (2018). Matrix variate distributions. Chapman and Hall/CRC.spa
dc.relation.referencesHernández, M. P. (2019). Incendio en el nordeste afecta calidad del aire en el aburrá.spa
dc.relation.referencesIGAC (2004). Aspectos Prácticos De La Adopción Del Marco Geocéntrico Nacional De Referencia Magna-Sirgas Como Datum Oficial De Colombia. page 107.spa
dc.relation.referencesKampa, M. & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2):362–367.spa
dc.relation.referencesKarimi, A., Shirmardi, M., Hadei, M., Birgani, Y. T., Neisi, A., Takdastan, A., & Goudarzi, G. (2019). Concentrations and health effects of short- and long-term exposure to PM2.5, NO2, and O3 in ambient air of Ahvaz city, Iran (2014–2017). Ecotoxicology and Environmental Safety, 180(May):542–548.spa
dc.relation.referencesKucukelbir, A., Ranganath, R., Gelman, A., & Blei, D. M. (2015). Automatic variational inference in stan.spa
dc.relation.referencesLance, P., Guilkey, D., Hattori, A., & Angeles, G. (2014). How do we know if a program made a difference. A guide to statistical methods for program impact evaluation. Chapel Hill (NC): MEASURE Evaluation.spa
dc.relation.referencesLatza, U., Gerdes, S., & Baur, X. (2009). Effects of nitrogen dioxide on human health: Systematic review of experimental and epidemiological studies conducted between 2002 and 2006. International Journal of Hygiene and Environmental Health, 212(3):271–287.spa
dc.relation.referencesLinden, A. & Adams, J. L. (2011). Applying a propensity score-based weighting model to interrupted time series data: improving causal inference in programme evaluation. Journal of Evaluation in Clinical Practice, 17(6):1231–1238.spa
dc.relation.referencesLu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environmental Research, 136:196–204.spa
dc.relation.referencesMaathuis, M. H. & Nandy, P. (2015). A review of some recent advances in causal inference. arXiv:1506.07669 [stat]. arXiv: 1506.07669.spa
dc.relation.referencesMamedov, R. (2018). The mit no attribution (mit-0) license. https://github.com/aws/mit-0. Last retrieved 2022-06-10.spa
dc.relation.referencesMéndez, J. F., Pinto-Herrera, L. C., & Belalcázar-Cerón, L. C. (2018). Estudio de una intrusión de polvo sahariano en la atmósfera de colombia. Revista Ingenierías Universidad de Medellín, 17(32):17–34.spa
dc.relation.referencesMendez-Espinosa, J. F., Rojas, N. Y., Vargas, J., Pachón, J. E., Belalcazar, L. C., & Ramírez, O. (2020). Air quality variations in Northern South America during the COVID-19 lockdown. Science of The Total Environment, 749:141621.spa
dc.relation.referencesMinisterio de Salud y Protección Social (2020). Resolución No. 0385 de 2020.spa
dc.relation.referencesMorgan, S. L. & Winship, C. (2014). Counterfactuals and Causal Inference: Methods and Principles for Social Research. Analytical Methods for Social Research. Cambridge University Press, 2 edition.spa
dc.relation.referencesNguyen, T. & Bloom, E. (2006). Impact evaluation-methodological and operational issues. Economic Analysis and Operation Support Division.spa
dc.relation.referencesPapenberg, M. & Klau, G. (2020). Using anticlustering to partition data sets into equivalent parts. Psychological Methods, 26.spa
dc.relation.referencesPaskov, P. (2019). Difference-in-Differences.spa
dc.relation.referencesPosada, E., Gómez, M., & Almanza, J. (2017). Análisis comparativo y modelación de las situaciones de calidad del aire en una muestra de ciudades del mundo. Comparación con el caso de Medellín. Revista Politécnica, 13(25):9–29.spa
dc.relation.referencesQuintana, J. M. (1985). A dynamic linear matrix–variate regression model. Master’s thesisspa
dc.relation.referencesQuintana, J. M. (1987). Multivariate Bayesian forecasting models. PhD thesis, University of Warwick.spa
dc.relation.referencesR Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.spa
dc.relation.referencesRopkins, K. & Tate, J. E. (2020). Early observations on the impact of the covid-19 lockdown on air quality trends across the uk. Science of The Total Environment, 754:142374.spa
dc.relation.referencesRousseeuw, P. J. & Molenberghs, G. (1993). Transformation of non positive semidefinite correlation matrices. Communications in Statistics - Theory and Methods, 22(4):965–984.spa
dc.relation.referencesShakoor, A., Chen, X., Farooq, T. H., Shahzad, U., Ashraf, F., Rehman, A., Sahar, N. e., & Yan, W. (2020). Fluctuations in environmental pollutants and air quality during the lockdown in the USA and China: two sides of COVID-19 pandemic. Air Quality, Atmosphere & Health.spa
dc.relation.referencesStan Development Team (2022). Stan. Version 2.29.0.spa
dc.relation.referencesStroud, J. R., Müller, P., & Sansó, B. (2001). Dynamic models for spatiotemporal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(4):673–689.spa
dc.relation.referencesTian, G., Qiao, Z., & Xu, X. (2014). Characteristics of particulate matter (PM10) and its relationship with meteorological factors during 2001-2012 in Beijing. Environmental Pollution, 192(September 2018):266–274.spa
dc.relation.referencesWest, M. & Harrison, J. (1997a). Bayesian forecasting and dynamic models. Springer series in statistics. Springer, New York, 2nd ed edition.spa
dc.relation.referencesWest, M. & Harrison, J. (1997b). Bayesian Forecasting and Dynamic Models (2Nd Ed.). Springer-Verlag New York, Inc., New York, NY, USA.spa
dc.relation.referencesWest, M. & Harrison, P. J. (1985). Bayesian forecasting and dynamic models).spa
dc.relation.referencesWinship, C. & Morgan, S. L. (1999). The estimation of causal effects from observational data. Annual Review of Sociology, 25(1):659–706.spa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá (2018). Condiciones especiales del valle de aburrá.spa
dc.relation.referencesÁrea metropolitana del Valle de Aburrá (2020). Informe Anual de Calidad del Aire AMVA 2020. page 94.spa
dc.relation.referencesÁrea Metropolitana Valle de Aburra (2019). Calidad del aire, cuando inspiras respiras un mejor aire.spa
dc.relation.referencesČešnovar, R., Bronder, S., Sluga, D., Demšar, J., Ciglarič, T., Talts, S., & Štrumbelj, E. (2019). Gpu-based parallel computation support for stan.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lembTeoría Bayesiana de decisiones estadísticasspa
dc.subject.lembBayesian statistical decision theoryeng
dc.subject.lembStatistical decisioneng
dc.subject.lembDecisiones estadísticasspa
dc.subject.proposalSeries de tiempospa
dc.subject.proposalAnálisis de intervenciónspa
dc.subject.proposalInferencia Bayesianaspa
dc.subject.proposalCalidad del airespa
dc.subject.proposalModelos dinámicos espacio-temporalesspa
dc.subject.proposalIntervention analysiseng
dc.subject.proposalBayesian inferenceeng
dc.subject.proposalSpace-time dynamic modelseng
dc.subject.proposalAir qualityeng
dc.titleUna aplicación en la evaluación del impacto del confinamiento estricto por la Covid-19 en la calidad del aire en la ciudad de Medellín basado en modelos Bayesianos Dinámicos Multivariados y Espacialesspa
dc.title.translatedAn Application in the Evaluation of the Impact of Strict Confinement by Covid-19 on Air Quality in the City of Medellín Based on Multivariate and Spatial Dynamic Bayesian Modelseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036660212.2022.pdf
Tamaño:
2.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: