Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual

dc.contributor.advisorRodríguez Baracaldo, Rodolfospa
dc.contributor.advisorNarváez Tovar, Carlos Albertospa
dc.contributor.authorRomero Rodríguez, Daniel Stevenspa
dc.contributor.corporatenameUniversidad Nacional de Colombia Sede Bogotáspa
dc.contributor.researchgroupInnovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM)spa
dc.date.accessioned2020-08-03T20:23:58Zspa
dc.date.available2020-08-03T20:23:58Zspa
dc.date.issued2020-05-23spa
dc.description.abstractThe implementation of the extended finite element method (XFEM) has allowed modeling without increasing computational costs and minimizing the use of excessively fine meshes, discontinuities, complex geometric singularities, crack propagation processes, among others. Being a recent method, the effects of the input parameters on the response variables of the model are unknown. For this reason, the sensitivity analysis is relevant to determine the effect of various parameters involved in the modeling of crack propagation. The objective of this work is to carry out a parametric sensitivity analysis for an XFEM computational model of the propagation of cracks in a test piece for fracture toughness of the compact tension (CT) type made of DP600 steel, minimizing the number of nodes to 1000, for which five parameters are selected that vary in two conditions each. The selected parameters are the model dimensions, finite element size, material behavior, evolution, and damage tolerance in the material. As response variables, the Force vs. Displacement diagram and the crack trajectory were used. For statistical analysis, the Pareto graph, main effect graphs, and an analysis of variance were used, to determine the parameter with the most significant effect in the models. To quantify the error of the two model responses for the experimental data, a relative error was used between the strength of the computational model for the experimental results and a mean squared error (RMSE), totaling the error in only one for the Force vs. Displacement, in the case of two-dimensional models the average RMS errors were 46.52 %, while the three-dimensional models were closer to the experimental data with average RMS errors of 2.20 %. In the case of crack growth, RMS errors below 10 % were obtained. Through the statistical analyzes carried out, a high statistical significance was established in the parameter of the model type, being the main one for the decrease in the error calculated for experimental cases.spa
dc.description.abstractLa implementación del método de elementos finitos extendidos (XFEM) ha permitido modelar sin aumentar costos computacionales y minimizando el uso de mallas excesivamente finas las discontinuidades, singularidades geométricas complejas, procesos de propagación de grietas, entre otros. Al ser un método reciente, se desconoce los efectos de los parámetros de entrada sobre las variables de respuesta del modelo. Por tal motivo, el análisis de sensibilidad toma relevancia para determinar el efecto de varios parámetros que intervienen en el modelado de la propagación de grietas. El objetivo de este trabajo es realizar un análisis de sensibilidad paramétrica para un modelo computacional por XFEM de la propagación de grietas en una probeta para tenacidad a la fractura del tipo compact tension (CT) fabricada en acero DP600 minimizando la cantidad de nodos a 1000, para el cual se seleccionó cinco parámetros que varían en dos condiciones cada uno. Los parámetros seleccionados son las dimensiones del modelo, tamaño del elemento finito, comportamiento del material, evolución y tolerancia del daño en el material. Como variables de respuesta se usó el diagrama de Fuerza Vs. Desplazamiento y la trayectoria de la grieta. Para análisis estadadistico se utilizó el gráfico de Pareto, gráficas de efectos principales y un análisis de varianza, con el fin de determinar el parámetro con el efecto más significativo en los modelos. Para cuantificar el error de las dos respuestas del modelo, se utilizó un error relativo entre la fuerza del modelo computacional respecto a los resultados experimentales y un error cuadrático medio (RMSE) totalizando el error en uno solo para el diagrama de Fuerza vs. Desplazamiento, en el caso de los modelos de dos dimensiones los errores RMS en promedio fue del 46.52 %, mientras que los modelos en tres dimensiones fue más cercanos a los datos experimentales con errores RMS en promedio de 2.20 %. En el caso del crecimiento de grietas, se obtuvo errores RMS por debajo del 10 %. A través de los análisis estadísticos realizados, se estableció significancia estadadística alta en el parámetro del tipo modelo, siendo principal para la disminución del error calculado respecto a casos experimentales.spa
dc.description.additionalMaestría en Ingeniería - Materiales y Procesos. Línea de Investigación: Mecánica Computacional de Materiales.spa
dc.description.degreelevelMaestríaspa
dc.format.extent109spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationIEEEspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77900
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesC. C. Peréz, Evaluación experimental y modelado de propagación de grietas en un acero de fase dual," Master's thesis, Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesN. Mo Es, J. Dolbow, and T. Belytschko, A Finite element method for crack growth without remeshing," tech. rep., 1999.spa
dc.relation.referencesQ. Lai, O. Bouaziz, M. Gouné, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, and T. Pardoen, Damage and fracture of dual-phase steels: Influence of martensite volume fraction," Materials Science and Engineering A, vol. 646, pp. 322{331, 2015.spa
dc.relation.referencesY. Granbom, Influence of niobium and coiling temperature on the mechanical properties of a cold rolled dual phase steel, vol. 104. 2007.spa
dc.relation.referencesArea of opportunity for third generation steels," 2011. http://www.worldautosteel.org/.spa
dc.relation.referencesP. Tsipouridis, Mechanical properties of Dual-Phase steels," PhD Thesis, p. 122, 2006.spa
dc.relation.referencesK. W. Andrews, Empirical formulae for the calculation of some transformation temperatures," J. Iron Steel Inst., pp. 721-727, 1965.spa
dc.relation.referencesP. Movahed, S. Kolahgar, S. P. Marashi, M. Pouranvari, and N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets," Materials Science and Engineering A, vol. 518, no. 1-2, pp. 1-6, 2009.spa
dc.relation.referencesM. E. M. Amariles, Efecto del tratamiento térmico intercrítico sobre las propiedades mecánicas del acero comercial aisi sae 8615," Master's thesis, Universidad Nacional de Colombia, Medellín, 1997.spa
dc.relation.referencesC. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design," Annual Review of Materials Research, vol. 45, no. 1, pp. 391-431, 2015.spa
dc.relation.referencesA. Monsalve G., A. Artigas A., F. Castro C., R. Colás, and Y. Houbaert, Caracterización de aceros dual-phase obtenidos por laminación en caliente," Revista de Metalurgia, vol. 47, no. 1, pp. 5-14, 2011.spa
dc.relation.referencesK. Radwanski, R. Kuziak, and R. Rozmus, Structure and mechanical properties of dual phase steel following heat treatment simulations reproducing a continuous annealing line," Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 453-468, 2019.spa
dc.relation.referencesJ. Zhang, H. Di, Y. Deng, and R. D. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel," Materials Science and Engineering A, vol. 627, pp. 230-240, 2015.spa
dc.relation.referencesV. L. de la Concepcion, H. N. Lorusso, and H. G. Svoboda, Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels," Procedia Materials Science, vol. 8, pp. 1047-1056, 2015.spa
dc.relation.referencesM. K. Manoj, V. Pancholi, and S. K. Nath, Mechanical Properties and Fracture Behavior of Medium Carbon Dual Phase Steels," vol. 2, no. 4, 2014.spa
dc.relation.referencesM. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging," Acta Materialia, vol. 59, no. 2, pp. 658-670, 2011.spa
dc.relation.referencesE. A. Torres-López, J. J. Arbeláez-Toro, and D. A. Hincapié-Zuluaga, Aspectos generales acerca de la transformación martensítica," Tecnológicas, no. 31, p. 151, 2011.spa
dc.relation.referencesH. H. Albañil and E. E. Mora, Mecánica de fractura y análisis de falla. Colección Sede, Dpto. de Ingeniería Mecánica, 2002.spa
dc.relation.referencesA. Griffith, The Phenomena of Rupture and Flow in Solids," Philosophical Transactions of the Royal Society of London, vol. 221, pp. 163-198, 1921.spa
dc.relation.referencesE. Orowan, Fracture and strength of solids," Reports on Progress in Physics, vol. 12, pp. 185-232, jan 1949.spa
dc.relation.referencesG. R. Irwin, Analysis of Stresses and strains near the end of a crack traversing a plate," Journal of Applied Mathematics and Mechanics, vol. 24, no. 19, pp. 361-364, 1957.spa
dc.relation.referencesJ. N. Timoshenko, S; Goodier, Theory of elasticity. Engineering societies monographs, McGraw-Hill, 1987.spa
dc.relation.referencesH. Jaramillo Suárez, N. A. Sánchez, J. P. Cañizales Asprilla, and A. J. Toro Sánchez, Introducción a la mecánica de la fractura y análisis de fallas. Aug 2008.spa
dc.relation.referencesN. E. Dowling, Mechanical Behavior. Pearson, 4 ed. ed., 2013.spa
dc.relation.referencesT. L. Anderson, Fracture Mechanics: Fundamentals and Applications, Third Edition. Taylor & Francis, 2005.spa
dc.relation.referencesG. J. J. Arana J. L, Mecánica de fractura. 2002.spa
dc.relation.referencesA. Wells, Unstable Crack Propagation in Metals: Cleavage and Fast Fracture," Proceedings of Crack Propagation Symposium, p. 84, 1961.spa
dc.relation.referencesJ. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks," Journal of Applied Mechanics, vol. 35, pp. 379-386, 06 1968.spa
dc.relation.referencesM. Kumar, I. V. Singh, and B. K. Mishra, Fatigue crack growth simulations of plastically graded materials using XFEM and J -integral decomposition approach," Engineering Fracture Mechanics, vol. 216, no. May, p. 106470, 2019.spa
dc.relation.referencesI. G. R. and K. J. A, Critical energy rate analysis of fracture strength," Welding Journal Research Supplement, vol. 33, pp. 193-198, 1954.spa
dc.relation.referencesA. Hirt, Fatigue crack propagation in steels, vol. 18, no. 5, 1983.spa
dc.relation.referencesN. Sakakibara, Finite Element Method in Fracture Mechanics, tech. rep., 2008.spa
dc.relation.referencesD. Swenson, M. James, B. Hardeman, P. Wawrzynek, and L. Martha, CASCA: A Simple 2-D Mesh Generator Version 1.4 User's Guide," tech. rep., 1997.spa
dc.relation.referencesWestergaard and H. M., Bearing pressures and cracks, Trans AIME, J. Appl. Mech., vol. 6, pp. 49-53, 1939.spa
dc.relation.referencesO. C. Zienkiewicz, R. L. Taylor, M. C. Ruiz, and E. O. I. de Navarra, El Método de Los Elementos Finitos: Volumen 1, Formulación Básica y Problemas Lineales. No. v. 1 in El método de los elementos finitos, McGraw-Hill/Interamericana de España, S.A., 1993.spa
dc.relation.referencesR. Shamshiri and W. I. Wan Ismail, Implementation of Galerkin's method and modal analysis for unforced vibration response of a tractor suspension model," Research Journal of Applied Sciences, Engineering and Technology, vol. 7, no. 1, pp. 49-55, 2014.spa
dc.relation.referencesM. W. y. V. L. Andrade A. A, Modelos de crecimiento de grietas por fatiga, Entre Ciencia e Ingeniería, pp. 39-48, 2015.spa
dc.relation.referencesD. M. Tracey, Finite elements for determination of crack tip elastic stress intensity factors, Engineering Fracture Mechanics, vol. 3, no. 3, pp. 255-265, 1971.spa
dc.relation.referencesK. M, Finite Elements in Fracture Mechanics. 2013.spa
dc.relation.referencesF. X. G. Z. d. O. Oliveira, Crack Modelling with the eXtended Finite Element Method, p. 68, 2013.spa
dc.relation.referencesA. M. Cantara, M. Zecevic, A. Eghtesad, C. M. Poulin, and M. Knezevic, Predicting elastic anisotropy of dual-phase steels based on crystal mechanics and microstructure, International Journal of Mechanical Sciences, vol. 151, no. November 2018, pp. 639-649, 2019.spa
dc.relation.referencesA. Orifici, R. S. Thomson, R. Degenhardt, C. Bisagni, and J. Bayandor, Development of a Finite Element Analysis Methodology for the Propagation of Delaminations in Composite Structures, in Mechanics of Composite Materials, vol. 43, Aug 2007.spa
dc.relation.referencesJ.-H. Kim and G. H. Paulino, Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading," International Journal of Mechanics and Materials in Design, vol. 1, pp. 63-94, Jul 2004.spa
dc.relation.referencesM. Kumar, I. V. Singh, B. K. Mishra, S. Ahmad, A. V. Rao, and V. Kumar, Mixed mode crack growth in elasto-plastic-creeping solids using XFEM, Engineering Fracture Mechanics, vol. 199, no. April, pp. 489-517, 2018.spa
dc.relation.referencesN. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Munstermann, A. Hartmaier, and W. Bleck, A micromechanical damage simulation of dual phase steels using XFEM, Computational Materials Science, vol. 54, pp. 271-279, mar 2012.spa
dc.relation.referencesM. Anderson and P. Whitcomb, Design of Experiments: Statistical Principles of Research Design and Analysis, vol. 43. 2001.spa
dc.relation.referencesH. Pulido and R. de la Vara Salazar, Análisis y diseño de experimentos. McGraw-Hill, 2003.spa
dc.relation.referencesS. P. Kumar, Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth," Master's thesis, 2017.spa
dc.relation.referencesS. Kumar and G. Bhardwaj, A new enrichment scheme in XFEM to model crack growth behavior in ductile materials, Theoretical and Applied Fracture Mechanics, vol. 96, no. March, pp. 296-307, 2018.spa
dc.relation.referencesP. Sustaric, M. R. Seabra, J. M. Cesar De Sa, and T. Rodic, Sensitivity analysis-based crack propagation criterion for compressible and (near) incompressible hyperelastic materials," Finite Elements in Analysis and Design, vol. 82, pp. 1-15, 2014.spa
dc.relation.referencesA. Ramazani, M. Abbasi, S. Kazemiabnavi, S. Schmauder, R. Larson, and U. Prahl, Development and application of a microstructure-based approach to characterize and model failure initiation in DP steels using XFEM," Materials Science and Engineering A, vol. 660, pp. 181-194, 2016.spa
dc.relation.referencesA. Bergara, J. I. Dorado, A. Martin-Meizoso, and J. M. Martínez-Esnaola, Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM)," International Journal of Fatigue, vol. 103, pp. 112-121, 2017.spa
dc.relation.referencesT. Nagashima and M. Sawada, Development of a damage propagation analysis system based on level set XFEM using the cohesive zone model, Computers and Structures, vol. 174, pp. 42-53, 2016.spa
dc.relation.referencesN. A. Petrov, L. Gorbatikh, and S. V. Lomov, A parametric study assessing performance of eXtended Finite Element Method in application to the cracking process in cross-ply composite laminates, Composite Structures, vol. 187, no. July 2017, pp. 489-497, 2018.spa
dc.relation.referencesH. Zhang and A. Fatemi, Short fatigue crack growth from a blunt notch in plate specimens," International Journal of Fracture, vol. 170, pp. 1-11, Jul 2011.spa
dc.relation.referencesS. Ashokkumar SHAH, Micro mechanics-based prognosis of progressive dynamic damage in advanced aerospace composite structures, tech. rep., 2010.spa
dc.relation.referencesG. Cherepanov, Crack propagation in continuous media, Journal of Applied Mathematics and Mechanics, vol. 31, pp. 476-488, 1967.spa
dc.relation.referencesA. M. Alshoaibi, M. S. A. Hadi, and A. K. Ariffin, An adaptive finite element procedure for crack propagation analysis, Journal of Zhejiang University-SCIENCE A, vol. 8, pp. 228-236, Feb 2007.spa
dc.relation.referencesB. Trollé, M. C. Baietto, A. Gravouil, S. H. Mai, and T. M. Nguyen-Tajan, XFEM crack propagation under rolling contact fatigue," in Procedia Engineering, vol. 66, pp. 775-782, Elsevier Ltd, 2013.spa
dc.relation.referencesA. Hillerborg, M. Modeer, and P. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, tech. rep., 1976.spa
dc.relation.referencesDamage evolution and element removal for ductile metals, 2017. https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageevolductile.htm.spa
dc.relation.referencesE. Barbero, Finite Element Analysis of Composite Materials. Jan 2008.spa
dc.relation.referencesD. C. Montgomery, Design and Analysis of Experiments, 8th Edition. John Wiley & Sons, Incorporated, 2012.spa
dc.relation.referencesR. Raeside, Teaching experimental design techniques to engineers, International Journal of Quality & Reliability Management, vol. 12, no. 1, pp. 47-52, 1995.spa
dc.relation.referencesDefining plasticity in Abaqus, 2017. https://abaqus-docs.mit.edu/2017/English/SIMACAEGSARefMap/simagsa-c-matdefining.htm.spa
dc.relation.referencesMcCabe, R-Curve Determination Using a Crack-Line-Wedge-Loaded in Fracture Toughness Evaluation by R-Curve Methods (D. E. McCabe, ed.), ASTM International, Jan 1973.spa
dc.relation.referencesB. Kawecki and P. Jerzy, Numerical results quality in dependence on abaqus plane stress elements type in big displacements compression test, Applied Computer Science, vol. 13, 12 2017.spa
dc.relation.referencesN. Fanaie, F. Ghalamzan Esfahani, and S. Soroushnia, Analytical study of composite beams with different arrangements of channel shear connectors," Steel and Composite Structures, vol. 19, pp. 485-501, 08 2015.spa
dc.relation.referencesT. Belytschko, J. Ong, K. Wing Kam Liu, and J. Kennedy, Hourglass control in linear and nonlinear problems, Computer Methods in Applied Mechanics and Engineering, vol. 43, pp. 251-276, May 1984.spa
dc.relation.referencesM. Gosz, Finite Element Method: Applications in Solids, Structures, and Heat Transfer. Mechanical Engineering, CRC Press, 2017.spa
dc.relation.referencesN. J. Gómez-Ruiz, M. J. Vergara-Paredes, and J. A. Alvarado-Contreras, Estudio De Convergencia Por Análisis De Elementos Finitos En Tejido óseo Cortical," Revista Iberoamericana de Ingeniería Mecánica, vol. 21, no. 2, pp. 85-103, 2017.spa
dc.relation.referencesA. L. Schubert, D. Hagemann, A. Voss, and K. Bergmann, Evaluating the model fit of diffusion models with the root mean square error of approximation, Journal of Mathematical Psychology, vol. 77, pp. 29-45, 2017.spa
dc.relation.referencesT. Chai and R. R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE) -Arguments against avoiding RMSE in the literature, Geoscientific Model Development, vol. 7, no. 3, pp. 1247-1250, 2014.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalXFEMeng
dc.subject.proposalsensibilidad paramétricaspa
dc.subject.proposalcrecimiento de grietaspa
dc.subject.proposalcompact tensioneng
dc.titleAnálisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dualspa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026292408.2020.pdf
Tamaño:
5.9 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: