Síntesis de nanopartículas de óxido de hierro por ablación láser en medio acuoso
dc.contributor.advisor | Restrepo-Parra, Elisabeth | |
dc.contributor.advisor | Ospina Ospina, Rogelio | |
dc.contributor.author | Rivera Chaverra, María José | |
dc.contributor.researchgroup | Laboratorio de Física de Plasma | spa |
dc.date.accessioned | 2022-06-14T16:47:25Z | |
dc.date.available | 2022-06-14T16:47:25Z | |
dc.date.issued | 2020 | |
dc.description | gráficos, imágenes, tablas | spa |
dc.description.abstract | Actualmente, el diseño y síntesis de materiales en la escala de los nanómetros para aplicaciones biomédicas es de gran interés debido a sus características comparadas con las del mismo material en bulk. Entonces el estudio de estas características, así como la producción de dichos nanomateriales, constituye un área importante de estudio que no ha sido completamente investigado para la posible aplicación en este campo. Por lo tanto, el objetivo de este trabajo fue producir muestras con nanopartículas de hierro por ablación láser en líquidos, con potenciales aplicaciones biomédicas y en el área de la hipertermia magnética. Para encontrar las condiciones experimentales que permitieran la producción de las nanopartículas, se realizaron experimentos a temperatura ambiente con un blanco de hierro puro (99,99% de pureza), cada muestra fue tomada durante 5 minutos de ablación láser en 10mL de agua Milli-Q a 90mJ, 173mJ, 279mJ y 370mJ respectivamente. La morfología de estas nanopartículas se determinó mediante las técnicas de dispersión dinámica de luz (DLS) y microscopía electrónica de transmisión por dispersión (STEM), confirmando que el tamaño de las partículas era del orden de nanómetros. También se observó una gran influencia de la potencia del láser en el tamaño de las partículas, provocada por la competencia entre la energía y la temperatura. La composición se determinó mediante difracción de rayos X y espectroscopía Raman, mostrando la presencia de magnetita, maghemita y hematita. Las mediciones de hipertermia mostraron que el aumento de temperatura de las nanopartículas (NPs) de óxido de hierro no se vio muy influenciado por el cambio de energía, la capacidad de calentamiento de las NPs magnéticas se cuantifica por la tasa de absorción específica (SAR), que tiende a disminuir al aumentar la energía, lo que indica una dependencia de estos valores de la concentración de nanopartículas. (Texto tomado de la fuente) | spa |
dc.description.abstract | Currently, the design and synthesis of materials on the nanometer scale for biomedical applications is of great interest due to its characteristics compared to those of the same material in bulk. The study of these characteristics, as well as the production of said nanomaterials, constitutes an important area of study that has not been fully investigated for possible application in this field. Therefore, the objective of this work was to produce samples with iron nanoparticles by laser ablation in liquids, with potential biomedical applications and in the area of magnetic hyperthermia. To find the experimental conditions that would allow the production of the nanoparticles, experiments were carried out at room temperature with a pure iron blank (99.99% purity), each sample was taken during 5 minutes of laser ablation in 10mL of Milli- water. Q at 90mJ, 173mJ, 279mJ and 370mJ respectively. The morphology of these nanoparticles was determined using dynamic light scattering (DLS) and transmission scattering electron microscopy (STEM) techniques, confirming that the size of the particles was on the order of nanometers. A large influence of laser power on particle size was also observed, caused by competition between energy and temperature. The composition was determined by X-ray diffraction and Raman spectroscopy, showing the presence of magnetite, maghemite and hematite. Hyperthermia measurements showed that the increase in temperature of iron oxide nanoparticles (NPs) was not greatly influenced by the energy change, the heating capacity of magnetic NPs is quantified by the specific absorption rate (SAR), which tends to decrease with increasing energy, indicating a dependence of these values on the concentration of nanoparticles. | eng |
dc.description.curriculararea | Ciencias Naturales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Física | spa |
dc.description.researcharea | Nanomateriales | spa |
dc.format.extent | xiii, 48 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81581 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.department | Departamento de Física y Química | spa |
dc.publisher.faculty | Facultad de Ciencias Exactas y Naturales | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | spa |
dc.relation.references | N. A. Frey, S. Peng, K. Cheng, and S. Sun, “Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage,” Chem. Soc. Rev., vol. 38, no. 9, pp. 2532–2542, 2009. | spa |
dc.relation.references | A. M. Schrand, M. F. Rahman, S. M. Hussain, J. J. Schlager, D. A. Smith, and A. F. Syed, “Metal-based nanoparticles and their toxicity assessment,” Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology, vol. 2, no. 5, pp. 544–568, 2010. | spa |
dc.relation.references | S. H. Huang and R. S. Juang, “Biochemical and biomedical applications of multifunctional magnetic nanoparticles: A review,” J. Nanoparticle Res., vol. 13, no. 10, pp. 4411–4430, 2011. | spa |
dc.relation.references | M. Benz, “Superparamagnetism : Theory and Applications,” Superparamagnetism Theory Appl., pp. 1–27, 2012. | spa |
dc.relation.references | A. Akbarzadeh, M. Samiei, and S. Davaran, “Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine,” Nanoscale Res. Lett., vol. 7, pp. 1–13, 2012. | spa |
dc.relation.references | G. Simonsen, M. Strand, and G. Øye, “Potential applications of magnetic nanoparticles within separation in the petroleum industry,” J. Pet. Sci. Eng., vol. 165, pp. 488–495, 2018. | spa |
dc.relation.references | J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, and J. Hubalek, “Magnetic nanoparticles and targeted drug delivering,” Pharmacol. Res., vol. 62, no. 2, pp. 144–149, 2010. | spa |
dc.relation.references | V. C. Karade et al., “Effect of reaction time on structural and magnetic properties of green-synthesized magnetic nanoparticles,” J. Phys. Chem. Solids, vol. 120, no. July 2017, pp. 161–166, 2018. | spa |
dc.relation.references | D. Levy, R. Giustetto, and A. Hoser, “Structure of magnetite (Fe 3O 4) above the Curie temperature: A cation ordering study,” Phys. Chem. Miner., vol. 39, no. 2, pp. 169–176, 2012. | spa |
dc.relation.references | D. Wilson and M. A. Langell, “XPS analysis of oleylamine/oleic acid capped Fe3O4nanoparticles as a function of temperature,” Appl. Surf. Sci., vol. 303, pp. 6–13, 2014. | spa |
dc.relation.references | C. Bárcena, A. K. Sra, and J. Gao, “Applications of magnetic nanoparticles in biomedicine,” Nanoscale Magn. Mater. Appl., vol. 167, pp. 591–626, 2009. | spa |
dc.relation.references | K. M. Gregorio-Jáuregui, J. E. Rivera-Salinas, H. Saade-Caballero, R. G. López-Campos, J. L. Martínez-Hernández, and A. Ilina, “C.4 Las nanopartículas magnéticas y sus múltiples aplicaciones,” pp. 397–411, 2012. | spa |
dc.relation.references | L. Labusca et al., “The effect of magnetic field exposure on differentiation of magnetite nanoparticle-loaded adipose-derived stem cells,” Mater. Sci. Eng. C, vol. 109, no. August 2019, 2020. | spa |
dc.relation.references | K. Marathe and P. Doshi, “Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2015-Decem, pp. 2550–2555, 2015. | spa |
dc.relation.references | C. Bantz et al., “The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions,” Beilstein J. Nanotechnol., vol. 5, no. 1, pp. 1774–1786, 2014. | spa |
dc.relation.references | J. Wan, Y. Yao, and G. Tang, “Controlled-synthesis, characterization, and magnetic properties of Fe 3O4 nanostructures,” Appl. Phys. A Mater. Sci. Process., vol. 89, no. 2, pp. 529–532, 2007. | spa |
dc.relation.references | S. Zolghadr, S. Kimiagar, and A. M. Davarpanah, “Magnetic property of α-Fe2O3-GO nanocomposite,” IEEE Trans. Magn., vol. 53, no. 12, 2017. | spa |
dc.relation.references | R. Nagarjuna, S. Challagulla, R. Ganesan, and S. Roy, “High rates of Cr(VI) photoreduction with magnetically recoverable nano-Fe3O4@Fe2O3/Al2O3 catalyst under visible light,” Chem. Eng. J., vol. 308, no. Vi, pp. 59–66, 2017. | spa |
dc.relation.references | G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci., vol. 52, no. 4, pp. 648–698, 2007. | spa |
dc.relation.references | J. M. J. Santillán et al., “Optical and Magnetic Properties of Fe Nanoparticles Fabricated by Femtosecond Laser Ablation in Organic and Inorganic Solvents,” ChemPhysChem, vol. 18, no. 9, pp. 1192–1209, 2017. | spa |
dc.relation.references | V. A. Svetlichnyi, A. V. Shabalina, I. N. Lapin, D. A. Goncharova, T. S. Kharlamova, and A. I. Stadnichenko, “Comparative study of magnetite nanoparticles obtained by pulsed laser ablation in water and air,” Appl. Surf. Sci., vol. 467–468, no. August 2018, pp. 402–410, 2019. | spa |
dc.relation.references | R. A. Ismail, G. M. Sulaiman, S. A. Abdulrahman, and T. R. Marzoog, “Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid,” Mater. Sci. Eng. C, vol. 53, pp. 286–297, 2015. | spa |
dc.relation.references | Z. Yan and D. B. Chrisey, “Pulsed laser ablation in liquid for micro-/nanostructure generation,” J. Photochem. Photobiol. C Photochem. Rev., vol. 13, no. 3, pp. 204–223, 2012. | spa |
dc.relation.references | A. B. Salunkhe, V. M. Khot, and S. H. Pawar, “Magnetic Hyperthermia with Magnetic Nanoparticles: A Status Review,” Curr. Top. Med. Chem., vol. 14, no. 5, pp. 572–594, 2014. | spa |
dc.relation.references | A. Jordan and K. Maier-Hauff, “Magnetic nanoparticles for intracranial thermotherapy,” J. Nanosci. Nanotechnol., vol. 7, no. 12, pp. 4604–4606, 2007. | spa |
dc.relation.references | A. R. Yasemian, M. Almasi Kashi, and A. Ramazani, “Surfactant-free synthesis and magnetic hyperthermia investigation of iron oxide (Fe 3 O 4 ) nanoparticles at different reaction temperatures,” Mater. Chem. Phys., vol. 230, no. November 2018, pp. 9–16, 2019. | spa |
dc.relation.references | R. Feynman, “There’s plenty of room at the bottom,” Feynman and Computation. pp. 63–76, 2018. | spa |
dc.relation.references | N. W. Ockwig et al., “Additions and corrections,” vol. 110, no. 4, pp. 2573–2574, 2010. | spa |
dc.relation.references | J. N. Tiwari, R. N. Tiwari, and K. S. Kim, “Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices,” Prog. Mater. Sci., vol. 57, no. 4, pp. 724–803, 2012. | spa |
dc.relation.references | P. N. Njoki et al., “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C, vol. 111, no. 40, pp. 14664–14669, 2007. | spa |
dc.relation.references | W. K. Shin, J. Cho, A. G. Kannan, Y. S. Lee, and D. W. Kim, “Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries,” Sci. Rep., vol. 6, no. May, pp. 1–10, 2016. | spa |
dc.relation.references | I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019. | spa |
dc.relation.references | D. Q. Yang and E. Sacher, “Characterization and oxidation of Fe nanoparticles deposited onto highly oriented pyrolytic graphite, using x-ray photoelectron spectroscopy,” J. Phys. Chem. C, vol. 113, no. 16, pp. 6418–6425, 2009. | spa |
dc.relation.references | D. Primc and D. Makovec, “Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite,” Nanoscale, vol. 7, no. 6, pp. 2688–2697, 2015. | spa |
dc.relation.references | Z. Cheng, A. L. K. Tan, Y. Tao, D. Shan, K. E. Ting, and X. J. Yin, “Synthesis and characterization of iron oxide nanoparticles and applications in the removal of heavy metals from industrial wastewater,” Int. J. Photoenergy, vol. 2012, 2012. | spa |
dc.relation.references | J. Xu et al., “Preparation and magnetic properties of magnetite nanoparticles by sol-gel method,” J. Magn. Magn. Mater., vol. 309, no. 2, pp. 307–311, 2007. | spa |
dc.relation.references | P. P. Patil et al., “Pulsed-laser induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron,” Phys. Rev. Lett., vol. 58, no. 3, pp. 238–241, 1987. | spa |
dc.relation.references | K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology, vol. 26, no. 6, p. 65601, 2015. | spa |
dc.relation.references | K. Šišková, B. Vlćková, P. Y. Turpin, A. Thorel, and M. Procházka, “Laser ablation of silver in aqueous solutions of organic species: Probing ag nanoparticle-Adsorbate systems evolution by surface-enhanced raman and surface plasmon extinction spectra,” J. Phys. Chem. C, vol. 115, no. 13, pp. 5404–5412, 2011. | spa |
dc.relation.references | S. C. Singh, “Effect of oxygen injection on the size and compositional evolution of ZnO/Zn(OH)2 nanocomposite synthesized by pulsed laser ablation in distilled water,” J. Nanoparticle Res., vol. 13, no. 9, pp. 4143–4152, 2011. | spa |
dc.relation.references | A. N. Hidayah, D. Triyono, Y. Herbani, Isnaeni, and M. M. Suliyanti, “Effect of ablation time on femtosecond laser synthesis of Au- Ag colloidal nanoalloys,” J. Phys. Conf. Ser., vol. 985, no. 1, 2018. | spa |
dc.relation.references | K. Sugioka and Y. Cheng, “Ultrafast lasers-reliable tools for advanced materials processing,” Light Sci. Appl., vol. 3, no. 390, pp. 1–12, 2014. | spa |
dc.relation.references | D. Tan, S. Zhou, J. Qiu, and N. Khusro, “Preparation of functional nanomaterials with femtosecond laser ablation in solution,” J. Photochem. Photobiol. C Photochem. Rev., vol. 17, pp. 50–68, 2013. | spa |
dc.relation.references | V. Londoño-Calderón and Viviana, “Síntesis de nanopartículas de Níquel y Molibdeno mediante ablación láser para aplicación en catálisis heterogénea Síntesis de nanopartículas de Níquel y Molibdeno mediante ablación láser para aplicación en catálisis heterogénea,” 2020. | spa |
dc.relation.references | A. J. GIUSTINI, A. A. PETRYK, S. M. CASSIM, J. A. TATE, I. BAKER, and P. J. HOOPES, “Magnetic Nanoparticle Hyperthermia in Cancer Treatment,” Nano Life, vol. 01, no. 01n02, pp. 17–32, 2010. | spa |
dc.relation.references | M. C. Calero, “Caracterización De Nanopartículas Magnéticas En Cultivos Celulares Para Sus Aplicaciones Biomédicas Cellular Studies of Magnetic Nanoparticles for Biomedical Applications Tesis Doctoral,” 2015. | spa |
dc.relation.references | J. Volatron et al., “Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles,” Small, vol. 13, no. 2, pp. 1–13, 2017. | spa |
dc.relation.references | W. Li, Y. Liu, Z. Qian, and Y. Yang, “Evaluation of Tumor Treatment of Magnetic Nanoparticles Driven by Extremely Low Frequency Magnetic Field,” Sci. Rep., vol. 7, no. March, pp. 1–9, 2017. | spa |
dc.relation.references | D. Chen et al., “Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells,” Int. J. Nanomedicine, vol. 7, pp. 4973–4982, 2012. | spa |
dc.relation.references | R. K. Gilchrist, W. D. Shorey, R. C. Hanselman, J. C. Parrott, and C. B. Taylor, “Gilchrist.Pdf,” Ann. Surg., vol. 146. pp. 596–606, 1957. | spa |
dc.relation.references | P. Wust et al., “Magnetic nanoparticles for interstitial thermotherapy - Feasibility, tolerance and achieved temperatures,” Int. J. Hyperth., vol. 22, no. 8, pp. 673–685, 2006. | spa |
dc.relation.references | Q. A. Pankhurst, N. K. T. Thanh, S. K. Jones, and J. Dobson, “Progress in applications of magnetic nanoparticles in biomedicine,” J. Phys. D. Appl. Phys., vol. 42, no. 22, 2009. | spa |
dc.relation.references | I. Andreu and E. Natividad, “Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia,” Int. J. Hyperth., vol. 29, no. 8, pp. 739–751, 2013. | spa |
dc.relation.references | P. Kaur, M. L. Aliru, A. S. Chadha, A. Asea, and S. Krishnan, “Hyperthermia using nanoparticles - Promises and pitfalls,” Int. J. Hyperth., vol. 32, no. 1, pp. 76–88, 2016. | spa |
dc.relation.references | M. Bañobre-López, A. Teijeiro, and J. Rivas, “Magnetic nanoparticle-based hyperthermia for cancer treatment,” Reports Pract. Oncol. Radiother., vol. 18, no. 6, pp. 397–400, 2013. | spa |
dc.relation.references | M. Coïsson et al., “Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications,” Biochim. Biophys. Acta - Gen. Subj., vol. 1861, no. 6, pp. 1545–1558, 2017. | spa |
dc.relation.references | T. L. Riss, R. A. Moravec, A. L. Niles, H. A. Benink, T. J. Worzella, and L. Minor, “Cell Viability Assays. 2013 May 1 [Updated 2016 Jul 1],” Assay Guid. Man., no. Md, pp. 1–25, 2004. | spa |
dc.relation.references | S. Poulin, R. França, L. Moreau-Bélanger, and E. Sacher, “Confirmation of X-ray photoelectron spectroscopy peak attributions of nanoparticulate iron oxides, using symmetric peak component line shapes,” J. Phys. Chem. C, vol. 114, no. 24, pp. 10711–10718, 2010. | spa |
dc.relation.references | M. L. García-Benjume, M. I. Espitia-Cabrera, and M. E. Contreras-García, “Hierarchical macro-mesoporous structures in the system TiO2-Al2O3, obtained by hydrothermal synthesis using Tween-20® as a directing agent,” Mater. Charact., vol. 60, no. 12, pp. 1482–1488, 2009. | spa |
dc.relation.references | V. Amendola, P. Riello, and M. Meneghetti, “Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents,” J. Phys. Chem. C, vol. 115, no. 12, pp. 5140–5146, 2011. | spa |
dc.relation.references | P. Maneeratanasarn, T. Van Khai, S. Y. Kim, B. G. Choi, and K. B. Shim, “Synthesis of phase-controlled iron oxide nanoparticles by pulsed laser ablation in different liquid media,” Phys. Status Solidi Appl. Mater. Sci., vol. 210, no. 3, pp. 563–569, 2013. | spa |
dc.relation.references | V. Amendola and M. Meneghetti, “What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?,” Phys. Chem. Chem. Phys., vol. 15, no. 9, pp. 3027–3046, 2013. | spa |
dc.relation.references | D. Riabinina, M. Chaker, and J. Margot, “Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media,” Nanotechnology, vol. 23, no. 13, 2012. | spa |
dc.relation.references | D. R. Baer, “Guide to making XPS measurements on nanoparticles,” J. Vac. Sci. Technol. A, vol. 38, no. 3, p. 031201, 2020. | spa |
dc.relation.references | M. G. Lagally, “5. Diffraction Techniques,” Methods Exp. Phys., vol. 22, no. C, pp. 237–298, 1985. | spa |
dc.relation.references | S. Mourdikoudis, R. M. Pallares, and N. T. K. Thanh, “Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties,” Nanoscale, vol. 10, no. 27, pp. 12871–12934, 2018. | spa |
dc.relation.references | Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev., vol. 42, no. 5, pp. 493–541, 2007. | spa |
dc.relation.references | A. Cuadros-Moreno, R. Casañas Pimentel, E. San Martín Martínez, and J. Yañes Fernandez, “Dispersión de luz dinámica en la determinación de tamaño de nanopartículas poliméricas.,” Latin-American J. Phys. Educ., vol. 8, no. 4, p. 14, 2014. | spa |
dc.relation.references | A. V Crewe, “Albert V. Crewe 1927-2009,” vol. 159, p. 2010, 2010. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 530 - Física | spa |
dc.subject.lemb | Metales pesados | spa |
dc.subject.proposal | Nanopartículas | spa |
dc.subject.proposal | Ablación láser | spa |
dc.subject.proposal | Óxido de hierro | spa |
dc.subject.proposal | Aplicaciones biomédicas | spa |
dc.subject.proposal | Laser ablation | eng |
dc.subject.proposal | Nanoparticles | eng |
dc.subject.proposal | Iron oxide | eng |
dc.subject.proposal | Biomedical applications | eng |
dc.title | Síntesis de nanopartículas de óxido de hierro por ablación láser en medio acuoso | spa |
dc.title.translated | Synthesis of iron oxide nanoparticles by laser ablation in aqueous media | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Image | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 2 de 2
Cargando...
- Nombre:
- 1057786805.2020.pdf
- Tamaño:
- 1.17 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Física
No hay miniatura disponible
- Nombre:
- Autorización María José Rivera Chaverra.pdf
- Tamaño:
- 444.22 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Licencia
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: