Caracterización de un proceso de manufactura aditiva por extrusión de un biopolímero y definición de su potencial uso como dispositivo para transporte de fármacos
dc.contributor.advisor | Cordoba Nieto, Ernesto | spa |
dc.contributor.advisor | Vallejo Díaz, Bibiana Margarita | spa |
dc.contributor.author | Bacca González, César Augusto | spa |
dc.contributor.orcid | Bacca, Augusto [0000000348684619] | spa |
dc.contributor.researchgroup | Investigación en Procesos de Transformación de Materiales Para la Industria Farmacéutica | spa |
dc.date.accessioned | 2024-11-21T13:09:23Z | |
dc.date.available | 2024-11-21T13:09:23Z | |
dc.date.issued | 2020 | |
dc.description | ilustraciones, diagramas, fotografías, tablas | spa |
dc.description.abstract | Se propone el diseño, instalación y caracterización de una plataforma de manufactura aditiva experimental robotizada, para la fabricación de dispositivos de biopolímeros de almidones de yuca y maíz, en estado gelatinizado, con diferentes proporciones de agua y glicerina. En la etapa de exploración inicial, se seleccionaron los principales componentes del extrusor (diámetro de boquilla de 0,8 mm) y fueron definidas las dieciocho mezclas, con los factores: tipo de almidón (yuca y maíz), porcentaje de almidón (15%, 20% y 25%) y porcentaje de glicerina (respecto al contenido de base seca: 0%, 15% y 30%). Se usaron bancos de prueba, para identificar los parámetros de ajuste del proceso, se determinó la respuesta de las mezclas en cinco niveles de velocidad del extrusor, y dos niveles de presión en el tanque reservorio, estableciendo las condiciones para determinar el valor promedio de tasa de material extruido en 0,360 g/min, para los dos grupos de almidones, y como consecuencia a ese resultado se obtuvieron los rangos de velocidades de extrusión para el grupo de almidón de yuca en 655 mm/min y 404 mm/min para el grupo de almidón de maíz. En la caracterización mecánica de los dispositivos, se encontró que la mezcla de agua destilada con almidón de yuca (20%) y glicerina (15%), presentaron la mejor respuesta al esfuerzo mecánico. Finalmente se examina el potencial uso de un dispositivo (seleccionado por la mejor respuesta de resistencia mecánica), como medio de transporte y liberación de un compuesto activo (Diclofenaco sódico) (Texto tomado de la fuente). | spa |
dc.description.abstract | The design, installation and characterization of an experimental robotized additive manufacturing platform is proposed for the manufacture of biopolymer devices from cassava and corn starches, in gelatinized state, with different proportions of water and glycerin. In the initial exploration stage, the main components of the extruder (nozzle diameter of 0.8 mm) were selected and the eighteen mixtures were defined, with the following factors: type of starch (cassava and corn), percentage of starch (15%, 20% and 25%) and percentage of glycerin (with respect to the dry base content: 0%, 15% and 30%). Test benches were used to identify the process adjustment parameters, the response of the mixtures was determined at five extruder speed levels and two pressure levels in the reservoir tank, establishing the conditions to determine the average value of the extruded material rate at 0.360 g/min for the two starch groups, and as a consequence of this result, the extrusion speed ranges for the cassava starch group were obtained at 655 mm/min and 404 mm/min for the corn starch group. In the mechanical characterization of the devices, it was found that the mixture of distilled water with cassava starch (20%) and glycerin (15%) presented the best response to mechanical stress. Finally, the potential use of a device (selected for the best mechanical resistance response) is examined as a means of transport and release of an active compound (Diclofenac sodium). | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ingeniería - Materiales y Procesos | spa |
dc.description.researcharea | Manufactura aditiva de biomateriales | spa |
dc.format.extent | xvii, 175 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87195 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos | spa |
dc.relation.references | Adafruit-Industries-LLC. (2009). Motor shield library. https://cdn-learn.adafruit.com/downloads/pdf/adafruit-motor-shield-v2-for-arduino.pdf | spa |
dc.relation.references | Altman, R., Bosch, B., Brune, K., Patrignani, P., & Young, C. (2015). Advances in NSAID development: Evolution of diclofenac products using pharmaceutical technology. Drugs, 75(8), 859–877. https://doi.org/10.1007/s40265-015-0392-z | spa |
dc.relation.references | ASTM. (2009). ASTM F2792-10. | spa |
dc.relation.references | ASTM. (2016). Standard Test Method for Compressive Properties of Rigid Cellular Plastics 1. 16–20. https://doi.org/10.1520/D1621-16.2 | spa |
dc.relation.references | Bartolomei, M., Rodomonte, A., Antoniella, E., Minelli, G., & Bertocchi, P. (2007). Hydrate modifications of the non-steroidal anti-inflammatory drug diclofenac sodium : Solid-state characterisation of a trihydrate form. 45, 443–449. https://doi.org/10.1016/j.jpba.2007.07.002 | spa |
dc.relation.references | Basiak, E., Lenart, A., & Debeaufort, F. (2017). International Journal of Biological Macromolecules Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348–356. https://doi.org/10.1016/j.ijbiomac.2017.01.122 | spa |
dc.relation.references | Bellini, A., Güçeri, S., & Bertoldi, M. (2004). Liquefier Dynamics in Fused Deposition. Journal of Manufacturing Science and Engineering, 126(2), 237. https://doi.org/10.1115/1.1688377 | spa |
dc.relation.references | Bellini, A., Shor, L., & Guceri, S. I. (2005). New developments in fused deposition modeling of ceramics. Rapid Prototyping Journal, 11(4), 214–220. https://doi.org/10.1108/13552540510612901 | spa |
dc.relation.references | Bridgewater, J., & Benbow, J. (1995). Paste flow and extrusion. Oxford University Press (Vol. 41). | spa |
dc.relation.references | Calignano, F., Manfredi, D., Ambrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E., Salmi, A., Minetola, P., Iuliano, L., & Fino, P. (2017). Overview on additive manufacturing technologies. Proceedings of the IEEE, 105(4), 593–612. https://doi.org/10.1109/JPROC.2016.2625098 | spa |
dc.relation.references | Carraher, C. E. J. (2017). Chapter 2 Polymer Structure (Morphology). In Introduction to Polymer Chemistry (pp. 27–53). | spa |
dc.relation.references | Chen, H., Xie, F., Chen, L., & Zheng, B. (2019). Effect of rheological properties of potato , rice and corn starches on their hot- extrusion 3D printing behaviors. Journal of Food Engineering, 244(July 2018), 150–158. https://doi.org/10.1016/j.jfoodeng.2018.09.011 | spa |
dc.relation.references | Dankar, I., Haddarah, A., Omar, F. E. L., & Sepulcre, F. (2018). Trends in Food Science & Technology 3D printing technology : The new era for food customization and elaboration. 75(March), 231–242. https://doi.org/10.1016/j.tifs.2018.03.018 | spa |
dc.relation.references | Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. (2018). Application of 3D printing for customized food . A case on the development of a fruit-based snack for children. Journal of Food Engineering, 220, 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.015 | spa |
dc.relation.references | Derossi, A., Paolillo, M., Caporizzi, R., & Severini, C. (2020). Extending the 3D food printing tests at high speed . Material deposition and effect of non-printing movements on the final quality of printed structures. Journal of Food Engineering, 275(August 2019), 109865. https://doi.org/10.1016/j.jfoodeng.2019.109865 | spa |
dc.relation.references | Ding, Y., Dwivedi, R., & Kovacevic, R. (2017). Robotics and Computer-Integrated Manufacturing Process planning for 8-axis robotized laser-based direct metal deposition system : A case on building revolved part. Robotics and Computer Integrated Manufacturing, 44, 67–76. https://doi.org/10.1016/j.rcim.2016.08.008 | spa |
dc.relation.references | Englert, C., Brendel, J. C., Majdanski, T. C., Yildirim, T., Schubert, S., Gottschaldt, M., Windhab, N., & Schubert, U. S. (2018). Progress in Polymer Science Pharmapolymers in the 21st century : Synthetic polymers in drug delivery applications. Progress in Polymer Science, 87, 107–164. https://doi.org/10.1016/j.progpolymsci.2018.07.005 | spa |
dc.relation.references | Escalante-Aburto, A., Ponce-García, N., Ramírez-Wong, B., Santiago-Ramos, D., Véles-Medina, J. J., & de Dios Figueroa Cárdenas, J. (2016). Effect of extrusion factors and particle size on starch properties of nixtamalized whole blue corn snacks. Starch/Staerke, 68(11–12), 1111–1120. https://doi.org/10.1002/star.201500316 | spa |
dc.relation.references | Fallahi, P., Muthukumarappan, K., & Rosentrater, K. A. (2016). Functional and structural properties of corn, potato, and cassava starches as affected by a single-screw extruder. International Journal of Food Properties, 19(4), 768–788. https://doi.org/10.1080/10942912.2015.1042112 | spa |
dc.relation.references | FDA. (2017). Classification of Products as Drugs and Devices & Additional Product Classification Issues: Guidance for Industry and FDA Staff. Septembre, 1–12. papers2://publication/uuid/2AA84724-F418-49FE-ACEA-395A17AD430D | spa |
dc.relation.references | Felbrich, B., Wulle, F., Allgaier, C., Menges, A., Verl, A., Wurst, K., & Nebelsick, J. H. (2018). A novel rapid additive manufacturing concept for architectural composite shell construction inspired by the shell formation in land snails A novel rapid additive manufacturing concept for architectural composite shell construction inspired by the shell fo. | spa |
dc.relation.references | Feng, P., He, J., Peng, S., Gao, C., Zhao, Z., Xiong, S., & Shuai, C. (2019). Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. Materials Science and Engineering C, 100(December 2018), 809–825. https://doi.org/10.1016/j.msec.2019.03.030 | spa |
dc.relation.references | Gibson, I., Rosen, D. W., & Stucker, B. (2015). Introduction and Basic Principles. In Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (pp. 1–18). Springer US. https://doi.org/10.1007/978-1-4419-1120-9_1 | spa |
dc.relation.references | Goole, J., & Amighi, K. (2016). 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. International Journal of Pharmaceutics, 499(1–2), 376–394. https://doi.org/10.1016/j.ijpharm.2015.12.071 | spa |
dc.relation.references | Goyanes, A., Wang, J., Buanz, A., Martínez-Pacheco, R., Telford, R., Gaisford, S., & Basit, A. W. (2015). 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Molecular Pharmaceutics, 12(11), 4077–4084. https://doi.org/10.1021/acs.molpharmaceut.5b00510 | spa |
dc.relation.references | Gurgel, M., Vieira, A., Altenhofen, M., Oliveira, L., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films : A review. European Polymer Journal, 47(3), 254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011 | spa |
dc.relation.references | Hassan, M., Dave, K., Chandrawati, R., Dehghani, F., & Gomes, V. G. (2019). 3D printing of biopolymer nanocomposites for tissue engineering : Nanomaterials , processing and structure-function relation. European Polymer Journal, 121(October), 109340. https://doi.org/10.1016/j.eurpolymj.2019.109340 | spa |
dc.relation.references | Hernández-Medina, M., Torruco-Uco, J. G., Chel-Guerrero, L., & Betancur-Ancona, D. (2008). Caracterización fisicoquímica de almidones de tubércules cultivados en Yucatán, México. Ciencia e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101-20612008000300031 | spa |
dc.relation.references | Horn, T. J., & Harrysson, O. L. A. (2012). Overview of current additive manufacturing technologies and selected applications. Science Progress, 95(3), 255–282. https://doi.org/10.3184/003685012X13420984463047 | spa |
dc.relation.references | ISO/ASTM. (2015). ISO/ASTM 52900:2015(en), Additive manufacturing — General principles — Terminology. https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-1:v1:en | spa |
dc.relation.references | Johnson, R. ., Mwaikambo, L. ., & Tucker, N. (2003). Rapra Review Re ports. 14(3), 3144. | spa |
dc.relation.references | Kempin, W., Franz, C., Koster, L. C., Schneider, F., Bogdahn, M., Weitschies, W., & Seidlitz, A. (2017). Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. European Journal of Pharmaceutics and Biopharmaceutics, 115, 84–93. https://doi.org/10.1016/j.ejpb.2017.02.014 | spa |
dc.relation.references | Kołodziejska, J., & Kołodziejczyk, M. (2018). Diclofenac in the treatment of pain in patients with rheumatic diseases. Reumatologia, 56(3), 174–183. https://doi.org/10.5114/reum.2018.76816 | spa |
dc.relation.references | Koski, C., Onuike, B., Bandyopadhyay, A., & Bose, S. (2018). Starch-hydroxyapatite composite bone sca ff old fabrication utilizing a slurry extrusion-based solid freeform fabricator. Additive Manufacturing, 24(August), 47–59. https://doi.org/10.1016/j.addma.2018.08.030 | spa |
dc.relation.references | Kuo, C., Liu, L., Teng, W., & Chang, H. (2016). Preparation of starch / acrylonitrile-butadiene-styrene copolymers ( ABS ) biomass alloys and their feasible evaluation for 3D printing applications. Composites Part B, 86, 36–39. https://doi.org/10.1016/j.compositesb.2015.10.005 | spa |
dc.relation.references | Lagarrigue, S., & Alvarez, G. (2001). The rheology of starch dispersions at high temperatures and high shear rates: A review. Journal of Food Engineering, 50(4), 189–202. https://doi.org/10.1016/S0260-8774(00)00239-9 | spa |
dc.relation.references | Lam, C. X. F., Mo, X. M., Teoh, S. H., & Hutmacher, D. W. (2002). Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 20(1–2), 49–56. https://doi.org/10.1016/S0928-4931(02)00012-7 | spa |
dc.relation.references | Li, J. P., Habibovic, P., van den Doel, M., Wilson, C. E., de Wijn, J. R., van Blitterswijk, C. A., & de Groot, K. (2007). Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials, 28(18), 2810–2820. https://doi.org/10.1016/j.biomaterials.2007.02.020 | spa |
dc.relation.references | Li, X., Lian, Q., Li, D., Xin, H., & Jia, S. (2017). applied sciences Development of a Robotic Arm Based Hydrogel Additive Manufacturing System for In-Situ Printing. https://doi.org/10.3390/app7010073 | spa |
dc.relation.references | Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D Printing and Customized Additive Manufacturing. Chemical Reviews, 117(15), 10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074 | spa |
dc.relation.references | Lii, C. Y., Tsai, M. L., & Tseng, K. H. (1996). Effect of amylose content on the rheological property of rice starch. Cereal Chemistry, 73(4), 415–420. | spa |
dc.relation.references | Ling, C., Cernicchi, A., Gilchrist, M. D., & Cardiff, P. (2019). Mechanical behaviour of additively-manufactured polymeric octet-truss lattice structures under quasi-static and dynamic compressive loading. Materials & Design, 162, 106–118. https://doi.org/10.1016/j.matdes.2018.11.035 | spa |
dc.relation.references | Liu, J., Sun, L., Xu, W., Wang, Q., Yu, S., & Sun, J. (2019). Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate Polymers, 207(June 2018), 297–316. https://doi.org/10.1016/j.carbpol.2018.11.077 | spa |
dc.relation.references | Liu, Z., Bhandari, B., Prakash, S., Mantihal, S., & Zhang, M. (2019). Food Hydrocolloids Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocolloids, 87(August 2018), 413–424. https://doi.org/10.1016/j.foodhyd.2018.08.026 | spa |
dc.relation.references | Maniruzzaman, M., Boateng, J. S., Snowden, M. J., & Douroumis, D. (2012). A Review of Hot-Melt Extrusion: Process Technology to Pharmaceutical Products. ISRN Pharmaceutics, 2012, 1–9. https://doi.org/10.5402/2012/436763 | spa |
dc.relation.references | Mantihal, S., Prakash, S., Godoi, F. C., & Bhandari, B. (2017). Optimization of chocolate 3D printing by correlating thermal and fl ow properties with 3D structure modeling. Innovative Food Science and Emerging Technologies, 44(May), 21–29. https://doi.org/10.1016/j.ifset.2017.09.012 | spa |
dc.relation.references | McCauley, M. (2011). Stepper Library. https://www.arduino.cc/en/Reference/Stepper | spa |
dc.relation.references | Medina, J. A. (2008). Caracterización morfológica del granulo de almidón nativo Apariencia, forma, tamaño y su distribución. Revista de Ingeniería, unknown(27), 56–62. https://doi.org/10.16924/riua.v0i27.280 | spa |
dc.relation.references | Mishra, S., & Rai, T. (2006). Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocolloids, 20(5), 557–566. https://doi.org/10.1016/j.foodhyd.2005.01.001 | spa |
dc.relation.references | Montgomery, D. (2012). Randomized Blocks, Latin Squares, and Related Designs. In Design and Analysis of Experiments (pp. 141–152). | spa |
dc.relation.references | N. Turner, B., Strong, R., & A. Gold, S. (2014). A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyping Journal, 20(3), 192–204. https://doi.org/10.1108/RPJ-01-2013-0012 | spa |
dc.relation.references | Nafchi, A. M., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Starch/Staerke, 65(1–2), 61–72. https://doi.org/10.1002/star.201200201 | spa |
dc.relation.references | National.Instruments. (2014). Arduino Toolkit. http://www.ni.com/gate/gb/GB_EVALTLKTLVARDIO/US | spa |
dc.relation.references | Nikkola, L., Viitanen, P., & Ashammakhi, N. (2008). Diclofenac sodium loaded multicomponent implant. AIP Conference Proceedings, 973(2008), 766–771. https://doi.org/10.1063/1.2896878 | spa |
dc.relation.references | Norman, J., Madurawe, R. D., Moore, C. M. V., Khan, M. A., & Khairuzzaman, A. (2017). A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Advanced Drug Delivery Reviews, 108, 39–50. https://doi.org/10.1016/j.addr.2016.03.001 | spa |
dc.relation.references | Patel, B. K., & Seetharaman, K. (2006). Effect of heating rate on starch granule morphology and size. Carbohydrate Polymers, 65(3), 381–385. https://doi.org/10.1016/j.carbpol.2006.01.028 | spa |
dc.relation.references | Sandoval, A., Farhat, I., & Fernández, a. (2007). COMPORTAMIENTO REOLÓGICO DE HARINAS Y ALMIDONES DE YUCA ( Manihot esculenta CRANTZ ) DURANTE. Vitae, 14(1), 6–15. | spa |
dc.relation.references | Schlordt, T., Keppner, F., Travitzky, N., & Greil, P. (2012). Robocasting of alumina lattice truss structures. In Journal of Ceramic Science and Technology (Vol. 3, Issue 2, pp. 81–88). https://doi.org/10.4416/JCST2012-00003 | spa |
dc.relation.references | Solarte-Montúfar, J. G., Díaz-Murangal, A. E., Osorio-Mora, O., & Mejía-España, D. F. (2019). Rheological and functional properties of the starch from three varieties of Creole potato. Informacion Tecnologica, 30(6), 35–44. https://doi.org/10.4067/S0718-07642019000600035 | spa |
dc.relation.references | Sperling, L. H. (2005). Introduction to Polymer Science. In Introduction to Physical Polymer Science (pp. 1–28). John Wiley & Sons, Inc. https://doi.org/10.1002/0471757128.ch1 | spa |
dc.relation.references | Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P. (2008). Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping Journal, 14(2), 72–80. https://doi.org/10.1108/13552540810862028 | spa |
dc.relation.references | Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert-Demut, I., Schlier, L., Schlordt, T., & Greil, P. (2014). Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 16(6), 729–754. https://doi.org/10.1002/adem.201400097 | spa |
dc.relation.references | Urhal, P., Weightman, A., Diver, C., & Bartolo, P. (2019). Robot assisted additive manufacturing : A review. 59(July 2018), 335–345. https://doi.org/10.1016/j.rcim.2019.05.005 | spa |
dc.relation.references | USP. (2012). Physical Tests - Loss on Drying. | spa |
dc.relation.references | USP. (2016). Diclofenac Sodium Extended-Release Tablets. In Diclofenac Sodium Extended-release Tablets. | spa |
dc.relation.references | Vaezi, M., & Yang, S. (2015). Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual and Physical Prototyping, 10(3), 123–135. https://doi.org/10.1080/17452759.2015.1097053 | spa |
dc.relation.references | Vilaplana, F., Hasjim, J., & Gilbert, R. G. (2012). Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohydrate Polymers, 88(1), 103–111. https://doi.org/10.1016/j.carbpol.2011.11.072 | spa |
dc.relation.references | Waterschoot, J., Gomand, S. V., & Delcour, J. A. (2016). Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches. Food Hydrocolloids, 52, 69–77. https://doi.org/10.1016/j.foodhyd.2015.06.012 | spa |
dc.relation.references | Xie, F., Yu, L., Su, B., Liu, P., Wang, J., Liu, H., & Chen, L. (2009). Rheological properties of starches with different amylose/amylopectin ratios. Journal of Cereal Science, 49(3), 371–377. https://doi.org/10.1016/j.jcs.2009.01.002 | spa |
dc.relation.references | Yang, F., Zhang, M., Bhandari, B., & Liu, Y. (2018). LWT - Food Science and Technology Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters. LWT - Food Science and Technology, 87, 67–76. https://doi.org/10.1016/j.lwt.2017.08.054 | spa |
dc.relation.references | Yang, L., Tang, S., Li, G., Qian, L., Mei, J., Jiang, W., & Fan, Z. (2019). Layered extrusion forming of complex ceramic structures using starch as removable support. Ceramics International, 45(17), 21843–21850. https://doi.org/10.1016/j.ceramint.2019.07.193 | spa |
dc.relation.references | Ye, J., Hu, X., Luo, S., Liu, W., Chen, J., Zeng, Z., & Liu, C. (2018). Properties of Starch after Extrusion: A Review. Starch/Staerke, 70(11–12), 1–8. https://doi.org/10.1002/star.201700110 | spa |
dc.relation.references | Yeong, W.-Y., Chua, C.-K., Leong, K.-F., & Chandrasekaran, M. (2004). Rapid prototyping in tissue engineering: challenges and potential. Trends in Biotechnology, 22(12), 643–652. https://doi.org/10.1016/j.tibtech.2004.10.004 | spa |
dc.relation.references | Yingfeng, Z. U. O., Jiyou, G. U., Haiyan, T. A. N., & Yanhua, Z. (2015). Thermoplastic Starch Prepared with Different Plasticizers : Relation between Degree of Plasticization and Properties. 423–428. https://doi.org/10.1007/s11595-015-1164-z | spa |
dc.relation.references | Yussof, N. S., Utra, U., & Alias, A. K. (2013). Hydrolysis of native and cross-linked corn, tapioca, and sweet potato starches at sub-gelatinization temperature using a mixture of amylolytic enzymes. Starch/Staerke, 65(3–4), 285–295. https://doi.org/10.1002/star.201200002 | spa |
dc.relation.references | Zadpoor, A. A., & Malda, J. (2017). Additive Manufacturing of Biomaterials, Tissues, and Organs. Annals of Biomedical Engineering, 45(1). https://doi.org/10.1007/s10439-016-1719-y | spa |
dc.relation.references | Zdanowicz, M., & Johansson, C. (2016). Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents. Carbohydrate Polymers, 151, 103–112. https://doi.org/10.1016/j.carbpol.2016.05.061 | spa |
dc.relation.references | Žilnik, L. F., Jazbinšek, A., Hvala, A., Vrečer, F., & Klamt, A. (2007). Solubility of sodium diclofenac in different solvents. Fluid Phase Equilibria, 261(1–2), 140–145. https://doi.org/10.1016/j.fluid.2007.07.020 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 670 - Manufactura::679 -Otros productos de materiales específicos | spa |
dc.subject.lemb | Biopolymers | eng |
dc.subject.lemb | BIOPOLIMEROS | spa |
dc.subject.lemb | MATERIALES BIOMEDICOS | spa |
dc.subject.lemb | Biomedical materials | eng |
dc.subject.lemb | CONTAMINANTES BIODEGRADABLES | spa |
dc.subject.lemb | Biodegradable pollutants | eng |
dc.subject.lemb | RECURSOS NATURALES RENOVABLES | spa |
dc.subject.lemb | Renewable natural resources | eng |
dc.subject.proposal | Manufactura aditiva | spa |
dc.subject.proposal | Biopolímero de almidón | spa |
dc.subject.proposal | Control de proceso | spa |
dc.subject.proposal | Additive manufacturing | eng |
dc.subject.proposal | Starch biopolymer | eng |
dc.subject.proposal | Process control | eng |
dc.title | Caracterización de un proceso de manufactura aditiva por extrusión de un biopolímero y definición de su potencial uso como dispositivo para transporte de fármacos | spa |
dc.title.translated | Characterization of an additive manufacturing process by extrusion of a biopolymer and definition of its potential use as a device for drug transport | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Maestria-80034215.pdf
- Tamaño:
- 4.23 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Materiales y Procesos
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: