Síntesis de nanopartículas de óxido de hierro por ablación láser en medio acuoso

dc.contributor.advisorRestrepo-Parra, Elisabeth
dc.contributor.advisorOspina Ospina, Rogelio
dc.contributor.authorRivera Chaverra, María José
dc.contributor.researchgroupLaboratorio de Física de Plasmaspa
dc.date.accessioned2022-06-14T16:47:25Z
dc.date.available2022-06-14T16:47:25Z
dc.date.issued2020
dc.descriptiongráficos, imágenes, tablasspa
dc.description.abstractActualmente, el diseño y síntesis de materiales en la escala de los nanómetros para aplicaciones biomédicas es de gran interés debido a sus características comparadas con las del mismo material en bulk. Entonces el estudio de estas características, así como la producción de dichos nanomateriales, constituye un área importante de estudio que no ha sido completamente investigado para la posible aplicación en este campo. Por lo tanto, el objetivo de este trabajo fue producir muestras con nanopartículas de hierro por ablación láser en líquidos, con potenciales aplicaciones biomédicas y en el área de la hipertermia magnética. Para encontrar las condiciones experimentales que permitieran la producción de las nanopartículas, se realizaron experimentos a temperatura ambiente con un blanco de hierro puro (99,99% de pureza), cada muestra fue tomada durante 5 minutos de ablación láser en 10mL de agua Milli-Q a 90mJ, 173mJ, 279mJ y 370mJ respectivamente. La morfología de estas nanopartículas se determinó mediante las técnicas de dispersión dinámica de luz (DLS) y microscopía electrónica de transmisión por dispersión (STEM), confirmando que el tamaño de las partículas era del orden de nanómetros. También se observó una gran influencia de la potencia del láser en el tamaño de las partículas, provocada por la competencia entre la energía y la temperatura. La composición se determinó mediante difracción de rayos X y espectroscopía Raman, mostrando la presencia de magnetita, maghemita y hematita. Las mediciones de hipertermia mostraron que el aumento de temperatura de las nanopartículas (NPs) de óxido de hierro no se vio muy influenciado por el cambio de energía, la capacidad de calentamiento de las NPs magnéticas se cuantifica por la tasa de absorción específica (SAR), que tiende a disminuir al aumentar la energía, lo que indica una dependencia de estos valores de la concentración de nanopartículas. (Texto tomado de la fuente)spa
dc.description.abstractCurrently, the design and synthesis of materials on the nanometer scale for biomedical applications is of great interest due to its characteristics compared to those of the same material in bulk. The study of these characteristics, as well as the production of said nanomaterials, constitutes an important area of study that has not been fully investigated for possible application in this field. Therefore, the objective of this work was to produce samples with iron nanoparticles by laser ablation in liquids, with potential biomedical applications and in the area of magnetic hyperthermia. To find the experimental conditions that would allow the production of the nanoparticles, experiments were carried out at room temperature with a pure iron blank (99.99% purity), each sample was taken during 5 minutes of laser ablation in 10mL of Milli- water. Q at 90mJ, 173mJ, 279mJ and 370mJ respectively. The morphology of these nanoparticles was determined using dynamic light scattering (DLS) and transmission scattering electron microscopy (STEM) techniques, confirming that the size of the particles was on the order of nanometers. A large influence of laser power on particle size was also observed, caused by competition between energy and temperature. The composition was determined by X-ray diffraction and Raman spectroscopy, showing the presence of magnetite, maghemite and hematite. Hyperthermia measurements showed that the increase in temperature of iron oxide nanoparticles (NPs) was not greatly influenced by the energy change, the heating capacity of magnetic NPs is quantified by the specific absorption rate (SAR), which tends to decrease with increasing energy, indicating a dependence of these values on the concentration of nanoparticles.eng
dc.description.curricularareaCiencias Naturalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.description.researchareaNanomaterialesspa
dc.format.extentxiii, 48 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81581
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesN. A. Frey, S. Peng, K. Cheng, and S. Sun, “Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage,” Chem. Soc. Rev., vol. 38, no. 9, pp. 2532–2542, 2009.spa
dc.relation.referencesA. M. Schrand, M. F. Rahman, S. M. Hussain, J. J. Schlager, D. A. Smith, and A. F. Syed, “Metal-based nanoparticles and their toxicity assessment,” Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol. 2, no. 5, pp. 544–568, 2010.spa
dc.relation.referencesS. H. Huang and R. S. Juang, “Biochemical and biomedical applications of multifunctional magnetic nanoparticles: A review,” J. Nanoparticle Res., vol. 13, no. 10, pp. 4411–4430, 2011.spa
dc.relation.referencesM. Benz, “Superparamagnetism : Theory and Applications,” Superparamagnetism Theory Appl., pp. 1–27, 2012.spa
dc.relation.referencesA. Akbarzadeh, M. Samiei, and S. Davaran, “Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine,” Nanoscale Res. Lett., vol. 7, pp. 1–13, 2012.spa
dc.relation.referencesG. Simonsen, M. Strand, and G. Øye, “Potential applications of magnetic nanoparticles within separation in the petroleum industry,” J. Pet. Sci. Eng., vol. 165, pp. 488–495, 2018.spa
dc.relation.referencesJ. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, and J. Hubalek, “Magnetic nanoparticles and targeted drug delivering,” Pharmacol. Res., vol. 62, no. 2, pp. 144–149, 2010.spa
dc.relation.referencesV. C. Karade et al., “Effect of reaction time on structural and magnetic properties of green-synthesized magnetic nanoparticles,” J. Phys. Chem. Solids, vol. 120, no. July 2017, pp. 161–166, 2018.spa
dc.relation.referencesD. Levy, R. Giustetto, and A. Hoser, “Structure of magnetite (Fe 3O 4) above the Curie temperature: A cation ordering study,” Phys. Chem. Miner., vol. 39, no. 2, pp. 169–176, 2012.spa
dc.relation.referencesD. Wilson and M. A. Langell, “XPS analysis of oleylamine/oleic acid capped Fe3O4nanoparticles as a function of temperature,” Appl. Surf. Sci., vol. 303, pp. 6–13, 2014.spa
dc.relation.referencesC. Bárcena, A. K. Sra, and J. Gao, “Applications of magnetic nanoparticles in biomedicine,” Nanoscale Magn. Mater. Appl., vol. 167, pp. 591–626, 2009.spa
dc.relation.referencesK. M. Gregorio-Jáuregui, J. E. Rivera-Salinas, H. Saade-Caballero, R. G. López-Campos, J. L. Martínez-Hernández, and A. Ilina, “C.4 Las nanopartículas magnéticas y sus múltiples aplicaciones,” pp. 397–411, 2012.spa
dc.relation.referencesL. Labusca et al., “The effect of magnetic field exposure on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells,” Mater. Sci. Eng. C, vol. 109, no. August 2019, 2020.spa
dc.relation.referencesK. Marathe and P. Doshi, “Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2015-Decem, pp. 2550–2555, 2015.spa
dc.relation.referencesC. Bantz et al., “The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions,” Beilstein J. Nanotechnol., vol. 5, no. 1, pp. 1774–1786, 2014.spa
dc.relation.referencesJ. Wan, Y. Yao, and G. Tang, “Controlled-synthesis, characterization, and magnetic properties of Fe 3O4 nanostructures,” Appl. Phys. A Mater. Sci. Process., vol. 89, no. 2, pp. 529–532, 2007.spa
dc.relation.referencesS. Zolghadr, S. Kimiagar, and A. M. Davarpanah, “Magnetic property of α-Fe2O3-GO nanocomposite,” IEEE Trans. Magn., vol. 53, no. 12, 2017.spa
dc.relation.referencesR. Nagarjuna, S. Challagulla, R. Ganesan, and S. Roy, “High rates of Cr(VI) photoreduction with magnetically recoverable nano-Fe3O4@Fe2O3/Al2O3 catalyst under visible light,” Chem. Eng. J., vol. 308, no. Vi, pp. 59–66, 2017.spa
dc.relation.referencesG. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci., vol. 52, no. 4, pp. 648–698, 2007.spa
dc.relation.referencesJ. M. J. Santillán et al., “Optical and Magnetic Properties of Fe Nanoparticles Fabricated by Femtosecond Laser Ablation in Organic and Inorganic Solvents,” ChemPhysChem, vol. 18, no. 9, pp. 1192–1209, 2017.spa
dc.relation.referencesV. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin, D. A. Goncharova, T. S. Kharlamova, and A. I. Stadnichenko, “Comparative study of magnetite nanoparticles obtained by pulsed laser ablation in water and air,” Appl. Surf. Sci., vol. 467–468, no. August 2018, pp. 402–410, 2019.spa
dc.relation.referencesR. A. Ismail, G. M. Sulaiman, S. A. Abdulrahman, and T. R. Marzoog, “Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid,” Mater. Sci. Eng. C, vol. 53, pp. 286–297, 2015.spa
dc.relation.referencesZ. Yan and D. B. Chrisey, “Pulsed laser ablation in liquid for micro-/nanostructure generation,” J. Photochem. Photobiol. C Photochem. Rev., vol. 13, no. 3, pp. 204–223, 2012.spa
dc.relation.referencesA. B. Salunkhe, V. M. Khot, and S. H. Pawar, “Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review,” Curr. Top. Med. Chem., vol. 14, no. 5, pp. 572–594, 2014.spa
dc.relation.referencesA. Jordan and K. Maier-Hauff, “Magnetic nanoparticles for intracranial thermotherapy,” J. Nanosci. Nanotechnol., vol. 7, no. 12, pp. 4604–4606, 2007.spa
dc.relation.referencesA. R. Yasemian, M. Almasi Kashi, and A. Ramazani, “Surfactant-free synthesis and magnetic hyperthermia investigation of iron oxide (Fe 3 O 4 ) nanoparticles at different reaction temperatures,” Mater. Chem. Phys., vol. 230, no. November 2018, pp. 9–16, 2019.spa
dc.relation.referencesR. Feynman, “There’s plenty of room at the bottom,” Feynman and Computation. pp. 63–76, 2018.spa
dc.relation.referencesN. W. Ockwig et al., “Additions and corrections,” vol. 110, no. 4, pp. 2573–2574, 2010.spa
dc.relation.referencesJ. N. Tiwari, R. N. Tiwari, and K. S. Kim, “Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices,” Prog. Mater. Sci., vol. 57, no. 4, pp. 724–803, 2012.spa
dc.relation.referencesP. N. Njoki et al., “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C, vol. 111, no. 40, pp. 14664–14669, 2007.spa
dc.relation.referencesW. K. Shin, J. Cho, A. G. Kannan, Y. S. Lee, and D. W. Kim, “Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries,” Sci. Rep., vol. 6, no. May, pp. 1–10, 2016.spa
dc.relation.referencesI. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019.spa
dc.relation.referencesD. Q. Yang and E. Sacher, “Characterization and oxidation of Fe nanoparticles deposited onto highly oriented pyrolytic graphite, using x-ray photoelectron spectroscopy,” J. Phys. Chem. C, vol. 113, no. 16, pp. 6418–6425, 2009.spa
dc.relation.referencesD. Primc and D. Makovec, “Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite,” Nanoscale, vol. 7, no. 6, pp. 2688–2697, 2015.spa
dc.relation.referencesZ. Cheng, A. L. K. Tan, Y. Tao, D. Shan, K. E. Ting, and X. J. Yin, “Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater,” Int. J. Photoenergy, vol. 2012, 2012.spa
dc.relation.referencesJ. Xu et al., “Preparation and magnetic properties of magnetite nanoparticles by sol-gel method,” J. Magn. Magn. Mater., vol. 309, no. 2, pp. 307–311, 2007.spa
dc.relation.referencesP. P. Patil et al., “Pulsed-laser induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett., vol. 58, no. 3, pp. 238–241, 1987.spa
dc.relation.referencesK. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology, vol. 26, no. 6, p. 65601, 2015.spa
dc.relation.referencesK. Šišková, B. Vlćková, P. Y. Turpin, A. Thorel, and M. Procházka, “Laser ablation of silver in aqueous solutions of organic species: Probing ag nanoparticle-Adsorbate systems evolution by surface-enhanced raman and surface plasmon extinction spectra,” J. Phys. Chem. C, vol. 115, no. 13, pp. 5404–5412, 2011.spa
dc.relation.referencesS. C. Singh, “Effect of oxygen injection on the size and compositional evolution of ZnO/Zn(OH)2 nanocomposite synthesized by pulsed laser ablation in distilled water,” J. Nanoparticle Res., vol. 13, no. 9, pp. 4143–4152, 2011.spa
dc.relation.referencesA. N. Hidayah, D. Triyono, Y. Herbani, Isnaeni, and M. M. Suliyanti, “Effect of ablation time on femtosecond laser synthesis of Au- Ag colloidal nanoalloys,” J. Phys. Conf. Ser., vol. 985, no. 1, 2018.spa
dc.relation.referencesK. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl., vol. 3, no. 390, pp. 1–12, 2014.spa
dc.relation.referencesD. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C Photochem. Rev., vol. 17, pp. 50–68, 2013.spa
dc.relation.referencesV. Londoño-Calderón and Viviana, “Síntesis de nanopartículas de Níquel y Molibdeno mediante ablación láser para aplicación en catálisis heterogénea Síntesis de nanopartículas de Níquel y Molibdeno mediante ablación láser para aplicación en catálisis heterogénea,” 2020.spa
dc.relation.referencesA. J. GIUSTINI, A. A. PETRYK, S. M. CASSIM, J. A. TATE, I. BAKER, and P. J. HOOPES, “Magnetic Nanoparticle Hyperthermia in Cancer Treatment,” Nano Life, vol. 01, no. 01n02, pp. 17–32, 2010.spa
dc.relation.referencesM. C. Calero, “Caracterización De Nanopartículas Magnéticas En Cultivos Celulares Para Sus Aplicaciones Biomédicas Cellular Studies of Magnetic Nanoparticles for Biomedical Applications Tesis Doctoral,” 2015.spa
dc.relation.referencesJ. Volatron et al., “Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles,” Small, vol. 13, no. 2, pp. 1–13, 2017.spa
dc.relation.referencesW. Li, Y. Liu, Z. Qian, and Y. Yang, “Evaluation of Tumor Treatment of Magnetic Nanoparticles Driven by Extremely Low Frequency Magnetic Field,” Sci. Rep., vol. 7, no. March, pp. 1–9, 2017.spa
dc.relation.referencesD. Chen et al., “Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells,” Int. J. Nanomedicine, vol. 7, pp. 4973–4982, 2012.spa
dc.relation.referencesR. K. Gilchrist, W. D. Shorey, R. C. Hanselman, J. C. Parrott, and C. B. Taylor, “Gilchrist.Pdf,” Ann. Surg., vol. 146. pp. 596–606, 1957.spa
dc.relation.referencesP. Wust et al., “Magnetic nanoparticles for interstitial thermotherapy - Feasibility, tolerance and achieved temperatures,” Int. J. Hyperth., vol. 22, no. 8, pp. 673–685, 2006.spa
dc.relation.referencesQ. A. Pankhurst, N. K. T. Thanh, S. K. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D. Appl. Phys., vol. 42, no. 22, 2009.spa
dc.relation.referencesI. Andreu and E. Natividad, “Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia,” Int. J. Hyperth., vol. 29, no. 8, pp. 739–751, 2013.spa
dc.relation.referencesP. Kaur, M. L. Aliru, A. S. Chadha, A. Asea, and S. Krishnan, “Hyperthermia using nanoparticles - Promises and pitfalls,” Int. J. Hyperth., vol. 32, no. 1, pp. 76–88, 2016.spa
dc.relation.referencesM. Bañobre-López, A. Teijeiro, and J. Rivas, “Magnetic nanoparticle-based hyperthermia for cancer treatment,” Reports Pract. Oncol. Radiother., vol. 18, no. 6, pp. 397–400, 2013.spa
dc.relation.referencesM. Coïsson et al., “Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications,” Biochim. Biophys. Acta - Gen. Subj., vol. 1861, no. 6, pp. 1545–1558, 2017.spa
dc.relation.referencesT. L. Riss, R. A. Moravec, A. L. Niles, H. A. Benink, T. J. Worzella, and L. Minor, “Cell Viability Assays. 2013 May 1 [Updated 2016 Jul 1],” Assay Guid. Man., no. Md, pp. 1–25, 2004.spa
dc.relation.referencesS. Poulin, R. França, L. Moreau-Bélanger, and E. Sacher, “Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes,” J. Phys. Chem. C, vol. 114, no. 24, pp. 10711–10718, 2010.spa
dc.relation.referencesM. L. García-Benjume, M. I. Espitia-Cabrera, and M. E. Contreras-García, “Hierarchical macro-mesoporous structures in the system TiO2-Al2O3, obtained by hydrothermal synthesis using Tween-20® as a directing agent,” Mater. Charact., vol. 60, no. 12, pp. 1482–1488, 2009.spa
dc.relation.referencesV. Amendola, P. Riello, and M. Meneghetti, “Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents,” J. Phys. Chem. C, vol. 115, no. 12, pp. 5140–5146, 2011.spa
dc.relation.referencesP. Maneeratanasarn, T. Van Khai, S. Y. Kim, B. G. Choi, and K. B. Shim, “Synthesis of phase-controlled iron oxide nanoparticles by pulsed laser ablation in different liquid media,” Phys. Status Solidi Appl. Mater. Sci., vol. 210, no. 3, pp. 563–569, 2013.spa
dc.relation.referencesV. Amendola and M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?,” Phys. Chem. Chem. Phys., vol. 15, no. 9, pp. 3027–3046, 2013.spa
dc.relation.referencesD. Riabinina, M. Chaker, and J. Margot, “Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media,” Nanotechnology, vol. 23, no. 13, 2012.spa
dc.relation.referencesD. R. Baer, “Guide to making XPS measurements on nanoparticles,” J. Vac. Sci. Technol. A, vol. 38, no. 3, p. 031201, 2020.spa
dc.relation.referencesM. G. Lagally, “5. Diffraction Techniques,” Methods Exp. Phys., vol. 22, no. C, pp. 237–298, 1985.spa
dc.relation.referencesS. Mourdikoudis, R. M. Pallares, and N. T. K. Thanh, “Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties,” Nanoscale, vol. 10, no. 27, pp. 12871–12934, 2018.spa
dc.relation.referencesZ. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev., vol. 42, no. 5, pp. 493–541, 2007.spa
dc.relation.referencesA. Cuadros-Moreno, R. Casañas Pimentel, E. San Martín Martínez, and J. Yañes Fernandez, “Dispersión de luz dinámica en la determinación de tamaño de nanopartículas poliméricas.,” Latin-American J. Phys. Educ., vol. 8, no. 4, p. 14, 2014.spa
dc.relation.referencesA. V Crewe, “Albert V. Crewe 1927-2009,” vol. 159, p. 2010, 2010.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.lembMetales pesadosspa
dc.subject.proposalNanopartículasspa
dc.subject.proposalAblación láserspa
dc.subject.proposalÓxido de hierrospa
dc.subject.proposalAplicaciones biomédicasspa
dc.subject.proposalLaser ablationeng
dc.subject.proposalNanoparticleseng
dc.subject.proposalIron oxideeng
dc.subject.proposalBiomedical applicationseng
dc.titleSíntesis de nanopartículas de óxido de hierro por ablación láser en medio acuosospa
dc.title.translatedSynthesis of iron oxide nanoparticles by laser ablation in aqueous mediaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
1057786805.2020.pdf
Tamaño:
1.17 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física
No hay miniatura disponible
Nombre:
Autorización María José Rivera Chaverra.pdf
Tamaño:
444.22 KB
Formato:
Adobe Portable Document Format
Descripción:
Licencia

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: