Caracterización de un proceso de manufactura aditiva por extrusión de un biopolímero y definición de su potencial uso como dispositivo para transporte de fármacos

dc.contributor.advisorCordoba Nieto, Ernestospa
dc.contributor.advisorVallejo Díaz, Bibiana Margaritaspa
dc.contributor.authorBacca González, César Augustospa
dc.contributor.orcidBacca, Augusto [0000000348684619]spa
dc.contributor.researchgroupInvestigación en Procesos de Transformación de Materiales Para la Industria Farmacéuticaspa
dc.date.accessioned2024-11-21T13:09:23Z
dc.date.available2024-11-21T13:09:23Z
dc.date.issued2020
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractSe propone el diseño, instalación y caracterización de una plataforma de manufactura aditiva experimental robotizada, para la fabricación de dispositivos de biopolímeros de almidones de yuca y maíz, en estado gelatinizado, con diferentes proporciones de agua y glicerina. En la etapa de exploración inicial, se seleccionaron los principales componentes del extrusor (diámetro de boquilla de 0,8 mm) y fueron definidas las dieciocho mezclas, con los factores: tipo de almidón (yuca y maíz), porcentaje de almidón (15%, 20% y 25%) y porcentaje de glicerina (respecto al contenido de base seca: 0%, 15% y 30%). Se usaron bancos de prueba, para identificar los parámetros de ajuste del proceso, se determinó la respuesta de las mezclas en cinco niveles de velocidad del extrusor, y dos niveles de presión en el tanque reservorio, estableciendo las condiciones para determinar el valor promedio de tasa de material extruido en 0,360 g/min, para los dos grupos de almidones, y como consecuencia a ese resultado se obtuvieron los rangos de velocidades de extrusión para el grupo de almidón de yuca en 655 mm/min y 404 mm/min para el grupo de almidón de maíz. En la caracterización mecánica de los dispositivos, se encontró que la mezcla de agua destilada con almidón de yuca (20%) y glicerina (15%), presentaron la mejor respuesta al esfuerzo mecánico. Finalmente se examina el potencial uso de un dispositivo (seleccionado por la mejor respuesta de resistencia mecánica), como medio de transporte y liberación de un compuesto activo (Diclofenaco sódico) (Texto tomado de la fuente).spa
dc.description.abstractThe design, installation and characterization of an experimental robotized additive manufacturing platform is proposed for the manufacture of biopolymer devices from cassava and corn starches, in gelatinized state, with different proportions of water and glycerin. In the initial exploration stage, the main components of the extruder (nozzle diameter of 0.8 mm) were selected and the eighteen mixtures were defined, with the following factors: type of starch (cassava and corn), percentage of starch (15%, 20% and 25%) and percentage of glycerin (with respect to the dry base content: 0%, 15% and 30%). Test benches were used to identify the process adjustment parameters, the response of the mixtures was determined at five extruder speed levels and two pressure levels in the reservoir tank, establishing the conditions to determine the average value of the extruded material rate at 0.360 g/min for the two starch groups, and as a consequence of this result, the extrusion speed ranges for the cassava starch group were obtained at 655 mm/min and 404 mm/min for the corn starch group. In the mechanical characterization of the devices, it was found that the mixture of distilled water with cassava starch (20%) and glycerin (15%) presented the best response to mechanical stress. Finally, the potential use of a device (selected for the best mechanical resistance response) is examined as a means of transport and release of an active compound (Diclofenac sodium).eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ingeniería - Materiales y Procesosspa
dc.description.researchareaManufactura aditiva de biomaterialesspa
dc.format.extentxvii, 175 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87195
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.referencesAdafruit-Industries-LLC. (2009). Motor shield library. https://cdn-learn.adafruit.com/downloads/pdf/adafruit-motor-shield-v2-for-arduino.pdfspa
dc.relation.referencesAltman, R., Bosch, B., Brune, K., Patrignani, P., & Young, C. (2015). Advances in NSAID development: Evolution of diclofenac products using pharmaceutical technology. Drugs, 75(8), 859–877. https://doi.org/10.1007/s40265-015-0392-zspa
dc.relation.referencesASTM. (2009). ASTM F2792-10.spa
dc.relation.referencesASTM. (2016). Standard Test Method for Compressive Properties of Rigid Cellular Plastics 1. 16–20. https://doi.org/10.1520/D1621-16.2spa
dc.relation.referencesBartolomei, M., Rodomonte, A., Antoniella, E., Minelli, G., & Bertocchi, P. (2007). Hydrate modifications of the non-steroidal anti-inflammatory drug diclofenac sodium : Solid-state characterisation of a trihydrate form. 45, 443–449. https://doi.org/10.1016/j.jpba.2007.07.002spa
dc.relation.referencesBasiak, E., Lenart, A., & Debeaufort, F. (2017). International Journal of Biological Macromolecules Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348–356. https://doi.org/10.1016/j.ijbiomac.2017.01.122spa
dc.relation.referencesBellini, A., Güçeri, S., & Bertoldi, M. (2004). Liquefier Dynamics in Fused Deposition. Journal of Manufacturing Science and Engineering, 126(2), 237. https://doi.org/10.1115/1.1688377spa
dc.relation.referencesBellini, A., Shor, L., & Guceri, S. I. (2005). New developments in fused deposition modeling of ceramics. Rapid Prototyping Journal, 11(4), 214–220. https://doi.org/10.1108/13552540510612901spa
dc.relation.referencesBridgewater, J., & Benbow, J. (1995). Paste flow and extrusion. Oxford University Press (Vol. 41).spa
dc.relation.referencesCalignano, F., Manfredi, D., Ambrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E., Salmi, A., Minetola, P., Iuliano, L., & Fino, P. (2017). Overview on additive manufacturing technologies. Proceedings of the IEEE, 105(4), 593–612. https://doi.org/10.1109/JPROC.2016.2625098spa
dc.relation.referencesCarraher, C. E. J. (2017). Chapter 2 Polymer Structure (Morphology). In Introduction to Polymer Chemistry (pp. 27–53).spa
dc.relation.referencesChen, H., Xie, F., Chen, L., & Zheng, B. (2019). Effect of rheological properties of potato , rice and corn starches on their hot- extrusion 3D printing behaviors. Journal of Food Engineering, 244(July 2018), 150–158. https://doi.org/10.1016/j.jfoodeng.2018.09.011spa
dc.relation.referencesDankar, I., Haddarah, A., Omar, F. E. L., & Sepulcre, F. (2018). Trends in Food Science & Technology 3D printing technology : The new era for food customization and elaboration. 75(March), 231–242. https://doi.org/10.1016/j.tifs.2018.03.018spa
dc.relation.referencesDerossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2018). Application of 3D printing for customized food . A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220, 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.015spa
dc.relation.referencesDerossi, A., Paolillo, M., Caporizzi, R., & Severini, C. (2020). Extending the 3D food printing tests at high speed . Material deposition and effect of non-printing movements on the final quality of printed structures. Journal of Food Engineering, 275(August 2019), 109865. https://doi.org/10.1016/j.jfoodeng.2019.109865spa
dc.relation.referencesDing, Y., Dwivedi, R., & Kovacevic, R. (2017). Robotics and Computer-Integrated Manufacturing Process planning for 8-axis robotized laser-based direct metal deposition system : A case on building revolved part. Robotics and Computer Integrated Manufacturing, 44, 67–76. https://doi.org/10.1016/j.rcim.2016.08.008spa
dc.relation.referencesEnglert, C., Brendel, J. C., Majdanski, T. C., Yildirim, T., Schubert, S., Gottschaldt, M., Windhab, N., & Schubert, U. S. (2018). Progress in Polymer Science Pharmapolymers in the 21st century : Synthetic polymers in drug delivery applications. Progress in Polymer Science, 87, 107–164. https://doi.org/10.1016/j.progpolymsci.2018.07.005spa
dc.relation.referencesEscalante-Aburto, A., Ponce-García, N., Ramírez-Wong, B., Santiago-Ramos, D., Véles-Medina, J. J., & de Dios Figueroa Cárdenas, J. (2016). Effect of extrusion factors and particle size on starch properties of nixtamalized whole blue corn snacks. Starch/Staerke, 68(11–12), 1111–1120. https://doi.org/10.1002/star.201500316spa
dc.relation.referencesFallahi, P., Muthukumarappan, K., & Rosentrater, K. A. (2016). Functional and structural properties of corn, potato, and cassava starches as affected by a single-screw extruder. International Journal of Food Properties, 19(4), 768–788. https://doi.org/10.1080/10942912.2015.1042112spa
dc.relation.referencesFDA. (2017). Classification of Products as Drugs and Devices & Additional Product Classification Issues: Guidance for Industry and FDA Staff. Septembre, 1–12. papers2://publication/uuid/2AA84724-F418-49FE-ACEA-395A17AD430Dspa
dc.relation.referencesFelbrich, B., Wulle, F., Allgaier, C., Menges, A., Verl, A., Wurst, K., & Nebelsick, J. H. (2018). A novel rapid additive manufacturing concept for architectural composite shell construction inspired by the shell formation in land snails A novel rapid additive manufacturing concept for architectural composite shell construction inspired by the shell fo.spa
dc.relation.referencesFeng, P., He, J., Peng, S., Gao, C., Zhao, Z., Xiong, S., & Shuai, C. (2019). Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. Materials Science and Engineering C, 100(December 2018), 809–825. https://doi.org/10.1016/j.msec.2019.03.030spa
dc.relation.referencesGibson, I., Rosen, D. W., & Stucker, B. (2015). Introduction and Basic Principles. In Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (pp. 1–18). Springer US. https://doi.org/10.1007/978-1-4419-1120-9_1spa
dc.relation.referencesGoole, J., & Amighi, K. (2016). 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. International Journal of Pharmaceutics, 499(1–2), 376–394. https://doi.org/10.1016/j.ijpharm.2015.12.071spa
dc.relation.referencesGoyanes, A., Wang, J., Buanz, A., Martínez-Pacheco, R., Telford, R., Gaisford, S., & Basit, A. W. (2015). 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Molecular Pharmaceutics, 12(11), 4077–4084. https://doi.org/10.1021/acs.molpharmaceut.5b00510spa
dc.relation.referencesGurgel, M., Vieira, A., Altenhofen, M., Oliveira, L., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films : A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011spa
dc.relation.referencesHassan, M., Dave, K., Chandrawati, R., Dehghani, F., & Gomes, V. G. (2019). 3D printing of biopolymer nanocomposites for tissue engineering : Nanomaterials , processing and structure-function relation. European Polymer Journal, 121(October), 109340. https://doi.org/10.1016/j.eurpolymj.2019.109340spa
dc.relation.referencesHernández-Medina, M., Torruco-Uco, J. G., Chel-Guerrero, L., & Betancur-Ancona, D. (2008). Caracterización fisicoquímica de almidones de tubércules cultivados en Yucatán, México. Ciencia e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101-20612008000300031spa
dc.relation.referencesHorn, T. J., & Harrysson, O. L. A. (2012). Overview of current additive manufacturing technologies and selected applications. Science Progress, 95(3), 255–282. https://doi.org/10.3184/003685012X13420984463047spa
dc.relation.referencesISO/ASTM. (2015). ISO/ASTM 52900:2015(en), Additive manufacturing — General principles — Terminology. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:enspa
dc.relation.referencesJohnson, R. ., Mwaikambo, L. ., & Tucker, N. (2003). Rapra Review Re ports. 14(3), 3144.spa
dc.relation.referencesKempin, W., Franz, C., Koster, L. C., Schneider, F., Bogdahn, M., Weitschies, W., & Seidlitz, A. (2017). Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. European Journal of Pharmaceutics and Biopharmaceutics, 115, 84–93. https://doi.org/10.1016/j.ejpb.2017.02.014spa
dc.relation.referencesKołodziejska, J., & Kołodziejczyk, M. (2018). Diclofenac in the treatment of pain in patients with rheumatic diseases. Reumatologia, 56(3), 174–183. https://doi.org/10.5114/reum.2018.76816spa
dc.relation.referencesKoski, C., Onuike, B., Bandyopadhyay, A., & Bose, S. (2018). Starch-hydroxyapatite composite bone sca ff old fabrication utilizing a slurry extrusion-based solid freeform fabricator. Additive Manufacturing, 24(August), 47–59. https://doi.org/10.1016/j.addma.2018.08.030spa
dc.relation.referencesKuo, C., Liu, L., Teng, W., & Chang, H. (2016). Preparation of starch / acrylonitrile-butadiene-styrene copolymers ( ABS ) biomass alloys and their feasible evaluation for 3D printing applications. Composites Part B, 86, 36–39. https://doi.org/10.1016/j.compositesb.2015.10.005spa
dc.relation.referencesLagarrigue, S., & Alvarez, G. (2001). The rheology of starch dispersions at high temperatures and high shear rates: A review. Journal of Food Engineering, 50(4), 189–202. https://doi.org/10.1016/S0260-8774(00)00239-9spa
dc.relation.referencesLam, C. X. F., Mo, X. M., Teoh, S. H., & Hutmacher, D. W. (2002). Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 20(1–2), 49–56. https://doi.org/10.1016/S0928-4931(02)00012-7spa
dc.relation.referencesLi, J. P., Habibovic, P., van den Doel, M., Wilson, C. E., de Wijn, J. R., van Blitterswijk, C. A., & de Groot, K. (2007). Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 28(18), 2810–2820. https://doi.org/10.1016/j.biomaterials.2007.02.020spa
dc.relation.referencesLi, X., Lian, Q., Li, D., Xin, H., & Jia, S. (2017). applied sciences Development of a Robotic Arm Based Hydrogel Additive Manufacturing System for In-Situ Printing. https://doi.org/10.3390/app7010073spa
dc.relation.referencesLigon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews, 117(15), 10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074spa
dc.relation.referencesLii, C. Y., Tsai, M. L., & Tseng, K. H. (1996). Effect of amylose content on the rheological property of rice starch. Cereal Chemistry, 73(4), 415–420.spa
dc.relation.referencesLing, C., Cernicchi, A., Gilchrist, M. D., & Cardiff, P. (2019). Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading. Materials & Design, 162, 106–118. https://doi.org/10.1016/j.matdes.2018.11.035spa
dc.relation.referencesLiu, J., Sun, L., Xu, W., Wang, Q., Yu, S., & Sun, J. (2019). Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate Polymers, 207(June 2018), 297–316. https://doi.org/10.1016/j.carbpol.2018.11.077spa
dc.relation.referencesLiu, Z., Bhandari, B., Prakash, S., Mantihal, S., & Zhang, M. (2019). Food Hydrocolloids Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids, 87(August 2018), 413–424. https://doi.org/10.1016/j.foodhyd.2018.08.026spa
dc.relation.referencesManiruzzaman, M., Boateng, J. S., Snowden, M. J., & Douroumis, D. (2012). A Review of Hot-Melt Extrusion: Process Technology to Pharmaceutical Products. ISRN Pharmaceutics, 2012, 1–9. https://doi.org/10.5402/2012/436763spa
dc.relation.referencesMantihal, S., Prakash, S., Godoi, F. C., & Bhandari, B. (2017). Optimization of chocolate 3D printing by correlating thermal and fl ow properties with 3D structure modeling. Innovative Food Science and Emerging Technologies, 44(May), 21–29. https://doi.org/10.1016/j.ifset.2017.09.012spa
dc.relation.referencesMcCauley, M. (2011). Stepper Library. https://www.arduino.cc/en/Reference/Stepperspa
dc.relation.referencesMedina, J. A. (2008). Caracterización morfológica del granulo de almidón nativo Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, unknown(27), 56–62. https://doi.org/10.16924/riua.v0i27.280spa
dc.relation.referencesMishra, S., & Rai, T. (2006). Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocolloids, 20(5), 557–566. https://doi.org/10.1016/j.foodhyd.2005.01.001spa
dc.relation.referencesMontgomery, D. (2012). Randomized Blocks, Latin Squares, and Related Designs. In Design and Analysis of Experiments (pp. 141–152).spa
dc.relation.referencesN. Turner, B., Strong, R., & A. Gold, S. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal, 20(3), 192–204. https://doi.org/10.1108/RPJ-01-2013-0012spa
dc.relation.referencesNafchi, A. M., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch/Staerke, 65(1–2), 61–72. https://doi.org/10.1002/star.201200201spa
dc.relation.referencesNational.Instruments. (2014). Arduino Toolkit. http://www.ni.com/gate/gb/GB_EVALTLKTLVARDIO/USspa
dc.relation.referencesNikkola, L., Viitanen, P., & Ashammakhi, N. (2008). Diclofenac sodium loaded multicomponent implant. AIP Conference Proceedings, 973(2008), 766–771. https://doi.org/10.1063/1.2896878spa
dc.relation.referencesNorman, J., Madurawe, R. D., Moore, C. M. V., Khan, M. A., & Khairuzzaman, A. (2017). A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Advanced Drug Delivery Reviews, 108, 39–50. https://doi.org/10.1016/j.addr.2016.03.001spa
dc.relation.referencesPatel, B. K., & Seetharaman, K. (2006). Effect of heating rate on starch granule morphology and size. Carbohydrate Polymers, 65(3), 381–385. https://doi.org/10.1016/j.carbpol.2006.01.028spa
dc.relation.referencesSandoval, A., Farhat, I., & Fernández, a. (2007). COMPORTAMIENTO REOLÓGICO DE HARINAS Y ALMIDONES DE YUCA ( Manihot esculenta CRANTZ ) DURANTE. Vitae, 14(1), 6–15.spa
dc.relation.referencesSchlordt, T., Keppner, F., Travitzky, N., & Greil, P. (2012). Robocasting of alumina lattice truss structures. In Journal of Ceramic Science and Technology (Vol. 3, Issue 2, pp. 81–88). https://doi.org/10.4416/JCST2012-00003spa
dc.relation.referencesSolarte-Montúfar, J. G., Díaz-Murangal, A. E., Osorio-Mora, O., & Mejía-España, D. F. (2019). Rheological and functional properties of the starch from three varieties of Creole potato. Informacion Tecnologica, 30(6), 35–44. https://doi.org/10.4067/S0718-07642019000600035spa
dc.relation.referencesSperling, L. H. (2005). Introduction to Polymer Science. In Introduction to Physical Polymer Science (pp. 1–28). John Wiley & Sons, Inc. https://doi.org/10.1002/0471757128.ch1spa
dc.relation.referencesSun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P. (2008). Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping Journal, 14(2), 72–80. https://doi.org/10.1108/13552540810862028spa
dc.relation.referencesTravitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert-Demut, I., Schlier, L., Schlordt, T., & Greil, P. (2014). Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 16(6), 729–754. https://doi.org/10.1002/adem.201400097spa
dc.relation.referencesUrhal, P., Weightman, A., Diver, C., & Bartolo, P. (2019). Robot assisted additive manufacturing : A review. 59(July 2018), 335–345. https://doi.org/10.1016/j.rcim.2019.05.005spa
dc.relation.referencesUSP. (2012). Physical Tests - Loss on Drying.spa
dc.relation.referencesUSP. (2016). Diclofenac Sodium Extended-Release Tablets. In Diclofenac Sodium Extended-release Tablets.spa
dc.relation.referencesVaezi, M., & Yang, S. (2015). Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual and Physical Prototyping, 10(3), 123–135. https://doi.org/10.1080/17452759.2015.1097053spa
dc.relation.referencesVilaplana, F., Hasjim, J., & Gilbert, R. G. (2012). Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydrate Polymers, 88(1), 103–111. https://doi.org/10.1016/j.carbpol.2011.11.072spa
dc.relation.referencesWaterschoot, J., Gomand, S. V., & Delcour, J. A. (2016). Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches. Food Hydrocolloids, 52, 69–77. https://doi.org/10.1016/j.foodhyd.2015.06.012spa
dc.relation.referencesXie, F., Yu, L., Su, B., Liu, P., Wang, J., Liu, H., & Chen, L. (2009). Rheological properties of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 49(3), 371–377. https://doi.org/10.1016/j.jcs.2009.01.002spa
dc.relation.referencesYang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018). LWT - Food Science and Technology Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT - Food Science and Technology, 87, 67–76. https://doi.org/10.1016/j.lwt.2017.08.054spa
dc.relation.referencesYang, L., Tang, S., Li, G., Qian, L., Mei, J., Jiang, W., & Fan, Z. (2019). Layered extrusion forming of complex ceramic structures using starch as removable support. Ceramics International, 45(17), 21843–21850. https://doi.org/10.1016/j.ceramint.2019.07.193spa
dc.relation.referencesYe, J., Hu, X., Luo, S., Liu, W., Chen, J., Zeng, Z., & Liu, C. (2018). Properties of Starch after Extrusion: A Review. Starch/Staerke, 70(11–12), 1–8. https://doi.org/10.1002/star.201700110spa
dc.relation.referencesYeong, W.-Y., Chua, C.-K., Leong, K.-F., & Chandrasekaran, M. (2004). Rapid prototyping in tissue engineering: challenges and potential. Trends in Biotechnology, 22(12), 643–652. https://doi.org/10.1016/j.tibtech.2004.10.004spa
dc.relation.referencesYingfeng, Z. U. O., Jiyou, G. U., Haiyan, T. A. N., & Yanhua, Z. (2015). Thermoplastic Starch Prepared with Different Plasticizers : Relation between Degree of Plasticization and Properties. 423–428. https://doi.org/10.1007/s11595-015-1164-zspa
dc.relation.referencesYussof, N. S., Utra, U., & Alias, A. K. (2013). Hydrolysis of native and cross-linked corn, tapioca, and sweet potato starches at sub-gelatinization temperature using a mixture of amylolytic enzymes. Starch/Staerke, 65(3–4), 285–295. https://doi.org/10.1002/star.201200002spa
dc.relation.referencesZadpoor, A. A., & Malda, J. (2017). Additive Manufacturing of Biomaterials, Tissues, and Organs. Annals of Biomedical Engineering, 45(1). https://doi.org/10.1007/s10439-016-1719-yspa
dc.relation.referencesZdanowicz, M., & Johansson, C. (2016). Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents. Carbohydrate Polymers, 151, 103–112. https://doi.org/10.1016/j.carbpol.2016.05.061spa
dc.relation.referencesŽilnik, L. F., Jazbinšek, A., Hvala, A., Vrečer, F., & Klamt, A. (2007). Solubility of sodium diclofenac in different solvents. Fluid Phase Equilibria, 261(1–2), 140–145. https://doi.org/10.1016/j.fluid.2007.07.020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicosspa
dc.subject.lembBiopolymerseng
dc.subject.lembBIOPOLIMEROSspa
dc.subject.lembMATERIALES BIOMEDICOSspa
dc.subject.lembBiomedical materialseng
dc.subject.lembCONTAMINANTES BIODEGRADABLESspa
dc.subject.lembBiodegradable pollutantseng
dc.subject.lembRECURSOS NATURALES RENOVABLESspa
dc.subject.lembRenewable natural resourceseng
dc.subject.proposalManufactura aditivaspa
dc.subject.proposalBiopolímero de almidónspa
dc.subject.proposalControl de procesospa
dc.subject.proposalAdditive manufacturingeng
dc.subject.proposalStarch biopolymereng
dc.subject.proposalProcess controleng
dc.titleCaracterización de un proceso de manufactura aditiva por extrusión de un biopolímero y definición de su potencial uso como dispositivo para transporte de fármacosspa
dc.title.translatedCharacterization of an additive manufacturing process by extrusion of a biopolymer and definition of its potential use as a device for drug transporteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Maestria-80034215.pdf
Tamaño:
4.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: