Degradación del colorante rojo Allura en solución acuosa mediante un proceso avanzado de oxidación.

dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.advisorMacías Quiroga, Iván Fernando
dc.contributor.authorMora Bonilla, Karla Yaneth
dc.contributor.researchgroupProcesos Químicos, Catalíticos y Biotecnológicosspa
dc.date.accessioned2022-03-09T16:29:27Z
dc.date.available2022-03-09T16:29:27Z
dc.date.issued2021-08
dc.descriptiongráficos, tablas.spa
dc.description.abstractLos colorantes azoicos representan cerca del 70% de la producción mundial de colorantes. Estos se caracterizan por tener uno o varios grupos cromóforos de tipo -N=N- unidos a anillos de benceno o naftaleno con grupos -OH y -SO3H, características que los hacen muy estables químicamente y resistentes a la biodegradación. El rojo allura (C18H14N2Na2O8S2) es un colorante azoico ampliamente usado en las industrias alimentaría, farmacéutica y cosmética. Los Procesos de Oxidación Avanzados (POAs) basados en la activación del H2O2 han mostrado excelentes resultados en el tratamiento de aguas coloreadas . En el presente trabajo se utilizó una tecnología emergente (Co2+/NaHCO3/H2O2) para la degradación del colorante rojo allura en solución acuosa, donde el H2O2 es activado con NaHCO3 y el cobalto en solución (Co2+) actúa como catalizador para la descomposición del peróxido de hidrógeno. Para la evaluación y optimización del proceso de oxidación del colorante se utilizó la Metodología de Superficie de Respuesta (MSR), basada en un Diseño Central Compuesto (DCC). En el diseño experimental se estudiaron cuatro variables independientes (concentraciones de H2O2, NaHCO3, cobalto y colorante) y las variables de respuesta fueron decoloración y remoción de nitrógeno total (NT). Bajo las condiciones óptimas de reacción: 49.47 mg/L de rojo allura, 4.53 mM de H2O2, 8.45 μM de Co2+ y 2.00 mM de NaHCO3, se logró una decoloración total y remoción de NT de 55.3±0.53%. Adicionalmente, se encontró que un incremento en la temperatura del sistema de 25 a 45 °C aceleró la decoloración total de la muestra, pasando de 20 a 10 minutos de reacción. Con el fin de abordar la contaminación colateral asociada al cobalto utilizado en la descomposición catalítica del peróxido de hidrógeno, en este trabajo se utilizó una arcilla tipo bentonita para remover los iones de cobalto que quedaron en solución después del proceso de oxidación. Para evaluar el potencial del sistema Co2+/NaHCO3/H2O2 en la degradación de colorantes, se trató una muestra de agua real proveniente de una industria de alimentos de la ciudad de Manizales a las condiciones óptimas obtenidas en el diseño experimental, obteniéndose una decoloración del 96.4±0.34%, y remoción de NT del 17.23±0.12%. Los anteriores resultados sugieren que el sistema Co2+/NaHCO3/H2O2 es eficiente para la degradación de soluciones acuosas que contienen colorantes azoicos, y este es el primer trabajo que establece las condiciones óptimas para la degradación del rojo allura basado en la metodología de superficie de respuesta. Además, se propone un proceso de adsorción al final del POA, que permite reducir la concentración de cobalto a valores por debajo del límite de detección de la técnica de medición (< 0.01 mg/L, absorción atómica de llama) (Texto tomado de la fuente)spa
dc.description.abstractAzoic dyes represent about 70% of the world’s production of dyes. They are characterized by having one or more chromophore groups of the -N=N- type attached to benzene or naphthalene rings with -OH and -SO3H groups, these characteristics make them chemically stable and resistant to biodegradation. Allura red (C18H14N2Na2O8S2) is an azoic dye widely used in food, pharmaceutical and cosmetic industries. Advanced Oxidation Processes (AOPs) based on the activation of H2O2 have shown excellent results in the treatment of colored discharges. In the present work, an emerging technology (Co2+/NaHCO3/H2O2) was used for the degradation of the allura red dye in an aqueous solution, where H2O2 is activated with NaHCO3 and the cobalt in solution (Co2+) acts as a catalyst for the decomposition of peroxide hydrogen. For the evaluation and optimization of the dye oxidation process, the Response Surface Methodology (RSM) was used, based on a Central Composite Design (CCD). In the experimental design, four independent variables were studied (concentrations of H2O2, NaHCO3, cobalt and dye) and the response variables were decolorization and removal of total nitrogen (TN). Under optimal reaction conditions: 49.47 mg/L of allura red, 4.53 mM of H2O2, 8.45 μM of Co2+ and 2.00 mM of NaHCO3, a total decolorization was achieved and a TN removal of 55.3±0.53%. Additionally, it was found that an increase in the temperature in the system from 25 to 45 °C, accelerated the total decolorization of the sample, going from 20 to 10 minutes of reaction. In order to address the collateral contamination associated with the cobalt used in the catalytic decomposition of hydrogen peroxide, a bentonite-type clay was used in this work to remove the cobalt ions remaining in the solution after the oxidation process. To evaluate the potential of the Co2+/NaHCO3/H2O2 system in the dyes’ degradation, a real water sample taken from a food industry in Manizales city was treated under the optimal conditions obtained in the experimental design, obtaining 96.4±0.34% of decolorization, and 17.23±0.12%. of TN removal. The above results suggest that the Co2+/NaHCO3/H2O2 system is efficient for the degradation of aqueous solutions containing azo dyes, and this is the first research study that establishes the optimal conditions for the degradation of allura red based on Response Surface Methodology. In addition, an adsorption process is proposed at the end of the AOP, which allows to reduce the cobalt concentration to values below the detection limit of the measurement technique (< 0.01 mg/L, flame atomic absorption).eng
dc.description.curricularareaQuímica Y Procesosspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Ingeniería Ambientalspa
dc.format.extentxi, 78 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81167
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Químicaspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesZaruma Arias, P.; Proal Nájera, B.; Chaires Hernández, I.; Salas Ayala, H. (2018). Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: Una breve revisión. Revista de la Facultad de Ciencias Químicas, 19: p. 38-47.spa
dc.relation.referencesTkaczyk, A.; Mitrowska, K.; Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717: p. 137222-137241.spa
dc.relation.referencesJawad, A.; Chen, Z.; Yin, G. (2016). Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. Chinese Journal of Catalysis, 37(6): p. 810-825.spa
dc.relation.referencesXu, A.; Li, X.; Ye, S.; Yin, G.; Zeng, Q. (2011). Catalyzed oxidative degradation of methylene blue by in situ generated cobalt(II)-bicarbonate complexes with hydrogen peroxide. Applied Catalysis B: Environmental, 102(1-2): p. 37-43.spa
dc.relation.referencesUNESCO. (2017). Informe mundial de las Naciones Unidas sobre el desarrollo de los recursos hídricos 2017. Aguas residuales: El recurso desaprovechado, Organización de las Naciones Unidas para la Educación: Paris - Francia. p. 202.spa
dc.relation.referencesKobylewski, S.; Jacobson, M. (2010). Food Dyes: A Rainbow of Risks. 1 ed, Center for Science in the Public Interest: Washington, D.C. p. 68.spa
dc.relation.referencesEspinoza, F.; Maza, M. (2018). Remoción de colorantes azoicos rojo allura (R40) mediante el uso de perlas de quitosano magnetizadas en medio acuoso. Sociedad Química del Perú, 84(1): p. 18-26.spa
dc.relation.referencesBelhouchat, N.; Zaghouane, H.; Viseras, C. (2017). Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Applied Clay Science, 135: p. 9-15.spa
dc.relation.referencesVillada, Y.; Hormaza, A. (2015). Simultaneous analysis of the removal of brilliant blue and red 40 through spectrophotometric derivative. Ingeniería y Desarrollo, 33(1): p. 38-58.spa
dc.relation.referencesPiccin, J.; Vieira, M.; Gonçalves, J.; Dotto, G.; Pinto, L. (2009). Adsorption of FD&C red No. 40 by chitosan: Isotherms analysis. Journal of Food Engineering, 95(1): p. 16-20.spa
dc.relation.referencesAnjaneyulu, Y.; Sreedhara Chary, N.; Samuel Suman Raj, D. (2005). Decolourization of industrial effluents – Available methods and emerging technologies – A review. Reviews in Environmental Science and Bio/Technology, 4(4): p. 245-273.spa
dc.relation.referencesDomènech, X.; Jardim, W.; Litter, M. (2001). Capitulo 1. Procesos avanzados de oxidación para la eliminación de contaminantes. In: Eliminación de Contaminantes por Fotocatálisis Heterogénea, Blesa, M. A. (Ed.), Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo - CYTED: La Plata - Argentina. p. 3-26.spa
dc.relation.referencesMacías-Quiroga, I. F.; Rojas-Mendez, E. F.; Giraldo-Gomez, G. I.; Sanabria-Gonzalez, N. R. (2020). Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data Brief, 30: p. ID 105463.spa
dc.relation.referencesPan, H.; Gao, Y.; Li, N.; Zhou, Y.; Lin, Q.; Jiang, J. (2020). Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment. Chemical Engineering Journal, 408: p. ID 127332.spa
dc.relation.referencesYang, Z.; Wang, H.; Chen, M.; Luo, M.; Xia, D.; Xu, A.; Zeng, Q. (2012). Fast degradation and biodegradability improvement of reactive brilliant red x-3b by the cobalt(II)/bicarbonate/hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(34): p. 11104-11111.spa
dc.relation.referencesLi, X.; Xiong, Z.; Ruan, X.; Xia, D.; Zeng, Q.; Xu, A. (2012). Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30.spa
dc.relation.referencesLong, X.; Yang, Z.; Wang, H.; Chen, M.; Peng, K.; Zeng, Q.; Xu, A. (2012). Selective degradation of orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Industrial & Engineering Chemistry Research, 51(37): p. 11998-12003.spa
dc.relation.referencesLuo, M.; Lv, L.; Deng, G.; Yao, W.; Ruan, Y.; Li, X.; Xu, A. (2014). The mechanism of bound hydroxyl radical formation and degradation pathway of acid orange II in Fenton-like Co2+-HCO3− system. Applied Catalysis A: General, 469: p. 198-205.spa
dc.relation.referencesOlusegun, E.; Olajire, A. (2015). Toxicity of food colours and additives: A review. African Journal of Pharmacy and Pharmacology, 9(36): p. 900-914.spa
dc.relation.referencesGürses, A.; Açıkyıldız, M.; Güneş, K.; Gürses, M. (2016). Chapter 2. Dyes and pigments: their structure and properties. In: Dyes and Pigments, Springer, Cham: Jaipur - India. p. 13-30.spa
dc.relation.referencesBauer, W.; Berneth, H.; Clausen, T.; Engel, A.; Filosa, M.; Gregory, P. (2004). Dyes, general survey. In: Industrial Dyes: Chemistry, Properties, Applications, Klaus, H. (Ed.), Wiley-VCH: Fráncfort - Alemania. p. 1-12.spa
dc.relation.referencesClarke, E.; Steinle, D. (1995). Health and environmental safety aspects of organic colorants. Reviews on Progress in Coloration and Related Topics, 25(1): p. 1-5.spa
dc.relation.referencesAmchova, P.; Kotolova, H.; Ruda-Kucerova, J. (2015). Health safety issues of synthetic food colorants. Regulatory Toxicology Pharmacology, 73(3): p. 914-922.spa
dc.relation.referencesBenkhaya, S.; Mrabet, S.; El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115: p. ID 107891.spa
dc.relation.referencesZaharia, C.; Suteu, D. (2012). Chapter 3. Textile organic dyes – characteristics, polluting effects and separation/elimination procedures from industrial effluents – A critical overview. In: Organic Pollutants Ten Years after the Stockholm Convention – Environmental and Analytical Update Puzyn, D. T. (Ed.), IntechOpen: Rijeka - Croacia. p. 55-87.spa
dc.relation.referencesMarcano, D. (2018). Introducción a la Química de los Colorantes, Academia de Ciencias Físicas, Matemáticas y Naturales: Caracas - Venezuela. p. 254.spa
dc.relation.referencesSaratale, R. G.; Saratale, G. D.; Chang, J. S.; Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1): p. 138-157.spa
dc.relation.referencesFeketea, G.; Tsabouri, S. (2017). Common food colorants and allergic reactions in children: Myth or reality?. Food Chemistry, 230: p. 578-588.spa
dc.relation.referencesClark, M. (2011). Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes, Elsevier (Ed.): Cambridge - United Kingdom. p. 1230.spa
dc.relation.referencesLehto, S.; Buchweitz, M.; Klimm, A.; Strassburger, R.; Bechtold, C.; Ulberth, F. (2017). Comparison of food colour regulations in the EU and the US: A review of current provisions. Food Additives & Contaminants: Part A., 34(3): p. 335-355.spa
dc.relation.referencesU.S. Food and Drug Administration - FDA. Title 21 - Food and Drugs. 2019 [cited 22/04/2020]; Available from: https://www.accessdata.fda.gov.spa
dc.relation.referencesBoyles, C.; Sobeck, S. (2020). Photostability of organic red food dyes. Food Chemistry, 315: p. ID 126249.spa
dc.relation.referencesHao, O. J.; Kim, H.; Chiang, P.-C. (2000). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 30(4): p. 449-505.spa
dc.relation.referencesFood and Agriculture Organization of the United Nations - FAO. Programa conjunto FAO/OMS sobre normas alimentarias. 2001 [cited 05/04/2020]; Available from: http://www.fao.org/3/y0474s/y0474s00.htm#Contents.spa
dc.relation.referencesU.S. Food and Drug Administration - FDA. Report on the Certification of Color Additives: 2nd Quarter, Fiscal Year 2021, January 1-March 31. 2021 [cited 25/04/2021]; Available from: https://www.fda.gov/industry/color-certification-reports/report-certification-color-additives-2nd-quarter-fiscal-year-2021-january-1-march-31.spa
dc.relation.referencesSandoval, L. (2013). Evaluación de diferentes procesos de tratamiento para la remoción de colorantes sintéticos utilizados en la industria textil. Secretaría de Medio Ambiente y Recursos Naturales. Ciudad Juárez - México. p. 305.spa
dc.relation.referencesDonoso, M. (2016). Eliminación de colorantes alimentarios en disolución acuosa mediante procesos químicos y electroquímicos de oxidación avanzada. Tesis de Doctorado en Ingeniería Química. Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Badajoz, p. 354.spa
dc.relation.referencesCole, J. El teñido de tejidos: el mayor problema de contaminación de la industria de la moda. 2019 [cited 25/02/2021]; Available from: https://www.vogue.es/moda/articulos/tintes-toxicos-ropa-problemas-contaminacion-industria-moda.spa
dc.relation.referencesMatthews, R. Ten lesser known effects of climate change and environmental abuse. 2014 [cited 16/05/2020]; Available from: https://earthmaven.io.spa
dc.relation.referencesHernández, M. (2020). Misterioso tono amarillo coloreó el río Medellín. In: El Colombiano. Available from: https://www.elcolombiano.com/antioquia/rio-medellin-presento-extrano-color-amarillo-EF12351984.spa
dc.relation.referencesGonzáles, M. (2019). ¿Por qué está azul el río Yumbo?, esto dicen las autoridades ambientales. In: El País. Available from: https://www.elpais.com.co/valle/por-que-esta-azul-el-rio-yumbo-esto-dicen-las-autoridades-ambientales.html.spa
dc.relation.referencesAlzate, M. (2020). El azul de la quebrada Manizales era tinta para dulces. In: La Patria. Available from: https://www.lapatria.com/denuncie/el-azul-de-la-quebrada-manizales-era-tinta-para-dulces-452338.spa
dc.relation.referencesLeguía, C.; Penagos, A.; Robles, G.; Niño, O. (2014). Monitoreo de efluentes de sectores productivos, vertimientos directos a fuentes hídricas superficiales, afluentes del sistema hídrico de la ciudad y pozos de aprovechamiento hídrico subterráneo. Bogotá D.C. - Colombia. p. 1-202.spa
dc.relation.referencesHofman-Caris, R.; Hofman, J. (2019). Limitations of Conventional Drinking Water Technologies in Pollutant Removal. In: Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment, Gil, A.; Galeano, L. A.; Vicente, M. Á. (Eds.), Springer International Publishing, Cham: Milán - Suiza. p. 21-51.spa
dc.relation.referencesEjder, M.; Gürses, A.; Sharma, S.; Doğar, C.; Açıkyıldız, M. (2015). Green Chemistry for Dyes Removal from Wastewater, Sharma, S. K. (Ed.), Scrivener Publishing LLC: Jaipur - India. p. 1-21.spa
dc.relation.referencesEren, Z. (2012). Ultrasound as a basic and auxiliary process for dye remediation: A review. Journal of Environmental Management, 104: p. 127-141.spa
dc.relation.referencesRobinson, T.; McMullan, G.; Marchant, R.; Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77: p. 247-255.spa
dc.relation.referencesAtalay, S.; Ersöz, G. (2016). Novel Catalysts in Advanced Oxidation of Organic Pollutants, Sharma, S. K. (Ed.), Springer International Publishing: Jaipur - India. p. 1-60.spa
dc.relation.referencesNidheesh, P.; Zhou, M.; Oturan, M. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197: p. 210-227.spa
dc.relation.referencesChiva, S.; Berlanga, J.; Martínez, R.; Climent, J. (2017). Procesos de Oxidacion Avanzada en el Ciclo Integral del Agua: Provincia de Castellón - España. p. 170.spa
dc.relation.referencesOturan, M.; Aaron, J. (2014). Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Critical Reviews in Environmental Science and Technology, 44(23): p. 2577-2641.spa
dc.relation.referencesRahim, S.; Abdul , A.; Wan, W. (2014). Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64: p. 24-35.spa
dc.relation.referencesVagi, M.; Petsas, A. (2020). Recent advances on the removal of priority organochlorine and organophosphorus biorecalcitrant pesticides defined by Directive 2013/39/EU from environmental matrices by using advanced oxidation processes: An overview (2007–2018). Journal of Environmental Chemical Engineering, 8(1): p. ID 102940.spa
dc.relation.referencesLegrini, O.; Oliveros, E.; Braun, A. (1993). Photochemical processes for water treatment. Chemical Reviews, 93: p. 671-698.spa
dc.relation.referencesDeng, Y.; Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1(3): p. 167-176.spa
dc.relation.referencesLinden, K.; Mohseni, M. (2014). Advanced oxidation processes: Applications in drinking water treatment. In: Comprehensive Water Quality and Purification, Ahuja, Satinder. (Ed), Elsevier: EEUU. p. 148-172.spa
dc.relation.referencesRibeiro, A.; Nunes, O.; Pereira, M.; Silva, A. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 75: p. 33-51.spa
dc.relation.referencesNeyens, E.; Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1-3): p. 33-50.spa
dc.relation.referencesRegino, C.; Richardson, D. (2007). Bicarbonate-catalyzed hydrogen peroxide oxidation of cysteine and related thiols. Inorganica Chimica Acta, 360(14): p. 3971-3977.spa
dc.relation.referencesWu, C.; Linden, K. G. (2010). Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals. Water Research, 44(12): p. 3585-3594.spa
dc.relation.referencesMizrahi, A.; Meyerstein, D. (2019). Chapter Eight - Plausible roles of carbonate in catalytic water oxidation. In: Advances in Inorganic Chemistry, van Eldik, R.; Hubbard, C. D. (Eds.), Academic Press: Nueva York - EEUU. p. 343-360.spa
dc.relation.referencesLi, Y.; Li, L.; Chen, Z. X.; Zhang, J.; Gong, L.; Wang, Y. X.; Zhao, H. Q.; Mu, Y. (2018). Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378.spa
dc.relation.referencesXu, A.; Li, X.; Xiong, H.; Yin, G. (2011). Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide. Chemosphere, 82(8): p. 1190-1195.spa
dc.relation.referencesBruland, K. W.; Donat, J. R.; Hutchins, D. A. (1991). Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8): p. 1555-1577.spa
dc.relation.referencesGuo, X.; Li, H.; Zhao, S. (2015). Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 55: p. 90-100.spa
dc.relation.referencesBarceloux, D. G.; Barceloux, D. (1999). Cobalt. Journal of Toxicology: Clinical Toxicology, 37(2): p. 201-216.spa
dc.relation.referencesLiang, S.; Zhao, L.; Zhang, B.; Lin, J. (2008). Experimental studies on the chemiluminescence reaction mechanism of carbonate/ bicarbonate and hydrogen peroxide in the presence of cobalt(II). Journal of Physical Chemistry, 112(4): p. 618-623.spa
dc.relation.referencesAl-Shahrani, S. S. (2014). Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alexandria Engineering Journal, 53(1): p. 205-211.spa
dc.relation.referencesGultekin, I.; Ince, N. H. (2004). Degradation of reactive azo dyes by UV/H2O2: impact of radical scavengers. Journal of Environmental Science and Health, 39(4): p. 1069-1081.spa
dc.relation.referencesLee, C.; Sedlak, D. L. (2009). A novel homogeneous Fenton-like system with Fe(III)-phosphotungstate for oxidation of organic compounds at neutral pH values. Journal of Molecular Catalysis A: Chemical, 311(1-2): p. 1-6.spa
dc.relation.referencesHe, J.; Yang, X.; Men, B.; Wang, D. (2016). Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review. Journal of Environmental Sciences, 39: p. 97-109.spa
dc.relation.referencesKan, H.; Soklun, H.; Yang, Z.; Wu, R.; Shen, J.; Qu, G.; Wang, T. (2020). Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 232: p. ID 115974.spa
dc.relation.referencesJawad, A.; Li, Y.; Lu, X.; Chen, Z.; Liu, W.; Yin, G. (2015). Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.spa
dc.relation.referencesSayed, M.; Khan, J. A.; Shah, L. A.; Shah, N. S.; Khan, H. M.; Rehman, F.; Khan, A. R.; Khan, A. M. (2016). Degradation of quinolone antibiotic, norfloxacin, in aqueous solution using gamma-ray irradiation. Environmental Science and Pollution Research, 23(13): p. 13155-13168.spa
dc.relation.referencesBabuponnusami, A.; Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1): p. 557-572.spa
dc.relation.referencesSalem, I. A.; El-Ghamry, H. A.; El-Ghobashy, M. A. (2014). Catalytic decolorization of Acid blue 29 dye by H2O2 and a heterogeneous catalyst. Beni-Suef University Journal of Basic and Applied Sciences, 3(3): p. 186-192.spa
dc.relation.referencesDe la Cruz, N.; Esquius, L.; Grandjean, D.; Magnet, A.; Tungler, A.; de Alencastro, L. F.; Pulgarin, C. (2013). Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Research, 47(15): p. 5836-5845.spa
dc.relation.referencesShah, N. S.; He, X.; Khan, H. M.; Khan, J. A.; O'Shea, K. E.; Boccelli, D. L.; Dionysiou, D. D. (2013). Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study. Journal of Hazardous Materials, 263 p. 584-592.spa
dc.relation.referencesJavaid, R.; Qazi, U. Y. (2019). Catalytic oxidation process for the degradation of synthetic dyes: An overview. International Journal of Environmental Research and Public Health, 16(11): p. 1-27.spa
dc.relation.referencesDulman, V.; Cucu-Man, S. M.; Olariu, R. I.; Buhaceanu, R.; Dumitraş, M.; Bunia, I. (2012). A new heterogeneous catalytic system for decolorization and mineralization of Orange G acid dye based on hydrogen peroxide and a macroporous chelating polymer. Dyes and Pigments, 95(1): p. 79-88.spa
dc.relation.referencesKhan, J. A.; Sayed, M.; Khan, S.; Shah, N. S.; Dionysiou, D. D.; Boczkaj, G. (2020). Advanced oxidation processes for the treatment of contaminants of emerging concern. In: Contaminants of Emerging Concern in Water and Wastewater, Hernandez-Maldonado, A.; Blaney, Lee. (Eds.), Elsevier: Arizona - EEUU. p. 299-365.spa
dc.relation.referencesYang, H.; Li, G.; An, T.; Gao, Y.; Fu, J. (2010). Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs. Catalysis Today, 153(3-4): p. 200-207.spa
dc.relation.referencesSantana, C. S.; Nicodemos Ramos, M. D.; Vieira Velloso, C. C.; Aguiar, A. (2019). Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. 1-16.spa
dc.relation.referencesRamírez, J. H.; Vicente, M. A.; Madeira, L. M. (2010). Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 98: p. 10-26.spa
dc.relation.referencesEl-Daly, H. A.; Habib, A.-F. M.; Borhan El-Din, M. A. (2005). Kinetic investigation of the oxidative decolorization of Direct Green 28 and Direct Blue 78 by hydrogen peroxide. Dyes and Pigments, 66(2): p. 161-170.spa
dc.relation.referencesGemeay, A. H.; Mansour, I. A.; El-Sharkawy, R. G.; Zaki, A. B. (2003). Kinetics and mechanism of the heterogeneous catalyzed oxidative degradation of indigo carmine. Journal of Molecular Catalysis A: Chemical, 193(1-2): p. 109-120.spa
dc.relation.referencesSun, S. P.; Li, C. J.; Sun, J. H.; Shi, S. H.; Fan, M. H.; Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2-3): p. 1052-1057.spa
dc.relation.referencesYang, P.; Liu, C.; Guo, Q.; Liu, Y. (2021). Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy. Journal of Materials Science & Technology, 72: p. 162-171.spa
dc.relation.referencesBokare, A.; Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275: p. 121-135.spa
dc.relation.referencesZhou, L.; Song, W.; Chen, Z.; Yin, G. (2013). Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2015). Resolución 0631 de 2015. Por el cual se establecen los parámetros y valores límites máximos permisibles en vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público. Bogotá D.C.spa
dc.relation.referencesUddin, M. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308: p. 438-462.spa
dc.relation.referencesTiwari, J.; Mahesh, K.; Le, N.; Kemp, K.; Timilsina, R.; Tiwari, R.; Kim, K. (2013). Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon, 56: p. 173-182.spa
dc.relation.referencesMcCabe, W.; Smith, J.; Harriott, P. (1998). Operaciones unitarias en ingeniería química. 4 ed, McGraw-Hill/Interamericana (Ed.): México D.F.spa
dc.relation.referencesXiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D. C. W.; Ok, Y. S.; Gao, B. (2020). Biochar technology in wastewater treatment: A critical review. Chemosphere, 252: p. ID 126539.spa
dc.relation.referencesZhao, Z.; Xiong, Y.; Cheng, X.; Hou, X.; Yang, Y.; Tian, Y.; You, J.; Xu, L. (2020). Adsorptive removal of trace thallium(I) from wastewater: A review and new perspectives. Journal of Hazardous Materials, 393: p. ID 122378.spa
dc.relation.referencesChiu, H.; Wang, J. (2009). Adsorption thermodynamics of cobalt ions onto attapulgite. Journal of Environmental Protection Science, 3: p. 102 - 106.spa
dc.relation.referencesSandy; Maramis, V.; Kurniawan, A.; Ayucitra, A.; Sunarso, J.; Ismadji, S. (2012). Removal of copper ions from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Frontiers of Chemical Science and Engineering, 6(1): p. 58-66.spa
dc.relation.referencesBhattacharyya, K.; Sen, S. (2009). Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe(II), Co(II) and Ni(II) from solution. Applied Clay Science, 46(2): p. 216-221.spa
dc.relation.referencesHashemian, S.; Saffari, H.; Ragabion, S. (2014). Adsorption of Cobalt(II) from Aqueous Solutions by Fe3O4/Bentonite Nanocomposite. Water, Air, & Soil Pollution, 226(1): p. 2212-2222.spa
dc.relation.referencesAl-Dwairi, R. A.; Al-Rawajfeh, A. E. (2012). Removal of cobalt and nickel from wastewater by using Jordan low-cost zeolite and bentonite. Journal of the University of Chemical Technology and Metallurgy, 47(1): p. 69-76.spa
dc.relation.referencesBhattacharyya, K. (2008). Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Applied Clay Science, 41(1-2): p. 1-9.spa
dc.relation.referencesBhattacharyya, K. G.; Gupta, S. S. (2008). Adsorption of Fe(III), Co(II) and Ni(II) on ZrO–kaolinite and ZrO–montmorillonite surfaces in aqueous medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1-3): p. 71-79.spa
dc.relation.referencesZacaroni, L. M.; Magriotis, Z. M.; Cardoso, M. d. G.; Santiago, W. D.; Mendonça, J. G.; Vieira, S. S.; Nelson, D. L. (2015). Natural clay and commercial activated charcoal: Properties and application for the removal of copper from cachaça. Food Control, 47: p. 536-544.spa
dc.relation.referencesKubilay, Ş.; Gürkan, R.; Savran, A.; Şahan, T. (2007). Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption, 13(1): p. 41-51.spa
dc.relation.referencesYavuz, O.; Altunkaynak, Y.; Guzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37: p. 948–952.spa
dc.relation.referencesShavandi, M. A.; Haddadian, Z.; Ismail, M. H. S.; Abdullah, N.; Abidin, Z. Z. (2012). Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite. Journal of the Taiwan Institute of Chemical Engineers, 43(5): p. 750-759.spa
dc.relation.referencesMohapatra, M.; Mohapatra, L.; Singh, P.; Anand, S.; Mishra, B. K. (2011). A comparative study on Pb(II), Cd(II), Cu(II), Co(II) adsorption from single and binary aqueous solutions on additive assisted nano-structured goethite. International Journal of Engineering, Science and Technology, 2(8): p. 89-103.spa
dc.relation.referencesManohar, D. M.; Noeline, B. F.; Anirudhan, T. S. (2006). Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase. Applied Clay Science, 31(3-4): p. 194-206.spa
dc.relation.referencesMekhemera, W.; Hefneb, J.; Alandisa, N.; Aldayel, O.; Al-Raddadi, S. (2008). Thermodynamics and kinetics of Co(II) adsorption onto natural and treated bentonite Jordan Journal of Chemistry, 3: p. 409 - 423.spa
dc.relation.referencesYang, H.; Long, D.; Zhenyu, L.; Yuanjin, H.; Tao, Y.; Xin, H.; Jie, W.; Zhongyuan, L.; Shuzhen, L. (2019). Effects of bentonite on pore structure and permeability of cement mortar. Construction and Building Materials, 224: p. 276-283.spa
dc.relation.referencesHe, H.; Ma, L.; Zhu, J.; Frost, R.; Theng, B.; Bergaya, F. (2014). Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 100: p. 22-28.spa
dc.relation.referencesZhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123: p. 239-258.spa
dc.relation.referencesKausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z.; Bhatti, H.; Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256: p. 395-407.spa
dc.relation.referencesMacías-Quiroga, I. F.; Rojas-Mendez, E. F.; Giraldo-Gomez, G. I.; Sanabria-Gonzalez, N. R. (2020). Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data Brief, 30: p. ID 105463.spa
dc.relation.referencesKarimifard, S.; Alavi Moghaddam, M. R. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment, 640-641: p. 772-797.spa
dc.relation.referencesFogler, H. S. (2001). Elements of Chemical Reaction Engineering, Prentice-Hall: Nueva Jersey - EEUU. p. 1004.spa
dc.relation.referencesLi, Y.; Li, L.; Chen, Z. X.; Zhang, J.; Gong, L.; Wang, Y. X.; Zhao, H. Q.; Mu, Y. (2018). Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. Chemosphere, 192: p. 372-378.spa
dc.relation.referencesLuo, M.; Lv, L.; Deng, G.; Yao, W.; Ruan, Y.; Li, X.; Xu, A. (2014). The mechanism of bound hydroxyl radical formation and degradation pathway of acid orange II in Fenton-like Co2+-HCO3− system. Applied Catalysis A: General, 469: p. 198-205.spa
dc.relation.referencesGultekin, I.; Ince, N. H. (2004). Degradation of reactive azo dyes by UV/H2O2: impact of radical scavengers. Journal of Environmental Science and Health, 39(4): p. 1069-1081.spa
dc.relation.referencesEl-Daly, H. A.; Habib, A.-F. M.; Borhan El-Din, M. A. (2005). Kinetic investigation of the oxidative decolorization of Direct Green 28 and Direct Blue 78 by hydrogen peroxide. Dyes and Pigments, 66(2): p. 161-170.spa
dc.relation.referencesMacías-Quiroga, I. F.; Giraldo-Gomez, G. I.; Sanabria-Gonzalez, N. R. (2018). Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018: p. ID 5969178.spa
dc.relation.referencesDay, P. (1965). Particle fractionation and particle-size analysis. In: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, American Society of Agronomy, Agronomy Monographs: Madison - Wisconsin. p. 1188.spa
dc.relation.referencesCzitrom, V. (1999). One factor at a time versus designed experiments. The American Statistician, 53: p. 126-131.spa
dc.relation.referencesCastro Castro, J. D. Study of the removal of chromium on a bentonite clay. Tesis de Maestría en Ingeniería Ambiental, 2019. Departamento de Ingeniería Química, Universidad Nacional de Colombia - Sede Manizales, Manizales, p. 121.spa
dc.relation.referencesBevziuk, K.; Chebotarev, A.; Snigur, D.; Bazel, Y.; Fizer, M.; Sidey, V. (2017). Spectrophotometric and theoretical studies of the protonation of allura red AC and ponceau 4R. Journal of Molecular Structure, 1144: p. 216-224.spa
dc.relation.referencesMiller, J. N.; Miller, J. C. (2002). Métodos de calibración en análisis instrumental regresión y correlación. In: Estadística y Quimiometría para Química Analítica, Ed. Pearson Educación, S.A: Madrid - España. p. 286.spa
dc.relation.referencesKarimifard, S.; Alavi Moghaddam, M. R. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. Science of the Total Environment, 640-641: p. 772-797.spa
dc.relation.referencesAmini, M.; Younesi, H.; Bahramifar, N.; Lorestani, A. A.; Ghorbani, F.; Daneshi, A.; Sharifzadeh, M. (2008). Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. Journal of Hazardous Materials, 154(1-3): p. 694-702.spa
dc.relation.referencesMartinez, C. (1987). Estadística - Apuntes y 614 problemas resueltos, Gráficas Modernas: Bogotá, D. C. - Colombia. p. 713.spa
dc.relation.referencesMartínez Ortega, R. M.; Tuya Pendás, L. C.; Martínez Ortega, M.; Pérez Abreu, A.; Cánovas, A. M. (2009). El coeficiente de correlación de los rangos de Spearman caracterización. Revista Habanera de Ciencias Médicas, 8: p. 1-19.spa
dc.relation.referencesWalpole, R.; Myers, R.; Myers, S.; Ye, K. (2007). Probabilidad & Estadística para Ingeniería y Ciencias. Octava ed, Pearson Educación: Ciudad Juárez - México. 816.spa
dc.relation.referencesWiner, B. J. (1991). Statistical Principles in Experimental Design. 3 ed, McGraw-Hill: Nueva York - EEUU. p. 1057.spa
dc.relation.referencesRedlich, O.; Peterson, D. L. (1959). A useful adsorption isotherm. Journal of Physical Chemistry A, 63: p. 1024-1026.spa
dc.relation.referencesLi, X.; Xiong, Z.; Ruan, X.; Xia, D.; Zeng, Q.; Xu, A. (2012). Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates. Applied Catalysis A: General, 411-412: p. 24-30.spa
dc.relation.referencesZhou, L.; Song, W.; Chen, Z.; Yin, G. (2013). Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst. Environmental Science & Technology, 47(8): p. 3833-3839.spa
dc.relation.referencesKan, H.; Soklun, H.; Yang, Z.; Wu, R.; Shen, J.; Qu, G.; Wang, T. (2020). Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms. Separation and Purification Technology, 232: p. ID 115974.spa
dc.relation.referencesBokare, A.; Chikate, R.; Rode, C.; Paknikar, K. (2007). Effect of surface chemistry of Fe-Ni nanoparticles on mechanistic pathways of azo dye degradation. Environmental Science & Technology, 41: p. 7437-7444.spa
dc.relation.referencesShu-Xuan Liang; Li-Xia Zhao; Bo-Tao Zhang; Lin, J.-M. (2008). Experimental studies on the chemiluminescence reaction mechanism of carbonate/bicarbonate and hydrogen peroxide in the presence of cobalt(II). Journal of Physical Chemistry A, 112: p. 618-623.spa
dc.relation.referencesJawad, A.; Li, Y.; Lu, X.; Chen, Z.; Liu, W.; Yin, G. (2015). Controlled leaching with prolonged activity for Co-LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide. Journal of Hazardous Materials, 289: p. 165-173.spa
dc.relation.referencesAbou-Gamra, Z. M. (2014). Kinetic and thermodynamic study for Fenton-like oxidation of amaranth red dye. Advances in Chemical Engineering and Science, 04(03): p. 285-291.spa
dc.relation.referencesCatrinescua, C.; Teodosiua, C.; Macoveanua, M.; Miehe-Brendle, J.; Dred, R. L. (2003). Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Research, 37: p. 1154 - 1160.spa
dc.relation.referencesSantana, C. S.; Nicodemos Ramos, M. D.; Vieira Velloso, C. C.; Aguiar, A. (2019). Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid. International Journal of Environmental Research and Public Health, 16(9): p. 1-16.spa
dc.relation.referencesRamirez, J. H.; Costa, C. A.; Madeira, L. M.; Mata, G.; Vicente, M. A.; Rojas-Cervantes, M. L.; López-Peinado, A. J.; Martín-Aranda, R. M. (2007). Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 71(1-2): p. 44-56.spa
dc.relation.referencesSun, S. P.; Li, C. J.; Sun, J. H.; Shi, S. H.; Fan, M. H.; Zhou, Q. (2009). Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: effect of system parameters and kinetic study. Journal of Hazardous Materials, 161(2-3): p. 1052-1057.spa
dc.relation.referencesChen, J.; Zhu, L. (2007). Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catalysis Today, 126(3-4): p. 463-470.spa
dc.relation.referencesKim, J.; Gibb, H.; Howe, P. (2006). Cobalt and Inorganic Cobalt Compounds, World Health Organization (Ed.): Milán - Suiza. p. 93spa
dc.relation.referencesMonnot, A. D.; Kovochich, M.; Bandara, S. B.; Wilsey, J. T.; Christian, W. V.; Eichenbaum, G.; Perkins, L. E. L.; Hasgall, P.; Taneja, M.; Connor, K.; Sague, J.; Nasseri-Aghbosh, B.; Marcello, S.; Vreeke, M.; Katz, L. B.; Reverdy, E. E.; Thelen, H.; Unice, K. (2021). A hazard evaluation of the reproductive/developmental toxicity of cobalt in medical devices. Regulatory Toxicology and Pharmacology, 123: p. ID 104932.spa
dc.relation.referencesSun, Z.; Gong, C.; Ren, J.; Zhang, X.; Wang, G.; Liu, Y.; Ren, Y.; Zhao, Y.; Yu, Q.; Wang, Y.; Hou, J. (2020). Toxicity of nickel and cobalt in Japanese flounder. Environmental Pollution, 263(Pt B): p. ID 114516.spa
dc.relation.referencesGarcia, M. D.; Hur, M.; Chen, J. J.; Bhatti, M. T. (2020). Cobalt toxic optic neuropathy and retinopathy: Case report and review of the literature. American Journal of Ophthalmology Case Reports, 17: p. ID 100606.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible. (2015). Resolución 0631 de 2015. Por el cual se establecen los parámetros y valores límites máximos permisibles en vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público. Bogotá D.C. p. 62.spa
dc.relation.referencesMnasri-Ghnimi, S.; Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Applied Clay Science, 179: p. ID 105151.spa
dc.relation.referencesIsmadji, S.; Soetaredjo, F. E.; Ayucitra, A. (2015). Natural clay minerals as environmental cleaning agents. In: Clay Materials for Environmental Remediation, Springer International Publishing: Milán - Suiza. p. 5-37.spa
dc.relation.referencesBergaya, F.; Lagaly, G. (2006). Chapter 1 General introduction: clays, clay minerals, and clay science. In: Developments in Clay Science, Bergaya, F.; Theng, B. K. G.; Lagaly, G. (Eds.), Elsevier: Milán - Suiza. p. 1-18.spa
dc.relation.referencesClark, J. Cobalt. 2003 [cited 27/07/2021]; Available from: https://www.chemguide.co.uk/inorganic/transition/cobalt.html.spa
dc.relation.referencesFogler, H. S. (2001). Elements of Chemical Reaction Engineering, Prentice-Hall: Nueva Jersey - EEUU. p. 1004.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaspa
dc.subject.lembQuímica -- tesis y disertaciones académicasspa
dc.subject.proposalRojo Alluraspa
dc.subject.proposalProcesos de oxidación avanzadaspa
dc.subject.proposalTratamiento de vertimientosspa
dc.subject.proposalDiseño central compuestospa
dc.subject.proposalAdsorciónspa
dc.subject.proposalArcilla bentonitaspa
dc.subject.proposalAllura redeng
dc.subject.proposalAdvanced oxidation processeseng
dc.subject.proposalWastewater treatmenteng
dc.subject.proposalCentral composite designeng
dc.subject.proposalAdsortioneng
dc.subject.proposalBentonite-type clayeng
dc.subject.unescoContaminación del aguaspa
dc.subject.unescoWater pollutioneng
dc.titleDegradación del colorante rojo Allura en solución acuosa mediante un proceso avanzado de oxidación.spa
dc.title.translatedDegradation of Allura red in aqueous solution using an advanced oxidation process.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075297885.2021.pdf
Tamaño:
2.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: