Un modelo de rotación estelar antes de la secuencia principal

dc.contributor.advisorPinzón Estrada, Giovanni
dc.contributor.authorVargas Durango, Mauricio Andrés
dc.contributor.researchgroupAstronomía, Astrofísica y Cosmologiaspa
dc.date.accessioned2021-08-09T21:55:16Z
dc.date.available2021-08-09T21:55:16Z
dc.date.issued2021-03-15
dc.descriptionilustraciones, graficas, tablasspa
dc.description.abstractEn este trabajo se presentan los resultados de un completo estudio sobre la evolución rotacional de las estrellas de baja masa en su etapa evolutiva previa a la secuencia principal. Para el estudio se realiza una extensión del modelo rotacional de Matt [Matt et al., 2012], el cual predice la velocidad ecuatorial de rotación para una estrella del tipo solar durante los primeros tres millones de años, época en la cual la estrella experimenta torques de acreción y de viento estelar estimulado por la acreción. El modelo incorpora cambios en el momento de inercia de la estrella, en la intensidad del campo magnético, pérdida de momento angular por vientos estelares estimulados por acreción y una disminución exponencial de la tasa de acreción. Se asume que la acreción estelar decae exponencialmente con el tiempo y que el disco es permeado por un campo magnético estelar dipolar y con intensidad constante. La extensión del modelo, se realiza hasta la edad del Sol, incluyendo efectos de pérdida de momento angular a través de vientos magnetizados de tipo Kawaler [Kawaler, 1988] una vez la estrella se ubica en la secuencia principal. La calibración de la evolución rotacional se realiza en términos de la rotación solar hoy y a través del análisis de una muestra representativa de estrellas jóvenes con velocidad rotacional reportada en la literatura. Esta muestra consiste en 231 estrellas pertenecientes a 8 asociaciones estelares con edades entre 8Myr y 600Myr. Para altos rotadores (V > 150km/s) se encuentra que la constante Kw que de fine la intensidad del torque de viento magnetizado es igual a 6,018X10^47 gr^{3/2} cm^{1/2} s^{-1} mientras que para bajos rotadores (V < 10km=s) la constante Kw es igual a 5.988X10^47 gr^{3/2} cm^{1/2} s^{-1}. Finalmente, se concluye que la escala de tiempo característica para el decaimiento exponencial de la acreción que mejor ajusta la muestra observada es t_a = 8Myr para un tiempo de vida de disco t_D = 4Myr para un campo magnético de 2kG y un tiempo de vida de disco t_D = 2Myr para un campo magnético de 0.5kG. (Texto tomado de la fuente)spa
dc.description.abstractThis paper presents the results of a complete study on the rotational evolution of low-mass stars in their evolutionary stage prior to the main sequence in the color-magnitude diagram. For the study, an extension of the rotational model of Matt [Matt et al., 2012] is carried out, which predicts the equatorial speed of rotation for a star of the solar type during the rest three million years, when the star experiences accretion torques and stellar wind stimulated by accretion. The model incorporates changes in the star's moment of inertia, in the intensity of the magnetic eld, loss of angular momentum by accretion-stimulated stellar winds, and an exponential decrease in the accretion rate. It is assumed that stellar accretion decays exponentially with time and that the disk is permeated by a constant intensity dipole stellar magnetic eld. The extension of the model is carried out until the age of the Sun, including the e ects of loss of angular momentum through magnetized winds of the Kawaler type [Kawaler, 1988] once the star is located in the main sequence. The calibration of the rotational evolution is carried out in terms of the solar rotation today and through the analysis of a representative sample of young stars with rotational speed reported in the literature. This sample consists of 231 stars belonging to 8 stellar associations with ages between 8Myr and 600Myr. For high rotators (V > 150km=s) it is found that the constant Kw that de nes the intensity of the magnetized wind torque is equal to 6.018X10^47 gr^{3/2} cm^{1/2} s^{-1} while for low rotators (V < 10km=s) the constant Kw is equal to 5.988X10^47 gr^{3/2} cm^{1/2} s^{-1}. Finally, it's concluded that the character 'i stic time scale for the exponential decay of the accretion o n that best ts the observed sample is ta = 8Myr for a disk lifetime tD = 4Myr for a magnetic eld of 2kG and a disk lifetime of tD = 2Myr for a magnetic eld of 0.5kG. (Text taken from source)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Astronomíaspa
dc.description.researchareaAstrofísica Estelarspa
dc.format.extent132 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79906
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentObservatorio Astronómico Nacionalspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomíaspa
dc.relation.references[A. C. Cameron and Quaintrell, 1995] A. C. Cameron, C. G. C. and Quaintrell, H. (1995). Rotational evolution of magnetic t tauri stars with accretion disk. Astronomy & Astrophy- sics, 298:133–142.spa
dc.relation.references[Alecian et al., 2013] Alecian, E., Wade, G. A., Catala, C., Grunhut, J. H., Landstreet, J. D., Bagnulo, S., B¨ohm, T., Folsom, C. P., Marsden, S., and Waite, I. (2013). A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements. Monthly Notices of the Royal Astronomical Society, 429(2):1001–1026.spa
dc.relation.references[Alencar et al., 2003] Alencar, S. H. P., Melo, C. H. F., Dullemond, C. P., Andersen, J., Ba- talha, C., Vaz, L. P. R., and Mathieu, R. D. (2003). The pre-main sequence spectroscopic binary AK Scorpii revisited. Astronomy and Astrophysics Panel Reports, 409:1037–1053.spa
dc.relation.references[Allain, 1998] Allain, S. (1998). Modelling the angular momentum evolution of low-mass stars with core-envelope decoupling. , 333:629–643.spa
dc.relation.references[Allain et al., 1997] Allain, S., Queloz, D., Bouvier, J., Mermilliod, J. C., and Mayor, M. (1997). The braking of slow rotators in ZAMS clusters. Memorie della Societa Astronomica Italiana, 68:899–902.spa
dc.relation.references[Arlt and Ru¨diger, 2011] Arlt, R. and Ru¨diger, G. (2011). Amplification and stability of magnetic fields and dynamo effect in young A stars. Monthly Notices of the Royal Astro- nomical Society, 412(1):107–119.spa
dc.relation.references[Autores, 2010] Autores, V. (1960-2010). Xray. urlhttps://heasarc.gsfc.nasa.gov/cgi- bin/W3Browse/w3browse.pl.spa
dc.relation.references[Autores, 2020] Autores, V. (2020). Estructura y composici´on del sol. urlhttps://www.astromia.com/solar/estrucsol.htm.spa
dc.relation.references[Baraffe et al., 2015] Baraffe, I., Homeier, D., Allard, F., and Chabrier, G. (2015). New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astronomy and Astrophysics Panel Reports, 577:A42.spa
dc.relation.references[Barnes et al., 1996] Barnes, S., Pinsonneault, M., and Sofia, S. (1996). Disk-locking and the slow rotators in young star clusters. In American Astronomical Society Meeting Abstracts #188, volume 188 of American Astronomical Society Meeting Abstracts, page 18.02.spa
dc.relation.references[Basri et al., 1992] Basri, G., Marcy, G. W., and Valenti, J. A. (1992). Limits on the Mag- netic Flux of Pre–Main-Sequence Stars. The Astrophysical Journal, 390:622.spa
dc.relation.references[Bessolaz, 2008] Bessolaz, N.; Ferreira, J. K. R. B. J. Z. C. (2008). Accretion funnels onto weakly magnetized young stars. Astronomy & Astrophysics, 478:155–162.spa
dc.relation.references[Bouvier, 1997] Bouvier, J. (1997). The surface and internal rotation of low-mass stars in young clusters. Memorie della Societa Astronomica Italiana, 68:881–893.spa
dc.relation.references[Bouvier, 2013] Bouvier, J. (2013). Observational studies of stellar rotation. In Hennebelle, P. and Charbonnel, C., editors, EAS Publications Series, volume 62 of EAS Publications Series, pages 143–168.spa
dc.relation.references[Bouvier et al., 1997] Bouvier, J., Forestini, M., and Allain, S. (1997). The angular momen- tum evolution of low-mass stars. Astronomy and Astrophysics Panel Reports, 326:1023– 1043.spa
dc.relation.references[Bubar et al., 2007] Bubar, E. J., King, J. R., Soderblom, D. R., Deliyannis, C. P., and Boesgaard, A. M. (2007). Keck HIRES Spectroscopy of Candidate Post-T Tauri Stars. The Astrophysical Journal, 134(6):2328–2339.spa
dc.relation.references[Calvet et al., 2005] Calvet, N., Bricen˜o, C., Hern´andez, J., Hoyer, S., Hartmann, L., Sicilia- Aguilar, A., Megeath, S. T., and D’Alessio, P. (2005). Disk Evolution in the Orion OB1 Association. The Astrophysical Journal, 129(2):935–946.spa
dc.relation.references[Camenzind, 1990] Camenzind, M. (1990). Magnetized Disk-Winds and the Origin of Bipo- lar Outflows. Reviews in Modern Astronomy, 3:234–265.spa
dc.relation.references[Cameron, 1993] Cameron, A. C. Campbell, C. G. (1993). The spin of accreting stars: dependence on magnetic coupling to the disc. Astronomy & Astrophysics, pages 274, 309.spa
dc.relation.references[Chaboyer et al., 1995a] Chaboyer, B., Demarque, P., and Pinsonneault, M. H. (1995a). Ste- llar Models with Microscopic Diffusion and Rotational Mixing. I. Application to the Sun. The Astrophysical Journal, 441:865.spa
dc.relation.references[Chaboyer et al., 1995b] Chaboyer, B., Demarque, P., and Pinsonneault, M. H. (1995b). Ste- llar Models with Microscopic Diffusion and Rotational Mixing. II. Application to Open Clusters. The Astrophysical Journal, 441:876.spa
dc.relation.references[Chapman and Melotte, 1915] Chapman, S. and Melotte, P. J. (1915). The number of Stars of each Photographic Magnitude down to 17m0, in different Galactic Latitudes. Memoirs of the Royal Astronomical Society, 60:145. [Chavero et al., 2019] Chavero, C., de la Reza, R., Ghezzi, L., Llorente de Andr´es, F., Pe- reira, C. B., Giuppone, C., and Pinz´on, G. (2019). Emerging trends in metallicity and lithium properties of debris disc stars. Monthly Notices of the Royal Astronomical Society, 487(3):3162–3177.spa
dc.relation.references[Chavero et al., 2017] Chavero, C., de la Reza, R., Ghezzi, L., Llorente de Andr´es, F., Pe- reira, C. B., and Pinz´on, G. (2017). Lithium-rotation connection in debris disk stars. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 49 of Revista Mexicana de Astronomia y Astrofisica Conference Series, pages 85–85.spa
dc.relation.references[Choi and Herbst, 1996] Choi, P. I. and Herbst, W. (1996). Rotation Periods of Stars in the Orion Nebula Cluster: The Bimodal Distribution. The Astrophysical Journal, 111:283.spa
dc.relation.references[Clarke et al., 1995] Clarke, C. J., Armitage, P. J., Smith, K. W., and Pringle, J. E. (1995). Magnetically modulated accretion in T Tauri stars. Monthly Notices of the Royal Astro- nomical Society, 273(3):639–642.spa
dc.relation.references[Collier Cameron and Campbell, 1993] Collier Cameron, A. and Campbell, C. G. (1993). Rotational evolution of magnetic T Tauri stars with accretion discs. Astronomy and Astrophysics Panel Reports, 274:309.spa
dc.relation.references[Cranmer, 2008] Cranmer, S. R. (2008). The spin of accreting stars: dependence on magnetic coupling to the disc. The Astrophysical Journal, 689:316.spa
dc.relation.references[DJAntona Francesca, 1994] DJAntona Francesca, M. I. (1994). New pre-main-sequence track for m ≥ mBu as testof opacities and convection model. The Astrophysical Journal, 90:467– 500.spa
dc.relation.references[de Bruijne, ] de Bruijne, J. H. J. Structure and colour-magnitude diagrams of scorpius ob2 based on kinematic modelling of hipparcos data.spa
dc.relation.references[De la Reza, 2004] De la Reza, R. Pinz´on, G. (2004). On the rotation of post-t tauri stars in associations. The Astrophysical Journal, 128:1812.spa
dc.relation.references[de Zeeuw et al., 1999] de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown,A. G. A., and Blaauw, A. (1999). A HIPPARCOS Census of the Nearby OB Associa- tions. The Astrophysical Journal, 117(1):354–399.spa
dc.relation.references[Dotter, 2016] Dotter, A. (2016). MESA Isochrones and Stellar Tracks (MIST) 0: Methods for the Construction of Stellar Isochrones. The Astrophysical Journal Supplement Series, 222(1):8.spa
dc.relation.references[Dullemond et al., 2006] Dullemond, C. P., Natta, A., and Testi, L. (2006). Accretion in Protoplanetary Disks: The Imprint of Core Properties. 645(1):L69–L72. [Dyda et al., 2018] Dyda, S., Lovelace, R. V. E., Ustyugova, G. V., Koldoba, A. V., and Wasserman, I. (2018). Magnetic field amplification via protostellar disc dynamos. Monthly Notices of the Royal Astronomical Society, 477(1):127–138.spa
dc.relation.references[Eddington, 1910] Eddington, A. S. (1910). Note on a Moving Cluster of Stars of the Orion type in Perseus. Monthly Notices of the Royal Astronomical Society, 71:43.spa
dc.relation.references[Endal and Sofia, 1978] Endal, A. S. and Sofia, S. (1978). The evolution of rotating stars. II. Calculations with time-dependent redistribution of angular momentum for 7 and 10 M sun stars. The Astrophysical Journal, 220:279–290.spa
dc.relation.references[F. Spada and Cameron, 2011] F. Spada, A. C. Lanzafame, A. F. L. S. M. and Cameron, A. C. (2011). Modelling the rotational evolution of solar-like stars: the rotational coupling timescale. Monthly Notices of the Royal Astronomical Society, 416:1ˆa€“11.spa
dc.relation.references[Folsom et al., 2018] Folsom, C. P., Bouvier, J., Petit, P., L`ebre, A., Amard, L., Palacios, A., Morin, J., Donati, J. F., and Vidotto, A. A. (2018). The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr). Monthly Notices of the Royal Astronomical Society, 474(4):4956–4987.spa
dc.relation.references[Folsom et al., 2016] Folsom, C. P., Petit, P., Bouvier, J., L`ebre, A., Amard, L., Palacios, A., Morin, J., Donati, J. F., Jeffers, S. V., Marsden, S. C., and Vidotto, A. A. (2016). The evolution of surface magnetic fields in young solar-type stars - I. The first 250 Myr. Monthly Notices of the Royal Astronomical Society, 457(1):580–607.spa
dc.relation.references[Gallet and Bouvier, 2013] Gallet, F. and Bouvier, J. (2013). Improved angular momentum evolution model for solar-like stars. Astronomy and Astrophysics Panel Reports, 556:A36.spa
dc.relation.references[Gallet and Bouvier, 2015] Gallet, F. and Bouvier, J. (2015). Improved angular momentum evolution model for solar-like stars. II. Exploring the mass dependence. Astronomy and Astrophysics Panel Reports, 577:A98.spa
dc.relation.references[Ghosh and Lamb, 1978] Ghosh, P. and Lamb, F. K. (1978). Spin Evolution of Pulsating X-Ray Sources. In Bulletin of the American Astronomical Society, volume 10, page 507.spa
dc.relation.references[Gingell et al., 1999] Gingell, J. M., Perry, J. S. A., Price, S. D., Mason, N. J., Jackman, R. B., Williams, D. E., and Williams, D. A. (1999). State Selective Reactions Of Cosmic Dust Analogues At Cryogenic Temperatures. In Combes, F. and Pineau des Forˆets, G., editors, H2 in Space, page E.59.spa
dc.relation.references[Godoy-Rivera et al., 2021] Godoy-Rivera, D., Pinsonneault, M. H., and Rebull, L. M. (2021). Stellar Rotation in the Gaia Era: Revised Open Clusters Sequences. arXiv e- prints, page arXiv:2101.01183. [Gregorio-Hetem, 1992] Gregorio-Hetem, J., L. J. R. D. Q. G. R. T. C. A. O. d. L. R. R. (1992). lllll. The Astrophysical Journal, 298:549–563.spa
dc.relation.references[Gregory et al., 2016] Gregory, S. G., Adams, F. C., and Davies, C. L. (2016). The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars. Monthly Notices of the Royal Astronomical Society, 457(4):3836–3858.spa
dc.relation.references[Gu¨nther, 2013] Gu¨nther, H. M. (2013). Accretion, winds and outflows in young stars. As- tronomische Nachrichten, 334(1-2):67.spa
dc.relation.references[Hartmann, 1998] Hartmann, L. (1998). Accretion processes in star formation. cambridge, uk ; new york : Cambridge university press. Astronomy & Astrophysics, lll:lll.spa
dc.relation.references[Hartmann et al., 2016] Hartmann, L., Herczeg, G., and Calvet, N. (2016). Accretion onto Pre-Main-Sequence Stars. Annual review of astronomy and astrophysics, 54:135–180.spa
dc.relation.references[Hartmann et al., 2016] Hartmann, L., Herczeg, G., and Calvet, N. (2016). Accretion onto pre-main-sequence stars. Annual Review of Astronomy and Astrophysics, 54(1):135–180.spa
dc.relation.references[Hartmann et al., 1986] Hartmann, L., Hewett, R., Stahler, S., and Mathieu, R. D. (1986). Rotational and Radial Velocities of T Tauri Stars. The Astrophysical Journal, 309:275.spa
dc.relation.references[Hartmann and Stauffer, 1989] Hartmann, L. and Stauffer, J. R. (1989). Additional Measu- rements of Pre-Main-Sequence Stellar Rotation. The Astrophysical Journal, 97:873.spa
dc.relation.references[Heckmann and Johnson, 1956] Heckmann, O. and Johnson, H. L. (1956). A New Color- Magnitude Diagram for the Hyades Cluster. The Astrophysical Journal, 124:477.spa
dc.relation.references[Hern´andez et al., 2007] Herna´ndez, J., Calvet, N., Bricen˜o, C., Hartmann, L., Vivas, A. K., Muzerolle, J., Downes, J., Allen, L., and Gutermuth, R. (2007). Spitzer Observations of the Orion OB1 Association: Disk Census in the Low-Mass Stars. The Astrophysical Journal, 671(2):1784–1799.spa
dc.relation.references[Hetem et al., 1994] Hetem, A., J., Gregorio-Hetem, J. J., and L´epine, J. R. D. (1994). Mo- deling T Tauri Circumstellar Disk SED’s. In Ferlet, R. and Vidal-Madjar, A., editors, Circumstellar Dust Disks and Planet Formation, volume 10, page 369.spa
dc.relation.references[J. Bouvier and Allain, 1997] J. Bouvier, M. F. and Allain, S. (1997). The angular momen- tum evolution of low-mass stars. Astronomy & Astrophysics, 326:1023–1043.spa
dc.relation.references[Jeans, 1902] Jeans, J. H. (1902). The Stability of a Spherical Nebula. Philosophical Transac- tions of the Royal Society of London Series A, 199:1–53.spa
dc.relation.references[Jianke and Collier Cameron, 1993] Jianke, L. and Collier Cameron, A. (1993). Rotational evolution of solar-type stars with core-envelope decoupling. Monthly Notices of the Royal Astronomical Society, 261:766–782. [Johns-Krull, 2007a] Johns-Krull, C. M. (2007a). Measurements of magnetic fields on T Tauri stars. In Bouvier, J. and Appenzeller, I., editors, Star-Disk Interaction in Young Stars, volume 243, pages 31–42.spa
dc.relation.references[Johns-Krull, 2007b] Johns-Krull, C. M. (2007b). The Magnetic Fields of Classical T Tauri Stars. The Astrophysical Journal, 664(2):975–985.spa
dc.relation.references[Johns-Krull, 2009] Johns-Krull, C. M. (2009). Measuring T Tauri star magnetic fields. In Strassmeier, K. G., Kosovichev, A. G., and Beckman, J. E., editors, Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, volume 259 of IAU Symposium, pages 345– 356.spa
dc.relation.references[Joy, 1945] Joy, A. H. (1945). T Tauri Variable Stars. The Astrophysical Journal, 102:168.spa
dc.relation.references[Kar et al., 2018] Kar, A., Jang-Condell, H., Kasper, D., Findlay, J., and Kobulnicky, H. A. (2018). Optical Monitoring of Young Stellar Objects. In American Astronomical Society Meeting Abstracts #232, volume 232 of American Astronomical Society Meeting Abstracts, page 219.08.spa
dc.relation.references[Kastner et al., 2010] Kastner, J. H., Hily-Blant, P., Sacco, G. G., Forveille, T., and Zucker- man, B. (2010). Detection of a Molecular Disk Orbiting the Nearby, “old,” Classical T Tauri Star MP Muscae. 723(2):L248–L251.spa
dc.relation.references[Kawaler, 1987] Kawaler, S. D. (1987). Angular momentum in stars - The Kraft curve revisited. pasp, 99:1322–1228.spa
dc.relation.references[Kawaler, 1988] Kawaler, S. D. (1988). Angular Momentum Loss in Low-Mass Stars. , 333:236.spa
dc.relation.references[Keppens et al., 1995] Keppens, R., MacGregor, K. B., and Charbonneau, P. (1995). On the evolution of rotational velocity distributions for solar-type stars. Astronomy and Astrophysics Panel Reports, 294:469–487.spa
dc.relation.references[Khanna and Camenzind, 1990] Khanna, R. and Camenzind, M. (1990). Magnetic fields in thin accretion disks. In Astronomische Gesellschaft Abstract Series, volume 5 of Astrono- mische Gesellschaft Abstract Series, page 25.spa
dc.relation.references[Kim, 2005] Kim, Jinyoung Serena; Hines, D. C. (2005). Formation and evolution of plane- tary systems: Coldouter disks associated with sun-like stars. The Astrophysical Journal, 632:659–669.spa
dc.relation.references[Koenigl, 1991] Koenigl, A. (1991). Disk Accretion onto Magnetic T Tauri Stars. 370:L39. [Kraft, 1967] Kraft, R. P. (1967). Studies of Stellar Rotation.IV. a Comparison of Rotatio- nal Velocities in the Alpha Persei Cluster and the Pleiades. The Astrophysical Journal, 148:129.spa
dc.relation.references[Krishnamurthi et al., 1997] Krishnamurthi, A., Pinsonneault, M. H., Barnes, S., and Sofia, S. (1997). Theoretical Models of the Angular Momentum Evolution of Solar-Type Stars. The Astrophysical Journal, 480(1):303–323.spa
dc.relation.references[Linsky and Saar, 1987] Linsky, J. L. and Saar, S. H. (1987). Measurements of Stellar Mag- netic Fields: Empirical Constraints on Stellar Dynamo and Rotational Evolution Theories, volume 291, pages 44–46.spa
dc.relation.references[Lockwood et al., 1984] Lockwood, G. W., Thompson, D. T., Radick, R. R., Osborn, W. H., Baggett, W. E., Duncan, D. K., and Hartmann, L. W. (1984). The photometric varia- bility of solar-type stars. IV. Detection of rotational modulation among Hyades stars. Publications of the Astronomical Society of the Pacific, 96:714–722.spa
dc.relation.references[Looper et al., 2009] Looper, D., Burgasser, A., Rayner, J., Bochanski, J., Kirkpatrick, J. D., and Mamajek, E. (2009). TWA: Case Studies in Disk Evolution, Outflows, and Binary Properties of Young Stars. In American Astronomical Society Meeting Abstracts #214, volume 214 of American Astronomical Society Meeting Abstracts, page 606.10.spa
dc.relation.references[MacGregor, 1982] MacGregor, K. B. (1982). Future Prospects for the Theory of Solar- Stellar Winds. In Bulletin of the American Astronomical Society, volume 14, page 946.spa
dc.relation.references[Mamajek, 2005] Mamajek, E. E. (2005). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, 298:1385–1394.spa
dc.relation.references[Mamajek, 2010] Mamajek, E. E. (2010). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, 473.spa
dc.relation.references[Mamajek, 2002] Mamajek, E. E., M. M. L. J. (2002). Rotational evolution of magnetic t tauri stars with accretion disk. The Astrophysical Journal, lll:1670–1694.spa
dc.relation.references[Marigo et al., 2017] Marigo, P., Girardi, L., Bressan, A., Rosenfield, P., Aringer, B., Chen, Y., Dussin, M., Nanni, A., Pastorelli, G., Rodrigues, T. S., Trabucchi, M., Bladh, S., Dalcanton, J., Groenewegen, M. A. T., Montalb´an, J., and Wood, P. R. (2017). A New Generation of PARSEC-COLIBRI Stellar Isochrones Including the TP-AGB Phase. The Astrophysical Journal, 835(1):77.spa
dc.relation.references[Martin et al., 1994] Martin, E. L., Rebolo, R., Magazzu, A., and Pavlenko, Y. V. (1994). Pre-main sequence lithium burning. I. Weak T Tauri stars. Astronomy and Astrophysics Panel Reports, 282:503–517. [Matt, 2010a] Matt, Sean; Pinzon, G. G. T. P. (2010a). Angular momentum loss via stellar winds. The Astrophysical Journal, 42:352.spa
dc.relation.references[Matt, 2012] Matt, P. (2012). Spin evolution of accreting young stars. ii. effect of accretion- powered stellar winds. The Astrophysical Journal, 745.spa
dc.relation.references[Matt, 2010b] Matt, S. P., P. G. d. l. R. R. G. T. P. (2010b). Spin evolution of accreting young stars. i. effect of magnetic star-disk coupling. The Astrophysical Journal, 14:989– 1000.spa
dc.relation.references[Matt, 1995] Matt, S., P. R. E. (1995). Accretion-powered stellar winds. ii. numerical solu- tions for stellar wind torques. The Astrophysical Journal, llll:1109–1118.spa
dc.relation.references[Matt, 2005a] Matt, S., P. R. E. (2005a). Accretion-powered stellar winds as a solution to the stellar angular momentum problem. The Astrophysical Journal, lll:135–138.spa
dc.relation.references[Matt, 2005b] Matt, S., P. R. E. (2005b). The spin of accreting stars: dependence on magne- tic coupling to the disc. Monthly Notices of the Royal Astronomical Society, llll:167–182.spa
dc.relation.references[Matt, 2005c] Matt, Sean; Pudritz, R. E. (2005c). Accretion-powered stellar winds. iii. spin- equilibrium solutions. The Astrophysical Journal, 681:391–399.spa
dc.relation.references[Matt et al., 2012] Matt, S. P., Pinz´on, G., Greene, T. P., and Pudritz, R. E. (2012). Spin Evolution of Accreting Young Stars. II. Effect of Accretion-powered Stellar Winds. The Astrophysical Journal, 745(1):101.spa
dc.relation.references[Melo et al., 2001] Melo, C. H. F., Pasquini, L., and De Medeiros, J. R. (2001). Accurate Vsin i measurements in M 67: The angular momentum evolution of 1.2 Msun stars. Astronomy and Astrophysics Panel Reports, 375:851–862.spa
dc.relation.references[Melotte, 1915] Melotte, P. J. (1915). A Catalogue of Star Clusters shown on Franklin- Adams Chart Plates. Memoirs of the Royal Astronomical Society, 60:175.spa
dc.relation.references[Messina et al., 2010] Messina, S., Desidera, S., Turatto, M., Lanzafame, A. C., and Guinan, E. F. (2010). RACE-OC project: Rotation and variability of young stellar associations within 100 pc. , 520:A15.spa
dc.relation.references[Mestel et al., 1988] Mestel, L., Tayler, R. J., and Moss, D. L. (1988). The mutual interaction of magnetism, rotation and meridian circulation in stellar radiative zones. Monthly Notices of the Royal Astronomical Society, 231:873–885.spa
dc.relation.references[Montmerle et al., 1993] Montmerle, T., Feigelson, E. D., Bouvier, J., and Andre, P. (1993). Magnetic Fields Activity and Circumstellar Material around Young Stellar Objects. In Levy, E. H. and Lunine, J. I., editors, Protostars and Planets III, page 689. [Moore et al., 2019] Moore, K., Scholz, A., and Jayawardhana, R. (2019). The Rotation-disk Connection in Young Brown Dwarfs: Strong Evidence for Early Rotational Braking. The Astrophysical Journal, 872(2):159.spa
dc.relation.references[Moss, 1982] Moss, D. (1982). Magnetic star models with a consistent alpha-omega-effect core-dynamo and radiative envelope. Monthly Notices of the Royal Astronomical Society, 201:385–392.spa
dc.relation.references[Najita, ] Najita, J.; Hollenbach, D. G. U. M. M. K. J. S. Formation and evolution of planetary systems: Upper limits to the gas mass in disks around intermediate-aged solar- type stars.spa
dc.relation.references[Narvaez, 2011] Narvaez, J. (2011). Actividad electromagn´etica en estrellas jovenes (Proyec- to sin finalizar). Master’s thesis, Universidad Nacional de Colombia.spa
dc.relation.references[Noyes et al., 1984] Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., and Vaughan, A. H. (1984). Rotation, convection, and magnetic activity in lower main- sequence stars. A.J., 279:763–777.spa
dc.relation.references[Oppenheimer and Snyder, 1982] Oppenheimer, J. R. and Snyder, H. (1982). On Continued Gravitational Contraction, page 36.spa
dc.relation.references[Orlando et al., 2010] Orlando, S., Sacco, G. G., Argiroffi, C., Reale, F., Peres, G., and Maggio, A. (2010). X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-β values. Astronomy and Astrophysics Panel Reports, 510:A71.spa
dc.relation.references[Ortega et al., 2004] Ortega, V. G., de la Reza, R., Jilinski, E., and Bazzanella, B. (2004). New Aspects of the Formation of the β Pictoris Moving Group. The Astrophysical Journal, 609(1):243–246.spa
dc.relation.references[Ortega et al., 2017] Ortega, V. G., Jilinski, E. G., and de la Reza, R. (2017). Kinematics and Dynamics of Young Stellar Groups. In Revista Mexicana de Astronomia y Astrofisica Conference Series, volume 49 of Revista Mexicana de Astronomia y Astrofisica Conference Series, pages 93–93.spa
dc.relation.references[Pantolmos et al., 2020] Pantolmos, G., Zanni, C., and Bouvier, J. (2020). Magnetic torques on T Tauri stars: Accreting versus non-accreting systems. Astronomy and Astrophysics Panel Reports, 643:A129.spa
dc.relation.references[Passos, 2012] Passos, D. (2012). A simple but powerful model of the solar cycle.spa
dc.relation.references[Petrie and Heard, 1970] Petrie, R. M. and Heard, J. F. (1970). The radial velocities and luminosities of 77 stars in the field of the alpha Persei cluster. Publications of the Dominion Astrophysical Observatory Victoria, 13(13):329–346. [Pichardo et al., 2005] Pichardo, B., Sparke, L. S., and Aguilar, L. A. (2005). Circumste- llar and circumbinary discs in eccentric stellar binaries. Monthly Notices of the Royal Astronomical Society, 359(2):521–530.spa
dc.relation.references[Pinz´on, 2006] Pinz´on, G. (2006). Acres¸c˜ao e momento angular em estrelas jovens de baixa massa. PhD thesis, Minist´erio de Ciˆencia y Tecnologia, Observatorio Nacional.spa
dc.relation.references[Restrepo, 2012] Restrepo, O. (2012). estudio de las tasas de acreci´on para una muestra de estrellas t tauri clasicas en el O´ptico. Master’s thesis, Universidad Nacional de Colombia.spa
dc.relation.references[Rucinski and Krautter, 1983] Rucinski, S. M. and Krautter, J. (1983). TW Hya : a T Tauri star far from any dark cloud. Astronomy and Astrophysics Panel Reports, 121:217–225.spa
dc.relation.references[Sadeghi Ardestani et al., 2017] Sadeghi Ardestani, L., Guillot, T., and Morel, P. (2017). A semi-empirical model for magnetic braking of solar-type stars. Monthly Notices of the Royal Astronomical Society, 472(3):2590–2607.spa
dc.relation.references[Schatzman, 1962] Schatzman, E. (1962). A theory of the role of magnetic activity during star formation. Annales d’Astrophysique, 25:18.spa
dc.relation.references[Schober et al., 2012] Schober, J., Schleicher, D., Bovino, S., and Klessen, R. S. (2012). Small-scale dynamo at low magnetic Prandtl numbers. Physical Review E, 86(6):066412.spa
dc.relation.references[Scholz, 2004] Scholz, A. (2004). The rotation of very low mass objects. PhD thesis, Thue- ringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany.spa
dc.relation.references[Scholz et al., 2007] Scholz, A., Coffey, J., Brandeker, A., and Jayawardhana, R. (2007). Ro- tation and Activity of Pre-Main-Sequence Stars. The Astrophysical Journal, 662(2):1254– 1267.spa
dc.relation.references[Shibata and Kaburaki, 1985] Shibata, S. and Kaburaki, O. (1985). A Self-Consistent Mo- del of the Magnetosphere with Centrifugal Wind - Part One. Applied Surface Science, 108(1):203–217.spa
dc.relation.references[Shu et al., 1994] Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., and Lizano, S. (1994). Magnetocentrifugally Driven Flows from Young Stars and Disks. I. A Generalized Model. 429:781.spa
dc.relation.references[Siess et al., 2000] Siess, L., Dufour, E., and Forestini, M. (2000). An internet server for pre- main sequence tracks of low- and intermediate-mass stars. Astronomy and Astrophysics Panel Reports, 358:593–599.spa
dc.relation.references[Siess and Forestini, 1996] Siess, L. and Forestini, M. (1996). Physics of accretion onto young stars. I. Parametric models. , 308:472–480.spa
dc.relation.references[Skumanich, 1972] Skumanich, A. (1972). Time Scales for Ca II Emission Decay, Rotational Braking, and Lithium Depletion. The Astrophysical Journal, 171:565.spa
dc.relation.references[Smith and Terrile, 1984] Smith, B. A. and Terrile, R. J. (1984). A Circumstellar Disk around β Pictoris. Science, 226(4681):1421–1424.spa
dc.relation.references[Society, 1832] Society, T. R. (1832). Actas de la royal society. urlhttps://royalsocietypublishing.org/journal/rspa.spa
dc.relation.references[Soderblom, 1982a] Soderblom, D. R. (1982a). Rotation in G and K dwarfs. SAO Special Report, 392:197–198.spa
dc.relation.references[Soderblom, 1982b] Soderblom, D. R. (1982b). Rotational studies of late-type stars. I. Ro- tational velocities of solar-type stars. The Astrophysical Journal, 263:239–251.spa
dc.relation.references[Soderblom et al., 1995] Soderblom, D. R., Jones, B. F., Stauffer, J. R., and Chaboyer, B. (1995). The Evolution of the Lithium Abundances of Solar-Type Stars.V. K Dwarfs in the Hyades. The Astrophysical Journal, 110:729.spa
dc.relation.references[Soderblom et al., 1983] Soderblom, D. R., Jones, B. F., and Walker, M. F. (1983). Rapid rotation among Pleiades K dwarfs. 274:L37–L41.spa
dc.relation.references[Spada, 2010] Spada, F.; Lanzafame, A. C. L. A. F. (2010). A semi-analytic approach to angular momentum transport in stellar radiative interiors. Monthly Notices of the Royal Astronomical Society, 404:641–660.spa
dc.relation.references[Stahler, 1980] Stahler, S. W. (1980). Protostars: Their structure and evolution. [Stahler and Palla, 2004] Stahler, S. W. and Palla, F. (2004). The Formation of Stars.spa
dc.relation.references[Stauffer and Hartmann, 1987] Stauffer, J. R. and Hartmann, L. W. (1987). The Distri- bution of Rotational Velocities for Low-Mass Stars in the Pleiades. The Astrophysical Journal, 318:337.spa
dc.relation.references[Stauffer et al., 1987] Stauffer, J. R., Hartmann, L. W., and Latham, D. W. (1987). Rota- tional Velocities of Low-Mass Stars in the Hyades. 320:L51.spa
dc.relation.references[Sung, 1974] Sung, C.-H. (1974). Asymptotic Formulation of a Differentially Rotating Star with Small Dissipation. Applied Surface Science, 26(2):305–317.spa
dc.relation.references[Tambovtseva, 2018] Tambovtseva, L. (2018). Revealing the Circumstellar Environment of the Herbig Be Star VB Ser by Emission Line Modelling. In Take a Closer Look, page 111.spa
dc.relation.references[Tassoul and Tassoul, 1995] Tassoul, M. and Tassoul, J.-L. (1995). Meridional Circulation in Rotating Stars. XI. Single-Cell Pattern versus Double-Cell Pattern. The Astrophysical Journal, 440:789. [Tomczyk et al., 1996] Tomczyk, S., Schou, J., and Thompson, M. J. (1996). Measurement of the Rotation Rate in the Deep Solar Interior. In American Astronomical Society Meeting Abstracts #188, volume 188 of American Astronomical Society Meeting Abstracts, page 69.03.spa
dc.relation.references[Torres et al., 2003] Torres, C. A. O., Quast, G. R., de La Reza, R., da Silva, L., Melo, C. H. F., and Sterzik, M. (2003). SACY - a Search for Associations Containing Young stars, volume 299, page 83.spa
dc.relation.references[Tout and Pringle, 1992] Tout, C. A. and Pringle, J. E. (1992). Accretion disc viscosity: a simple model for a magnetic dynamo. Monthly Notices of the Royal Astronomical Society, 259:604–612.spa
dc.relation.references[van Leeuwen et al., 1991] van Leeuwen, F., Penston, M., Evans, D. W., and Ramamani, N. (1991). HIPPARCOS produces first parallaxes. GEMINI Newsletter Royal Greenwich Observatory, 31:6–7.spa
dc.relation.references[Venuti, 2020] Venuti, L. (2020). Dynamics of star-disk interaction processes in young, low- mass stars as seen from space. In Neiner, C., Weiss, W. W., Baade, D., Griffin, R. E., Lovekin, C. C., and Moffat, A. F. J., editors, Stars and their Variability Observed from Space, pages 409–414.spa
dc.relation.references[Vidotto, 2014] Vidotto, A. A. (2014). Incorporating magnetic field observations in wind models of low-mass stars. ASTRA Proceedings, 1(1):19–22.spa
dc.relation.references[Vogel and Kuhi, 1981] Vogel, S. N. and Kuhi, L. V. (1981). Rotational velocities of pre- main-sequence stars. The Astrophysical Journal, 245:960–976.spa
dc.relation.references[Weber and Davis, 1970] Weber, E. J. and Davis, L., J. (1970). The effect of viscosity and anisotropy in the pressure on the azimuthal motion of the solar wind. Journal of Geophy- sical Research, 75(13):2419.spa
dc.relation.references[Weber and Davis, 1967] Weber, E. J. and Davis, Leverett, J. (1967). The Angular Momen- tum of the Solar Wind. The Astrophysical Journal, 148:217–227.spa
dc.relation.references[Williams et al., 1999] Williams, D., Clary, D. C., Farebrother, A., Fisher, A., Gingell, J. M., Jackman, R., Mason, N., Meijer, A., Perry, J., Price, S. D., Rawlings, J. M. C., and Williams, D. E. (1999). The energetics and efficiency of H 2 formation on surfaces of interstellar grain mimics. In Combes, F. and Pineau des Forˆets, G., editors, H2 in Space, page E.13.spa
dc.relation.references[Woitke et al., 2019] Woitke, P., Kamp, I., Antonellini, S., Anthonioz, F., Baldovin- Saveedra, C., Carmona, A., Dionatos, O., Dominik, C., Greaves, J., Gu¨del, M., Ilee, J. D., Liebhardt, A., Menard, F., Min, M., Pinte, C., Rab, C., Rigon, L., Thi, W. F., Thureau, N., and Waters, L. B. F. M. (2019). Consistent Dust and Gas Models for Protoplanetary Disks. III. Models for Selected Objects from the FP7 DIANA Project. pasp, 131(1000):064301.spa
dc.relation.references[Wolff et al., 2004] Wolff, S. C., Strom, S. E., and Hillenbrand, L. A. (2004). The Angular Momentum Evolution of 0.1-10 Msolar Stars from the Birth Line to the Main Sequence. The Astrophysical Journal, 601(2):979–999.spa
dc.relation.references[Xing, ] Xing, L.-F.; Xing, Q.-F. Lithium abundances of nearby young solar-type stars based on opticalhigh-resolution spectroscopy.spa
dc.relation.references[Xing, 2012a] Xing, Li-Feng; Zhao, S.-Y. Z. X.-D. (2012a). Lithium abundances of 21 solar- type stars near the sun. Astronomy & Astrophysics, 537:1–6.spa
dc.relation.references[Xing, 2012b] Xing, L.; Zhao, S. Z.-X. (2012b). Lithium abundances of 21 solar-type stars near the sun. 17:537–541.spa
dc.relation.references[Yi, 1994] Yi, I. (1994). Magnetic Braking in Spin Evolution of Magnetized T Tauri Stars. The Astrophysical Journal, 428:760.spa
dc.relation.references[Zahn et al., 1997] Zahn, J. P., Talon, S., and Matias, J. (1997). Angular momentum trans- port by internal waves in the solar interior. Astronomy and Astrophysics Panel Reports, 322:320–328.spa
dc.relation.references[Zhan et al., 1996] Zhan, Q., Manson, A. H., and Meek, C. E. (1996). The impact of gaps and spectral methods on the spectral slope of the middle atmospheric wind. Journal of Atmospheric and Terrestrial Physics, 58:1329–1336.spa
dc.relation.references[Zolcinski et al., 1982a] Zolcinski, M. C., Kay, L., Antiochos, S., Stern, R., and Walker, A. B. C. (1982a). Progress report of an IUE survey of the Hyades star cluster. In Kondo, Y., editor, NASA Conference Publication, volume 2238 of NASA Conference Publication, pages 239–242.spa
dc.relation.references[Zolcinski et al., 1982b] Zolcinski, M. C. S., Antiochos, S. K., Stern, R. A., and Walker, A. B. C. (1982b). International Ultraviolet Explorer observations of hyades stars. The Astrophysical Journal, 258:177–185.spa
dc.relation.references[Zuckerman and Song, 2004] Zuckerman, B. and Song, I. (2004). Young Stars Near the Sun. Annual review of astronomy and astrophysics, 42(1):685–721.spa
dc.relation.references[Zuckerman et al., 2001] Zuckerman, B., Song, I., Bessell, M. S., and Webb, R. A. (2001). The β Pictoris Moving Group. 562(1):L87–L90.spa
dc.relation.references[Zuckerman and Webb, 2000] Zuckerman, B. and Webb, R. A. (2000). Identification of a Nearby Stellar Association in theHipparcos Catalog: Implications for Recent, Local Star Formation. The Astrophysical Journal, 535(2):959–964.spa
dc.rightsDerechos reservados al autor, 2021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc520 - Astronomía y ciencias afinesspa
dc.subject.lembEstrella
dc.subject.lembEstrellas-rotación
dc.subject.lembActividad estelar
dc.subject.proposalRotación estelarspa
dc.subject.proposalAcreciónspa
dc.subject.proposalConexión magnéticaspa
dc.subject.proposalMomento angularspa
dc.subject.proposalModelo estelarspa
dc.subject.proposalEvolución estelarspa
dc.subject.proposalStellar rotationeng
dc.subject.proposalMagnetic fieldeng
dc.subject.proposalAccretioneng
dc.subject.proposalMagnetic connectioneng
dc.subject.proposalAngular momentumeng
dc.subject.proposalStellar modeleng
dc.subject.proposalStellar evolutioneng
dc.subject.proposalCampo magnéticospa
dc.titleUn modelo de rotación estelar antes de la secuencia principalspa
dc.title.translatedA model of stelar rotation before main secuenceeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audienceEspecializadaspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Un modelo de rotación antes de la secuencia principal.pdf
Tamaño:
8.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Astronomía

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: