Análisis de la incidencia del cambio de parámetros de fabricación en las propiedades mecánicas, físicas, químicas y de combustión de pellets de biomasa fabricados a partir de mezclas de aserrín de pino y carbón

dc.contributor.advisorSierra Vargas, Fabio Emirospa
dc.contributor.advisorForero Núñez, Carlos Andrésspa
dc.contributor.authorHernández Solórzano, Laura Carolinaspa
dc.contributor.researchgroupMecanismos de Desarrollo Limpio y Gestión Energeticaspa
dc.date.accessioned2020-08-27T21:04:16Zspa
dc.date.available2020-08-27T21:04:16Zspa
dc.date.issued2020-04-29spa
dc.description.abstractEl presente trabajo muestra el estudio de la influencia del cambio de parámetros de operación durante la fabricación de combustibles densificados elaborados a partir de mezclas duales de carbón y biomasa, así como su influencia sobre las propiedades físicas y químicas de los combustibles obtenidos. Para la elaboración de los combustibles densificados es empleada una Peletizadora comercial de biomasa, con un diámetro de extrusión de 6mm. Los resultados permiten evidenciar relaciones entre el cambio en la proporción de las materias primas empleadas y su influencia en las propiedades mecánicas y físicas de los pellets producidos, a medida que crece la proporción de biomasa en los pellets, propiedades como la dureza, reactividad y factor de compresión aumentanspa
dc.description.abstractThe present work synthetizes the study results on the operating parameters change incidence on physical and chemical properties of biomass pellets made from pine sawdust and coal blends. It is shown how sawdust particle size and sawdust-coal percentage in pellets’ composition affect their density, hardness, mechanical resistance and reactivity. For the production of densified fuels, two equipment were employed: a 6 mm extrusion diameter commercial biomass pelletizer and an uniaxial hydraulic press. The results show different relationships between the chemical composition and the physical characteristics of the material affecting the quality characteristics of the obtained biofuels. From this study, it is possible to identify that changes in the parameters have a direct influence on the final properties of the pellets modifying their reactivity, density and hardnessspa
dc.description.additionalLínea de Investigación: Energías renovables y biocombustibles sólidosspa
dc.description.degreelevelMaestríaspa
dc.description.project“Análisis energético de un sistema de aprovechamiento de residuos de biomasa y carbón para la producción de biocombustibles densificados, generación de gas de síntesis mediante procesos de descomposición termoquímica y su uso en motores de combustión internaspa
dc.format.extent93spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationHernández Solórzano, L. C. (2020). Análisis de la incidencia del cambio de parámetros de fabricación en las propiedades mecánicas, físicas, químicas y de combustión de pellets de biomasa fabricados a partir de mezclas de aserrín de pino y carbón. Universidad nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78291
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánicaspa
dc.relation.referencesIRENA, Renewables 2017: Global Status Report, vol. 72, no. October 2016. 2017spa
dc.relation.referencesJ. Gurney and B. P. Company, “BP Statistical Review of World Energy,” 2019spa
dc.relation.referencesP. Pradhan, S. M. Mahajani, and A. Arora, “Production and utilization of fuel pellets from biomass: A review,” Fuel Process. Technol., vol. 181, pp. 215–232, Dec. 2018, doi: 10.1016/J.FUPROC.2018.09.021spa
dc.relation.referencesS. V Vassilev, C. G. Vassileva, and V. S. Vassilev, “Advantages and disadvantages of composition and properties of biomass in comparison with coal : An overview,” FUEL, vol. 158, pp. 330–350, 2015, doi: 10.1016/j.fuel.2015.05.050spa
dc.relation.referencesÁ. Chávez Porras and A. Rodríguez González, “Aprovechamiento de residuos orgánicos agrícolas y forestales en Iberoamérica,” Acad. y Virtualidad, vol. 9, no. 2, pp. 90–107, 2016, doi: 10.18359/ravi.2004spa
dc.relation.referencesJaya Shankar Tumuluru, Christopher T Wright, Richard D Boardman, Neal A Yancey, and Shahab Sokhansanj, “A review on biomass classification and composition, co-firing issues and pretreatment methods,” no. May 2014, 2013, doi: 10.13031/2013.37191spa
dc.relation.referencesJ. Li, M. C. Paul, P. L. Younger, I. Watson, M. Hossain, and S. Welch, “Combustion Modelling of Pulverized Biomass Particles at High Temperatures,” Energy Procedia, vol. 66, pp. 273–276, Jan. 2015, doi: 10.1016/J.EGYPRO.2015.02.055spa
dc.relation.referencesH. Lechner, “Pellets - Becoming a Global Commodity ? Pellet supply and demand , policies and,” Pyöry, 2009spa
dc.relation.referencesF. Guo and Z. Zhong, “Experimental studies on combustion of composite biomass pellets in fluidized bed,” Sci. Total Environ., vol. 599–600, pp. 926–933, Dec. 2017, doi: 10.1016/J.SCITOTENV.2017.05.026.spa
dc.relation.referencesC. A. Forero Nuñez, Densification mechanisms during solid biofuels production made of sawdust, coal and cocoa husks by pressing. 2014.spa
dc.relation.referencesJ. Mina-Boac, M. E. Casada, and R. G. Maghirang, “Feed pellet and corn durability and breakage during repeated elevator handling,” Appl. Eng. Agric., 2008.spa
dc.relation.referencesC. Kirsten, V. Lenz, H. W. Schröder, and J. U. Repke, “Hay pellets - The influence of particle size reduction on their physical-mechanical quality and energy demand during production,” Fuel Process. Technol., vol. 148, pp. 163–174, 2016, doi: 10.1016/j.fuproc.2016.02.013.spa
dc.relation.referencesS. H. Larsson and R. Samuelsson, “Prediction of ISO 17831-1:2015 mechanical biofuel pellet durability from single pellet characterization,” Fuel Process. Technol., vol. 163, pp. 8–15, Aug. 2017, doi: 10.1016/J.FUPROC.2017.04.004spa
dc.relation.referencesA. Demirbas, “Combustion characteristics of different biomass fuels,” Prog. Energy Combust. Sci., vol. 30, no. 2, pp. 219–230, Jan. 2004, doi: 10.1016/J.PECS.2003.10.004spa
dc.relation.referencesA. Gravelsins, I. Muizniece, A. Blumberga, and D. Blumberga, “Economic sustainability of pellet production in Latvia,” Energy Procedia, vol. 142, pp. 531–537, Dec. 2017, doi: 10.1016/J.EGYPRO.2017.12.083spa
dc.relation.referencesX. Wang et al., “Influence of coal co-firing on the particulate matter formation during pulverized biomass combustion,” J. Energy Inst., vol. 92, no. 3, pp. 450–458, Jun. 2019, doi: 10.1016/J.JOEI.2018.05.003spa
dc.relation.referencesC. Chen, S. Qin, F. Chen, Z. Lu, and Z. Cheng, “Co-combustion characteristics study of bagasse , coal and their blends by thermogravimetric analysis,” J. Energy Inst., vol. 92, no. 2, pp. 364–369, 2019, doi: 10.1016/j.joei.2017.12.008spa
dc.relation.referencesC. D. LA REPÚBLICA, “ley 1215,” Por la cual se Adopt. medidas en Mater. generación energía eléctrica, pp. 6–8, 2015spa
dc.relation.referencesI. E. M. Bros, D. E. L. A. Com, D. E. Regulaci, and D. E. Energ, “Comisión de Regulación de Energía y Gas PROCEDIMIENTO DE PRUEBA Y AUDITORÍA A PROCESOS DE COGENERACIÓN DOCUMENTO CREG-076,” pp. 1–3, 2010spa
dc.relation.referencesCongreso de la republica, ley 1715, vol. 85. 2014spa
dc.relation.referencesPROFOR, “Situación actual y potencial de fomento de plantaciones forestales con fines comerciales en Colombia,” Bogotá, 2017spa
dc.relation.referencesD. Mallick, P. Mahanta, and V. Suryakant, “Co-gasification of coal and biomass blends : Chemistry and engineering,” Fuel, vol. 204, pp. 106–128, 2017, doi: 10.1016/j.fuel.2017.05.006.spa
dc.relation.referencesR. García, M. V Gil, F. Rubiera, and C. Pevida, “Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets,” Fuel, vol. 251, no. March, pp. 739–753, 2019, doi: 10.1016/j.fuel.2019.03.141.spa
dc.relation.referencesN. Kaliyan and R. V. Morey, “Bioresource Technology Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass,” Bioresour. Technol., vol. 101, no. 3, pp. 1082–1090, 2010, doi: 10.1016/j.biortech.2009.08.064.spa
dc.relation.referencesL. Carolina, H. Solórzano, C. Andrés, F. Núñez, and F. E. Sierra-vargas, “Pellet Market and Analysis of New Research Trends,” vol. 12, no. 23, pp. 81–92, 2017spa
dc.relation.referencesM. Barbanera, E. Lascaro, V. Stanzione, A. Esposito, R. Altieri, and M. Bufacchi, “Characterization of pellets from mixing olive pomace and olive tree pruning,” Renew. Energy, vol. 88, pp. 185–191, 2016, doi: 10.1016/j.renene.2015.11.037spa
dc.relation.referencesS. D. Doring, Power from Pellets: Technology and Applications, First. Berlin: Springer, 2013.spa
dc.relation.referencesL. Cuervo, J. L. Folch, and R. E. Quiroz, “Lignocelulosa Como Fuente de Azúcares Para la Producción de Etanol .,” BioTecnologia, vol. 13, no. 3, pp. 11–25, 2001.spa
dc.relation.referencesA. Garcia-Maraver, D. Salvachúa, M. J. Martínez, L. F. Diaz, and M. Zamorano, “Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees,” Waste Manag., vol. 33, no. 11, pp. 2245–2249, Nov. 2013, doi: 10.1016/J.WASMAN.2013.07.010.spa
dc.relation.referencesC. Gokcol, B. Dursun, B. Alboyaci, and E. Sunan, “Importance of biomass energy as alternative to other sources in Turkey,” Energy Policy, vol. 37, no. 2, pp. 424–431, 2009, doi: 10.1016/j.enpol.2008.09.057spa
dc.relation.referencesG. Zhang, Y. Sun, and Y. Xu, “Review of briquette binders and briquetting mechanism,” Renew. Sustain. Energy Rev., vol. 82, no. July 2017, pp. 477–487, 2018, doi: 10.1016/j.rser.2017.09.072.spa
dc.relation.referencesJ. F. González, B. Ledesma, A. Alkassir, and J. González, “Study of the influence of the composition of several biomass pellets on the drying process,” Biomass and Bioenergy, vol. 35, no. 10, pp. 4399–4406, 2011, doi: 10.1016/j.biombioe.2011.08.019spa
dc.relation.referencesC. A. Forero-Nuñez, J. Jochum, and F. E. S. Vargas, “Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets,” Ing. e Investig., vol. 35, no. 1, pp. 17–23, 2015, doi: 10.15446/ing.investig.v35n1.46157.spa
dc.relation.referencesN. Y. Harun and M. T. Afzal, “Effect of Particle Size on Mechanical Properties of Pellets Made from Biomass Blends,” Procedia Eng., vol. 148, pp. 93–99, 2016, doi: 10.1016/j.proeng.2016.06.445spa
dc.relation.referencesC. Tenorio, R. Moya, M. T. Filho, and J. Valaert, “Application of the X-ray densitometry in the evaluation of the quality and mechanical properties of biomass pellets,” Fuel Process. Technol., vol. 132, pp. 62–73, 2015, doi: 10.1016/j.fuproc.2014.12.040.spa
dc.relation.referencesN. Kaliyan and R. V. Morey, “Densification characteristics of corn cobs,” Fuel Process. Technol., vol. 91, no. 5, pp. 559–565, May 2010, doi: 10.1016/J.FUPROC.2010.01.001.spa
dc.relation.referencesX. Dai, S. Theppitak, and K. Yoshikawa, “Pelletization of carbonized wood using organic binders with biomass gasification residue as additive,” Energy Procedia, vol. 158, pp. 509–515, 2019, doi: 10.1016/j.egypro.2019.01.144.spa
dc.relation.referencesZ. Zuo et al., “Mechanical and reduction characteristics of cold-pressed copper slag pellets composited within biomass and lignite,” Renew. Energy, vol. 125, pp. 206–224, 2018, doi: 10.1016/j.renene.2018.02.057spa
dc.relation.references“Molinos y plantas para la fabricación de pellets de madera y biomasa.” [Online]. Available: http://www.plantaspeletizadoras.com/molino-de-pellets.html. [Accessed: 18-May-2020].spa
dc.relation.referencesConf. Proc., vol. 2077, no. February, pp. 1–8, 2019, doi: 10.1063/1.5091899spa
dc.relation.references“Matriz Peletizadoras - Ferraz.” [Online]. Available: https://www.ferrazmaquinas.com.br/es/equipamento/matriz-peletizadoras. [Accessed: 19-May-2020]spa
dc.relation.referencesE. Alakangas and P. Paju, “Wood pellets in Finland - technology, economy, and market OPET Report 5,” Tech. Res. Cent. Finl., p. 85, 2002spa
dc.relation.referencesC. Rhén, R. Gref, M. Sjöström, and I. Wästerlund, “Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets,” Fuel Process. Technol., vol. 87, no. 1, pp. 11–16, 2005, doi: 10.1016/j.fuproc.2005.03.003spa
dc.relation.referencesB. Ye, R. Zhang, J. Cao, K. Lei, and D. Liu, “The study of co-combustion characteristics of coal and microalgae by single particle combustion and TGA methods,” J. Energy Inst., Jul. 2019, doi: 10.1016/J.JOEI.2019.07.001spa
dc.relation.referencesS. Frodeson, G. Henriksson, and J. Berghel, “Effects of moisture content during densification of biomass pellets, focusing on polysaccharide substances,” Biomass and Bioenergy, 2019, doi: 10.1016/j.biombioe.2019.01.048spa
dc.relation.referencesASTM, “ASTM E873 - 82: Standard test method for bulk density of densified particulate biomass fuels,” vol. 82, no. Reapproved, pp. 17–18, 2019, doi: 10.1520/E0873-82R19.3.2spa
dc.relation.referencesB. Kwiecińska, S. Pusz, and B. J. Valentine, “Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter,” Int. J. Coal Geol., vol. 211, no. May, p. 103203, 2019, doi: 10.1016/j.coal.2019.05.010.spa
dc.relation.referencesE. V. Anoop, V. Ajayghosh, J. M. Nijil, and C. M. Jijeesh, “Evaluation of pulp wood quality of selected tropical pines raised in the high ranges of Idukki district, Kerala,” J. Trop. Agric., vol. 52, no. 1, pp. 59–66, 2014spa
dc.relation.referencesG. R. Hodge and W. C. Woodbridge, “Global near infrared models to predict lignin and cellulose content of pine wood,” J. Near Infrared Spectrosc., vol. 18, no. 6, pp. 367–380, 2010, doi: 10.1255/jnirs.902spa
dc.relation.referencesC. Ospina et al., El Pino pátula- Guías silviculturales. 2011spa
dc.relation.referencesL. A. Quintero, J. Herrera, and L. Corzo, “Relación entre la resistencia a la compresión y la porosidad del concreto evaluada a partir de parámetros ultrasónicos,” Rev. ION, Bucaramanga, vol. 24, no. 1, pp. 69–76, 2011.spa
dc.relation.referencesL. Mar, “S ´ ıntesis de carb ´ on activado peletizado a partir de carb ´ on mineral del Cerrej ´ on,” 2014.spa
dc.relation.referencesR. García, M. V. Gil, F. Rubiera, and C. Pevida, “Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets,” Fuel, vol. 251, no. April, pp. 739–753, 2019, doi: 10.1016/j.fuel.2019.03.141spa
dc.relation.referencesRajabi Hamedani, A. Colantoni, F. Gallucci, M. Salerno, C. Silvestri, and M. Villarini, “Comparative energy and environmental analysis of agro-pellet production from orchard woody biomass,” Biomass and Bioenergy, vol. 129, no. January, p. 105334, 2019, doi: 10.1016/j.biombioe.2019.105334.spa
dc.relation.referencesT. Wilson, “Factors affecting wood pellets durability,” Pennsylvania State University, 2010.spa
dc.relation.referencesE. P. C. (EPC), c/o A.-E. B. Association, R. E. House, 63-65 Rue D’Arlon, and B. 1040 Brussels, “European Pellet Council Manual para la certificación de pellets de madera para usos térmicos,” 2013spa
dc.relation.referencesN. Kaliyan and R. Vance Morey, “Factors affecting strength and durability of densified biomass products,” Biomass and Bioenergy, vol. 33, no. 3, pp. 337–359, 2009, doi: 10.1016/j.biombioe.2008.08.005spa
dc.relation.referencesO. O. Fasina and S. Sokhansanj, “Effect of fines on storage and handling properties of alfalfa pellets,” Can. Agric. Eng., vol. 38, no. 1, pp. 25–29, 1996spa
dc.relation.referencesASTM, “Standard Test Method of Drop Shatter Test for Coal 1,” Astm, vol. 05, no. Reapproved 2002, pp. 4–7, 2015, doi: 10.1520/D0440-07R12.2.spa
dc.relation.referencesR. 21, “Renewables 2019. Global Status Repor,” 2019. [Online]. Available: http://ren21.net/gsr-2019/?gclid=EAIaIQobChMI7PeIn-zx4gIVhWSGCh2E6w1KEAAYASAAEgKZ4fD_BwE.spa
dc.relation.referencesEA, “Global Energy & CO2 Status Report: Emissions,” Iea.org, pp. 1–7, 2019spa
dc.relation.referencesA. Gani, K. Morishita, K. Nishikawa, and I. Naruse, “Characteristics of co-combustion of low-rank coal with biomass,” Energy and Fuels, vol. 19, no. 4, pp. 1652–1659, 2005, doi: 10.1021/ef049728hspa
dc.relation.referencesT. Nussbaumer, “Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction,” Energy and Fuels, vol. 17, no. 6, pp. 1510–1521, 2003, doi: 10.1021/ef030031q.spa
dc.relation.referencesH. Lu, W. Robert, G. Peirce, B. Ripa, and L. L. Baxter, “Comprehensive Study of Biomass Particle Combustion,” no. 4, pp. 2826–2839, 2008.spa
dc.relation.referencesM. Sami, K. Annamalai, and M. Wooldridge, “Co-firing of coal and biomass fuel blends,” vol. 27, pp. 171–214, 2001.spa
dc.relation.referencesC. Vadenbo, D. Tonini, V. Burg, T. F. Astrup, O. Thees, and S. Hellweg, “Environmental optimization of biomass use for energy under alternative future energy scenarios for Switzerland,” Biomass and Bioenergy, vol. 119, pp. 462–472, Dec. 2018, doi: 10.1016/J.BIOMBIOE.2018.10.001spa
dc.relation.referencesL. Jiang et al., “A comparative study of biomass pellet and biomass-sludge mixed pellet : Energy input and pellet properties,” Energy Convers. Manag., vol. 126, pp. 509–515, 2016, doi: 10.1016/j.enconman.2016.08.035.spa
dc.relation.referencesS. Hu, X. Ma, Y. Lin, Z. Yu, and S. Fang, “Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste,” Energy Convers. Manag., vol. 99, pp. 112–118, 2015, doi: 10.1016/j.enconman.2015.04.026.spa
dc.relation.referencesG. Simões, “Single particle ignition of pulverized solid biomass fuels : experiments and modeling,” no. May, pp. 1–63, 2016.spa
dc.relation.referencessjaak van loo and jaap Koppejan, Biomass combustion and cofiring. London: Earthscan, 2008.spa
dc.relation.referencesS. G. Sahu, N. Chakraborty, and P. Sarkar, “Coal-biomass co-combustion: An overview,” Renew. Sustain. Energy Rev., vol. 39, pp. 575–586, 2014, doi: 10.1016/j.rser.2014.07.106spa
dc.relation.referencesO. Senneca, F. Scala, R. Chirone, and P. Salatino, “Relevance of structure , fragmentation and reactivity of coal to combustion and oxy-combustion,” Fuel, 2016, doi: 10.1016/j.fuel.2016.11.034spa
dc.relation.referencesD. K. Park, S. D. Kim, S. H. Lee, and J. G. Lee, “Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor,” Bioresour. Technol., vol. 101, no. 15, pp. 6151–6156, 2010, doi: 10.1016/j.biortech.2010.02.087.spa
dc.relation.referencesJ. Ballester, J. Barroso, L. M. Cerecedo, and R. Ichaso, “Comparative study of semi-industrial-scale flames of pulverized coals and biomass,” vol. 141, no. x, pp. 204–215, 2005, doi: 10.1016/j.combustflame.2005.01.005.spa
dc.relation.referencesZ. Zeng, T. Zhang, S. Zheng, W. Wu, and Y. Zhou, “Ignition and combustion characteristics of coal particles under high-temperature and low-oxygen environments mimicking MILD oxy-coal combustion conditions,” Fuel, vol. 253, pp. 1104–1113, Oct. 2019, doi: 10.1016/J.FUEL.2019.05.101.spa
dc.relation.referencesC. R. Shaddix and A. Molina, “Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion,” Proc. Combust. Inst., vol. 32 II, no. 2, pp. 2091–2098, 2009, doi: 10.1016/j.proci.2008.06.157.spa
dc.relation.referencesG. Simões, D. Magalhães, M. Rabaçal, and M. Costa, “Effect of gas temperature and oxygen concentration on single particle ignition behavior of biomass fuels,” vol. 000, pp. 1–8, 2016, doi: 10.1016/j.proci.2016.06.102.spa
dc.relation.referencesY. A. Levendis, K. Joshi, R. Khatami, and A. F. Sarofim, “Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse,” Combust. Flame, vol. 158, no. 3, pp. 452–465, 2011, doi: 10.1016/j.combustflame.2010.09.007.spa
dc.relation.referencesR. Khatami, C. Stivers, and Y. A. Levendis, “Ignition characteristics of single coal particles from three different ranks in O 2/N 2 and O 2/CO 2 atmospheres,” Combust. Flame, vol. 159, no. 12, pp. 3554–3568, 2012, doi: 10.1016/j.combustflame.2012.06.019.spa
dc.relation.referencesJ. Ahn and H. Ju, “Combustion process of a Korean wood pellet at a low temperature,” Renew. Energy, vol. 145, pp. 391–398, 2020, doi: 10.1016/j.renene.2019.05.031.spa
dc.relation.referencesO. Senneca, F. Scala, R. Chirone, and P. Salatino, “Relevance of structure , fragmentation and reactivity of coal to combustion and oxy-combustion,” Fuel, 2016, doi: 10.1016/j.fuel.2016.11.034.spa
dc.relation.referencesJ. Cai et al., “Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk,” Renew. Sustain. Energy Rev., vol. 82, pp. 2705–2715, Feb. 2018, doi: 10.1016/J.RSER.2017.09.113.spa
dc.relation.referencesS. Hu, X. Ma, Y. Lin, Z. Yu, and S. Fang, “Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste,” Energy Convers. Manag., 2015, doi: 10.1016/j.enconman.2015.04.026.spa
dc.relation.referencesN. A. Soto, W. R. Machado, and D. L. López, “Determinación de los parámetros cinéticos en la pirólisis del pino ciprés,” Quim. Nova, vol. 33, no. 7, pp. 1500–1505, 2010, doi: 10.1590/S0100-40422010000700014.spa
dc.relation.referencesJ. W. Cumming, “Reactivity assessment of coals via a weighted mean activation energy,” Fuel, vol. 63, no. 10, pp. 1436–1440, 1984, doi: 10.1016/0016-2361(84)90353-3.spa
dc.relation.referencesH. L. Gallego-ocampo, “Reactivity of the co-combustion of coal-sludge,” pp. 91–102, 2015.spa
dc.relation.referencesJ. Györe and M. Ecet, “Calculation method based on DTG curve for evaluation of activation energy,” J. Therm. Anal., vol. 5, no. 2–3, pp. 299–305, 1973, doi: 10.1007/BF01950377.spa
dc.relation.referencesA. Magdziarz and M. Wilk, “Thermal characteristics of the combustion process of biomass and sewage sludge,” J. Therm. Anal. Calorim., vol. 114, no. 2, pp. 519–529, 2013, doi: 10.1007/s10973-012-2933-y.spa
dc.relation.referencesA.-A. S. T. Methods, “Standard Classification of Coals by Rank-D388-19,” 2002.spa
dc.relation.referencesJ. J. A. Flores and J. G. R. Quiñones, “Study of kinetics in thermogravimetric processes of lignocellulosic materials,” Maderas Cienc. y Tecnol., vol. 20, no. 2, pp. 221–238, 2018, doi: 10.4067/S0718-221X2018005002601.spa
dc.relation.referencesR. Tartarelli, M. Giorgini, P. Ghetti, and R. Belli, “DTG combustion behaviour of charcoals,” Fuel, vol. 66, no. 12, pp. 1737–1738, 1987, doi: 10.1016/0016-2361(87)90373-5spa
dc.relation.referencesE. Kastanaki and D. Vamvuka, “A comparative reactivity and kinetic study on the combustion of coal–biomass char blends,” Fuel, vol. 85, no. 9, pp. 1186–1193, Jun. 2006, doi: 10.1016/J.FUEL.2005.11.004.spa
dc.relation.referencesS. Taş and Y. Yürüm, “Co-firing of biomass with coals,” J. Therm. Anal. Calorim., vol. 107, no. 1, pp. 293–298, 2012, doi: 10.1007/s10973-010-1281-zspa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.proposalBiomasaspa
dc.subject.proposalBiomasseng
dc.subject.proposalPelletsspa
dc.subject.proposalpelletseng
dc.subject.proposalCarbónspa
dc.subject.proposalcoaleng
dc.subject.proposalcombustioneng
dc.subject.proposalCombustiónspa
dc.subject.proposalEnergíaspa
dc.subject.proposalEnergyeng
dc.titleAnálisis de la incidencia del cambio de parámetros de fabricación en las propiedades mecánicas, físicas, químicas y de combustión de pellets de biomasa fabricados a partir de mezclas de aserrín de pino y carbónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TESIS_Laura Carolina Hernández_.pdf
Tamaño:
3.27 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: