Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar

dc.contributor.advisorSarache, William
dc.contributor.advisorCosta, Yasel
dc.contributor.authorCarvajal Beltrán, Jimmy Alexander
dc.contributor.researchgroupInnovación y desarrollo Tecnológicospa
dc.date.accessioned2022-09-02T12:42:10Z
dc.date.available2022-09-02T12:42:10Z
dc.date.issued2022
dc.descriptiongráficos, tablasspa
dc.description.abstractLa producción de biocombustibles forma parte de las estrategias mundiales para la mitigación del calentamiento global, al buscar la reducción de las emisiones generadas por el consumo indiscriminado de combustible fósil. En ese sentido, se logró identificar en la literatura que, desde el punto de vista del diseño de cadenas de abastecimiento, la producción de biocombustibles ha sido poco estudiada, y en menor proporción, cuando se involucra la modelación matemática del componente agrícola. Esta cadena plantea sus propios retos, en términos del diseño, operación, integración de actores y fuentes de incertidumbre, las cuales afectan los sistemas biológicos y logísticos. Tales particularidades afectan también la factibilidad de la inversión a largo plazo, no solo desde la perspectiva económica, sino también, desde la dimensión social y ambiental. Basado en lo anterior, la situación problemática abordada en esta tesis doctoral se enmarca en la escasez de modelos de optimización para apoyar las decisiones de diseño y gestión de operaciones de la cadena de abastecimiento para la producción de biocombustible a partir de la caña de azúcar, que simultáneamente consideren el desempeño sostenible como criterio de evaluación y la vulnerabilidad de las decisiones frente a fuentes de incertidumbre. De acuerdo con el estado del arte, esta brecha de conocimiento es reconocida como un problema científico que requiere ser abordado y solucionado. Por lo tanto, la presente tesis doctoral propone una solución desde el enfoque cuantitativo, propio de la investigación de operaciones, a través del diseño y validación de un modelo de optimización multiobjetivo con parámetros estocásticos. El modelo integra las decisiones de diseño de la cadena de abastecimiento desde la perspectiva sostenible, considerando al eslabón agrícola y a la biorefinería. Además, se modelan las operaciones agrícolas propias de la producción de biomasa, la afectación de fuentes de incertidumbre sobre el rendimiento de los cultivos y la duración de la temporada de cosecha, ambos aspectos asociados con las condiciones climáticas. En ese sentido, esta tesis contribuye al estado del arte con un modelo estocástico, multi-periodo, que involucra las decisiones de diseño y gestión para múltiples actores, desde la perspectiva sostenible buscando un equilibrio entre: 1) el desempeño económico, por medio del valor económico agregado para los accionistas; 2) el social, compuesto por la distribución justa de los beneficios entre los eslabones de la cadena, la reducción de la huella de tierra, y la creación de puestos de trabajo; y 3) la minimización de los impactos ambientales ocasionados durante la producción de biomasa, el transporte de caña y la producción de biocombustible. El modelo fue aplicado en la evaluación de un proyecto de inversión en biocombustibles a partir de la caña azúcar en una nueva zona de expansión agrícola en Colombia. Este caso exhibió problemas de dimensión; sin embargo, el enfoque de modelamiento permitió enfrentar la complejidad computacional, a través de la implementación de una cadena de Markov para simular escenarios correlacionados de las fuentes de incertidumbre para instancias reales, al igual que implementar un modelo de programación lineal, omitiendo el uso de variables enteras o binarias. Los resultados demostraron la factibilidad del diseño de la cadena de abastecimiento y, además, se identificaron un conjunto de factores, tales como: el rendimiento del cultivo, el retraso de la construcción de la biorefinería, el precio de comercialización de caña de azúcar, la distancia entre las fincas y la industria, entre otros, como variables que influyen en el diseño de la cadena y su desempeño. (Texto tomado de la fuente)spa
dc.description.abstractThe production of biofuels is part of the world strategies for the mitigation of global warming, seeking to reduce emissions generated by the indiscriminate consumption of fossil fuels. In this sense, it was possible to identify in the literature that biofuel production, from the point of view of the supply chain, has been scared studied, and minor, in instances that agricultural echelon is involved. This supply chain poses relevant challenges, in terms of design, manage, integration of actors and sources of uncertainty, which affect biological (biomass production) and logistical systems. Such particularities also lead the long term investment feasibility, not only from the economic point of view, but also from the social and environmental dimension. Based on the above, the problematic situation addressed in this doctoral thesis is framed in the absence of optimization models to support design and operations management decisions in the sugarcane-based biofuel supply chain, simultaneously considering sustainable performance as an evaluation criterion and the vulnerability of decisions in the face of uncertainty sources. The problem was verified in the state-of-the-art evidencing that it is recognized as a scientific problem that needs to be addressed and solved. Consequently, this doctoral thesis proposes a solution from the quantitative approach, typical of operation research discipline, through design and validation of a multi-objective optimization model with stochastic parameters. The model integrates the design decisions of the supply chain considering the sustainable performance, integrating both, agricultural (supplier) and production stages (biorefinery). Additionally, it includes the modeling of the agricultural operations involved in biomass production, as well as the impact of sources of uncertainty on crop yields and the length of harvest season, both aspects associated and affected by weather conditions. In that sense, this thesis contributes to the state of the art with a multi-period, stochastic model, involving design and management decisions for multiple actors of agricultural and industrial echelons, from sustainable perspective seeking a balance between: economic performance, through economic value added for shareholders; social performance, composed by fairness profit distribution, reducing land footprint, and incenting the job creation; and reducing environmental impacts caused during biomass production, sugarcane transportation and biofuel production phases. The model was proven in case of study related with the assessment of a sugarcane-based biofuel investment project in a new agricultural expansion zone in Colombia. This case exhibited dimensional problems; however, the modeling approach allowed facing the computational complexity, through the implementation of a Markov chain to simulate correlated scenarios for real instances, as well as implementing a linear programming model, omitting the use of integer or binary variables. The results demonstrated a feasible design from a sustainable perspective. On the other hand, through a sensitivity analysis, a set of factors were identified, such as: crop yield, delay in the biorefinery construction process, sugarcane trade price, distance among farms and industry, and so on, as variables that influence the design and its performance.eng
dc.description.curricularareaIndustrial, Organizaciones Y Logística spa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaMétodos y modelos de optimización y estadística en ingeniería industrial y administrativaspa
dc.description.sponsorshipMinisterio de Ciencia Tecnología e Innovación Beca de doctorado Nacional - Convocatoria 757 de 2016spa
dc.format.extentxvi, 174 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82239
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Industrialspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Industria y Organizacionesspa
dc.relation.referencesAbdul-Jalbar, B., Colebrook, M., Dorta-Guerra, R., & Gutiérrez, J. M. (2016). Centralized and decentralized inventory policies for a single-vendor two-buyer system with permissible delay in payments. Computers & Operations Research, 74, 187-195. https://doi.org/10.1016/j.cor.2016.04.030spa
dc.relation.referencesAdam, N.-R. B., Dauhoo, M. Z., Khoodaruth, A. A. H., & Elahee, M. K. (2016). A two-stage stochastic programming optimisation for sugar-ethanol-electricity production from sugarcane: A case study of Mauritius. International Journal of Mathematical Modelling and Numerical Optimisation, 7(1), 20-32.spa
dc.relation.referencesAdam, N.-R. B., Dauhoo, M. Z., Khoodaruth, A. A. H., & Elahee, M. K. (2016). A two-stage stochastic programming optimisation for sugar-ethanol-electricity production from sugarcane: A case study of Mauritius. International Journal of Mathematical Modelling and Numerical Optimisation, 7(1), 20-32.spa
dc.relation.referencesAhumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. https://doi.org/10.1016/j.ejor.2008.02.014spa
dc.relation.referencesAhumada, O., & Villalobos, J. R. (2011). A tactical model for planning the production and distribution of fresh produce. Annals of Operations Research, 190(1), 339-358. https://doi.org/10.1007/s10479-009-0614-4spa
dc.relation.referencesAlonso Pippo, W., Luengo, C. A., Alonsoamador Morales Alberteris, L., Garzone, P., & Cornacchia, G. (2011). Energy Recovery from Sugarcane-Trash in the Light of 2nd Generation Biofuel. Part 2: Socio-Economic Aspects and Techno-Economic Analysis. Waste and Biomass Valorization, 2(3), 257-266. https://doi.org/10.1007/s12649-011-9069-3spa
dc.relation.referencesAlonso-Pippo, W., Luengo, C. A., Alonsoamador Morales Alberteris, L., García del Pino, G., & Duvoisin, S. (2013). Practical implementation of liquid biofuels: The transferability of the Brazilian experiences. Energy Policy, 60, 70-80. https://doi.org/10.1016/j.enpol.2013.04.038spa
dc.relation.referencesÁlvarez-Rodríguez, D. A., Normey-Rico, J. E., & Flesch, R. C. C. (2017). Model predictive control for inventory management in biomass manufacturing supply chains. International Journal of Production Research, 55(12), 3596-3608. https://doi.org/10.1080/00207543.2017.1315191spa
dc.relation.referencesAmu, L.G., Garcia, J.A., Galvis , D.E., & Rubiano, O. (2013). Optimisation of harvest resources in a colombian sugar mill by use of simulation models. Proceedings of the International Society of Sugar Cane Technologists, 28, 2042-2049. http://bonsucro.com/site/wp-content/uploads/2013/02/ISSCT-Development-Bonsucro-Standard-Viart-N-and-Rein-P-2013.pdfspa
dc.relation.referencesAsocaña. (2017). Más que azúcar, una fuente de energía renovable para el país. https://www.asocana.org/documentos/562017-ED2FFB51-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,2D2D2D.pdfspa
dc.relation.referencesBaghalian, A., Rezapour, S., & Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case. European Journal of Operational Research, 227(1), 199-215. https://doi.org/10.1016/j.ejor.2012.12.017spa
dc.relation.referencesBallou, R. H. (2007). Business logistics/supply chain management: Planning, organizing, and controlling the supply chain. Pearson Education India.spa
dc.relation.referencesBanco Interamericano de Desarrollo (BID). (2012). “Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia”.spa
dc.relation.referencesBarbosa-Póvoa, A. P., da Silva, C., & Carvalho, A. (2017). Opportunities and Challenges in Sustainable Supply Chain: An Operations Research Perspective. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2017.10.036spa
dc.relation.referencesBarrett, C. B. (2021). Overcoming Global Food Security Challenges through Science and Solidarity. American Journal of Agricultural Economics, 103(2), 422-447. https://doi.org/10.1111/ajae.12160spa
dc.relation.referencesBehzadi, G., O’Sullivan, M. J., Olsen, T. L., & Zhang, A. (2017). Agribusiness Supply Chain Risk Management: A Review of Quantitative Decision Models. Omega. https://doi.org/10.1016/j.omega.2017.07.005spa
dc.relation.referencesBekkering, J., Broekhuis, A. A., & van Gemert, W. J. T. (2010). Optimisation of a green gas supply chain – A review. Bioresource Technology, 101(2), 450-456. https://doi.org/10.1016/j.biortech.2009.08.106spa
dc.relation.referencesBenoît, C., Norris, G. A., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., Prakash, S., Ugaya, C., & Beck, T. (2010). The guidelines for social life cycle assessment of products: Just in time! The International Journal of Life Cycle Assessment, 15(2), 156-163. https://doi.org/10.1007/s11367-009-0147-8spa
dc.relation.referencesBertsimas, D., Farias, V. F., & Trichakis, N. (2011). The Price of Fairness. Operations Research, 59(1), 17-31. https://doi.org/10.1287/opre.1100.0865spa
dc.relation.referencesBezuidenhout, C. N., & Singels, A. (2007a). Operational forecasting of South African sugarcane production: Part 1 – System description. Agricultural Systems, 92(1), 23-38. https://doi.org/10.1016/j.agsy.2006.02.001spa
dc.relation.referencesBezuidenhout, C. N., & Singels, A. (2007b). Operational forecasting of South African sugarcane production: Part 2 – System evaluation. Agricultural Systems, 92(1), 39-51. https://doi.org/10.1016/j.agsy.2006.03.002spa
dc.relation.referencesBhattacharya, A. (2006). A goal programming approach for developing pre-harvest forecasts of crop yield. Journal of the Operational Research Society, 57(8). http://www.tandfonline.com/doi/abs/10.1057/palgrave.jors.2602098?needAccess=true&spa
dc.relation.referencesBirge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer Science & Business Media.spa
dc.relation.referencesBlanco, V., Carpente, L., Hinojosa, Y., & Puerto, J. (2010). Planning for Agricultural Forage Harvesters and Trucks: Model, Heuristics, and Case Study. Networks and Spatial Economics, 10(3), 321-343. https://doi.org/10.1007/s11067-009-9120-0spa
dc.relation.referencesBocca, F. F., & Rodrigues, L. H. A. (2016). The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modelling. Computers and Electronics in Agriculture, 128, 67-76. https://doi.org/10.1016/j.compag.2016.08.015spa
dc.relation.referencesBojesen, M., Skov-Petersen, H., & Gylling, M. (2015). Forecasting the potential of Danish biogas production – Spatial representation of Markov chains. Biomass and Bioenergy, 81, 462-472. https://doi.org/10.1016/j.biombioe.2015.07.030spa
dc.relation.referencesBorgonovo, E., Gatti, S., & Peccati, L. (2010). What drives value creation in investment projects? An application of sensitivity analysis to project finance transactions. European Journal of Operational Research, 205(1), 227-236. https://doi.org/10.1016/j.ejor.2009.12.006spa
dc.relation.referencesBorodin, V., Bourtembourg, J., Hnaien, F., & Labadie, N. (2016). Handling uncertainty in agricultural supply chain management: A state of the art. European Journal of Operational Research, 254(2), 348-359. https://doi.org/10.1016/j.ejor.2016.03.057spa
dc.relation.referencesBot, P., van Donk, D. P., Pennink, B., & Simatupang, T. M. (2015). Uncertainties in the Bidirectional Biodiesel Supply Chain. Journal of Cleaner Production, 95, 174-183. https://doi.org/10.1016/j.jclepro.2015.02.064spa
dc.relation.referencesBranco, J. E. H., Branco, D. H., de Aguiar, E. M., Caixeta Filho, J. V., & Rodrigues, L. (2019). Study of optimal locations for new sugarcane mills in Brazil: Application of a MINLP network equilibrium model. Biomass and Bioenergy, 127, 105249.spa
dc.relation.referencesBrandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299-312. https://doi.org/10.1016/j.ejor.2013.09.032spa
dc.relation.referencesBubicz, M. E., Barbosa-Póvoa, A. P. F. D., & Carvalho, A. (2019). Incorporating social aspects in sustainable supply chains: Trends and future directions. Journal of Cleaner Production, 237, 117500. https://doi.org/10.1016/j.jclepro.2019.06.331spa
dc.relation.referencesBudzianowski, W. M., & Postawa, K. (2016). Total Chain Integration of sustainable biorefinery systems. Applied Energy, 184, 1432-1446. https://doi.org/10.1016/j.apenergy.2016.06.050spa
dc.relation.referencesCaixeta-Filho, J. V. (2006). Orange harvesting scheduling management: A case study. Journal of the Operational Research Society, 57(6), 637-642. https://doi.org/10.1057/palgrave.jors.2602041spa
dc.relation.referencesCampos-Guzmán, V., García-Cáscales, M. S., Espinosa, N., & Urbina, A. (2019). Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renewable and Sustainable Energy Reviews, 104, 343-366. https://doi.org/10.1016/j.rser.2019.01.031spa
dc.relation.referencesCardoso, T. F., Chagas, M. F., Rivera, E. C., Cavalett, O., Morais, E. R., Geraldo, V. C., Braunbeck, O., da Cunha, M. P., Cortez, L. A. B., & Bonomi, A. (2015). A vertical integration simplified model for straw recovery as feedstock in sugarcane biorefineries. Biomass and Bioenergy, 81, 216-223. https://doi.org/10.1016/j.biombioe.2015.07.003spa
dc.relation.referencesCarvajal, J., Sarache, W., & Costa, Y. (2019). Addressing a robust decision in the sugarcane supply chain: Introduction of a new agricultural investment project in Colombia. Computers and Electronics in Agriculture, 157, 77-89. https://doi.org/10.1016/j.compag.2018.12.030spa
dc.relation.referencesCastaño, F., Rossi, A., Sevaux, M., & Velasco, N. (2014). A column generation approach to extend lifetime in wireless sensor networks with coverage and connectivity constraints. Computers & Operations Research, 52, 220-230.spa
dc.relation.referencesCastaño, F., Velasco, N., & Carvajal, J. (2019). Content-Based Conference Scheduling Optimization. IEEE Latin America Transactions, 17(04), 597-606.spa
dc.relation.referencesChen, Y., Wang, S., Yao, J., Li, Y., & Yang, S. (2018). Socially responsible supplier selection and sustainable supply chain development: A combined approach of total interpretive structural modeling and fuzzy analytic network process. Business Strategy and the Environment, 27(8), 1708-1719. https://doi.org/10.1002/bse.2236spa
dc.relation.referencesColin, E. C. (2009). Mathematical programming accelerates implementation of agro-industrial sugarcane complex. European Journal of Operational Research, 199(1), 232-235. https://doi.org/10.1016/j.ejor.2008.11.016spa
dc.relation.referencesCongreso de Colombia. (2014). LEY 1715 DE 2014 Diario Oficial No. 49.150. Bogotá, DC: Imprenta Nacional. Retrieved, 9, 2017.spa
dc.relation.referencesCongreso de Colombia. (2019). LEY 1955 DE 2019, Plan Nacional de Desarrollo 2018-2022. “Pacto por Colombia, Pacto por la Equidad”. http://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Leyes/30036488spa
dc.relation.referencesCosta, A. M., dos Santos, L. M. R., Alem, D. J., & Santos, R. H. S. (2011). Sustainable vegetable crop supply problem with perishable stocks. Annals of Operations Research. https://doi.org/10.1007/s10479-010-0830-yspa
dc.relation.referencesCouncil of Supply Chain Management Professionals, CSCMP. (2017). CSCMP Supply Chain Management Definitions and Glossary.spa
dc.relation.referencesda Silva, A. F., & Marins, F. A. S. (2014). A Fuzzy Goal Programming model for solving aggregate production-planning problems under uncertainty: A case study in a Brazilian sugar mill. Energy Economics, 45, 196-204. https://doi.org/10.1016/j.eneco.2014.07.005spa
dc.relation.referencesda Silva, A. F., Marins, F. A. S., & Dias, E. X. (2015). Addressing uncertainty in sugarcane harvest planning through a revised multi-choice goal programming model. Applied Mathematical Modelling, 39(18), 5540-5558. https://doi.org/10.1016/j.apm.2015.01.007spa
dc.relation.referencesDarby-Dowman, K., Barker, S., Audsley, E., & Parsons, D. (2000). A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture. Journal of the Operational Research Society, 51(1), 83-89. https://doi.org/10.1057/palgrave.jors.2600858spa
dc.relation.referencesDas, R., Shaw, K., & Irfan, Mohd. (2020). Supply chain network design considering carbon footprint, water footprint, supplier’s social risk, solid waste, and service level under the uncertain condition. Clean Technologies and Environmental Policy, 22(2), 337-370. https://doi.org/10.1007/s10098-019-01785-yspa
dc.relation.referencesDavis, K. F., Gephart, J. A., Emery, K. A., Leach, A. M., Galloway, J. N., & D’Odorico, P. (2016). Meeting future food demand with current agricultural resources. Global Environmental Change, 39, 125-132. https://doi.org/10.1016/j.gloenvcha.2016.05.004spa
dc.relation.referencesDe Oliveira Florentino, H., De Lima, A. D., De Carvalho, L. R., Balbo, A. R., & Homem, T. P. D. (2011). Multiobjective 0-1 integer programming for the use of sugarcane residual biomass in energy cogeneration. International Transactions in Operational Research, 18(5), 605-615. https://doi.org/10.1111/j.1475-3995.2011.00818.xspa
dc.relation.referencesde Oliveira Florentino, H., & Pato, M. V. (2014). A bi-objective genetic approach for the selection of sugarcane varieties to comply with environmental and economic requirements. Journal of the Operational Research Society, 65(6), 842-854. https://doi.org/10.1057/jors.2013.21spa
dc.relation.referencesde Oliveira Florentino, H., & Pereira Sartori, M. M. (2003). Game theory in sugarcane crop residue and available energy optimization. Biomass and Bioenergy, 25(1), 29-34. https://doi.org/10.1016/S0961-9534(02)00189-7spa
dc.relation.referencesde Souza Dias, M. O., Maciel Filho, R., Mantelatto, P. E., Cavalett, O., Rossell, C. E. V., Bonomi, A., & Leal, M. R. L. V. (2015). Sugarcane processing for ethanol and sugar in Brazil. Environmental Development, 15, 35-51.spa
dc.relation.referencesDepartamento Nacional de Planeación. (2008). Lineamientos de politica para promover la produccion sostenible de biocombustibles en Colombia (Documento CONPES 3510). DNP Bogotá, Colombia.spa
dc.relation.referencesdos Reis Ferreira, R. A., da Silva Meireles, C., Assunção, R. M. N., Barrozo, M. A. S., & Soares, R. R. (2020). Optimization of the oxidative fast pyrolysis process of sugarcane straw by TGA and DSC analyses. Biomass and Bioenergy, 134, 105456.spa
dc.relation.referencesDu, C., Dias, L. C., & Freire, F. (2019). Robust multi-criteria weighting in comparative LCA and S-LCA: A case study of sugarcane production in Brazil. Journal of Cleaner Production, 218, 708-717. https://doi.org/10.1016/j.jclepro.2019.02.035spa
dc.relation.referencesDunford, R. W., Marti, C. E., & Mittelhammer, R. C. (1985). A Case Study of Rural Land Prices at the Urban Fringe Including Subjective Buyer Expectations. Land Economics, 61(1), 10. https://doi.org/10.2307/3146135spa
dc.relation.referencesEbadian, M., van Dyk, S., McMillan, J. D., & Saddler, J. (2020). Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy, 147, 111906. https://doi.org/10.1016/j.enpol.2020.111906spa
dc.relation.referencesEizenberg, E., & Jabareen, Y. (2017). Social Sustainability: A New Conceptual Framework. Sustainability, 9(1), 68. https://doi.org/10.3390/su9010068spa
dc.relation.referencesEl Espectador. (2021, septiembre 20). ELESPECTADOR.COM. ELESPECTADOR.COM. https://www.elespectador.com/judicial/megaproyecto-de-produccion-de-etanol-el-alcaravan-fue-un-fracaso-contraloria/spa
dc.relation.referencesElkington, J. (1997). Cannibals with forks. The triple bottom line of 21st century, 73.spa
dc.relation.referencesEskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: An optimization-oriented review. Omega, 54, 11-32. https://doi.org/10.1016/j.omega.2015.01.006spa
dc.relation.referencesEspinoza-Pérez, A. T., Camargo, M., Narváez-Rincón, P. C., & Alfaro-Marchant, M. (2017). Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis. Renewable and Sustainable Energy Reviews, 69, 350-359. https://doi.org/10.1016/j.rser.2016.11.084spa
dc.relation.referencesEsteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. https://doi.org/10.1080/00207543.2018.1447706spa
dc.relation.referencesFahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101-114. https://doi.org/10.1016/j.ijpe.2015.01.003spa
dc.relation.referencesFarahani, R. Z., Hekmatfar, M., Fahimnia, B., & Kazemzadeh, N. (2014). Hierarchical facility location problem: Models, classifications, techniques, and applications. Computers & Industrial Engineering, 68, 104-117. https://doi.org/10.1016/j.cie.2013.12.005spa
dc.relation.referencesFaria, L. F. F., Silva, J. E. A. R., Faria, L. F. F., & Silva, J. E. A. R. (2015). Effects of maintenance management procedures in sugarcane mechanic harvesting system equipment. Engenharia Agrícola, 35(6), 1187-1197. https://doi.org/10.1590/1809-4430-Eng.Agric.v35n6p1187-1197/2015spa
dc.relation.referencesFathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Mirjalili, S. (2018). Multi-objective stochastic closed-loop supply chain network design with social considerations. Applied Soft Computing, 71, 505-525. https://doi.org/10.1016/j.asoc.2018.07.025spa
dc.relation.referencesFattahi, M., & Govindan, K. (2018). A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study. Transportation Research Part E: Logistics and Transportation Review, 118, 534-567. https://doi.org/10.1016/j.tre.2018.08.008spa
dc.relation.referencesFedebiocombustibles. (2021, enero 1). Federación Nacional de Biocombustibles de Colombia, Marco Normativo de los biocombustibles en Colombia. fedebiocombustibles.com. http://www.fedebiocombustibles.com/v3/estadistica-mostrar_info-titulo-Alcohol_Carburante_(Etanol).htmspa
dc.relation.referencesFlorentino, H. de O., Irawan, C., Aliano, A. F., Jones, D. F., Cantane, D. R., & Nervis, J. J. (2018). A multiple objective methodology for sugarcane harvest management with varying maturation periods. Annals of Operations Research, 267(1-2), 153-177. https://doi.org/10.1007/s10479-017-2568-2spa
dc.relation.referencesFlorentino, H. de O., Jones, D. F., Irawan, C. A., Ouelhadj, D., Khosravi, B., & Cantane, D. R. (2020). An optimization model for combined selecting, planting and harvesting sugarcane varieties. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03610-yspa
dc.relation.referencesFlorio, M., & Colautti, S. (2005). A logistic growth theory of public expenditures: A study of five countries over 100 years. Public Choice, 122(3-4), 355-393. https://doi.org/10.1007/s11127-005-3900-yspa
dc.relation.referencesFurlan, F. F., Costa, C. B. B., de Castro Fonseca, G., de Pelegrini Soares, R., Secchi, A. R., da Cruz, A. J. G., & de Campos Giordano, R. (2012). Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling. Computers & Chemical Engineering, 43, 1-9.spa
dc.relation.referencesGao, J., & You, F. (2019). A stochastic game theoretic framework for decentralized optimization of multi-stakeholder supply chains under uncertainty. Computers & Chemical Engineering, 122, 31-46. https://doi.org/10.1016/j.compchemeng.2018.05.016spa
dc.relation.referencesGatti, S. (2013). Project finance in theory and practice: Designing, structuring, and financing private and public projects. Academic Press.spa
dc.relation.referencesGhaderi, H., Pishvaee, M. S., & Moini, A. (2016). Biomass supply chain network design: An optimization-oriented review and analysis. Industrial Crops and Products, 94, 972-1000. https://doi.org/10.1016/j.indcrop.2016.09.027spa
dc.relation.referencesGheewala, S., Silalertruksa, T., Nilsalab, P., Mungkung, R., Perret, S., & Chaiyawannakarn, N. (2014). Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand. Water, 6(6), 1698-1718. https://doi.org/10.3390/w6061698spa
dc.relation.referencesGiannakis, M., & Papadopoulos, T. (2016). Supply chain sustainability: A risk management approach. International Journal of Production Economics, 171, 455-470. https://doi.org/10.1016/j.ijpe.2015.06.032spa
dc.relation.referencesGilani, H., & Sahebi, H. (2020). A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: The case of study. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00639-8spa
dc.relation.referencesGnansounou, E., Pachón, E. R., Sinsin, B., Teka, O., Togbé, E., & Mahamane, A. (2020). Using agricultural residues for sustainable transportation biofuels in 2050: Case of West Africa. Bioresource Technology, 305, 123080. https://doi.org/10.1016/j.biortech.2020.123080spa
dc.relation.referencesGobierno Digital Colombia. (2018). Datos abiertos Ministerio de Minas y energia Colombia. https://www.datos.gov.co/Minas-y-Energ-a/Tarifas-aplicadas-de-Gas-Natural/ek3f-5wn4/dataspa
dc.relation.referencesGovindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 263(1), 108-141. https://doi.org/10.1016/j.ejor.2017.04.009spa
dc.relation.referencesGovindan, K., Shaw, M., & Majumdar, A. (2020). Social Sustainability Tensions in Multi-tier Supply Chain: A Systematic Literature Review towards Conceptual Framework Development. Journal of Cleaner Production, 123075. https://doi.org/10.1016/j.jclepro.2020.123075spa
dc.relation.referencesGrimsey, D., & Lewis, M. (2007). Public private partnerships: The worldwide revolution in infrastructure provision and project finance. Edward Elgar Publishing.spa
dc.relation.referencesGrunow, M., Günther, H.-O., & Westinner, R. (2007). Supply optimization for the production of raw sugar. International Journal of Production Economics, 110(1-2), 224-239. https://doi.org/10.1016/j.ijpe.2007.02.019spa
dc.relation.referencesGuo, M., van Dam, K. H., Touhami, N. O., Nguyen, R., Delval, F., Jamieson, C., & Shah, N. (2020). Multi-level system modelling of the resource-food-bioenergy nexus in the global south. Energy, 197, 117196. https://doi.org/10.1016/j.energy.2020.117196spa
dc.relation.referencesHaberl, H., Wackernagel, M., & Wrbka, T. (2004). Land use and sustainability indicators. An introduction. Land Use Policy, 21(3), 193-198. https://doi.org/10.1016/j.landusepol.2003.10.004spa
dc.relation.referencesHahn, M. H., & Ribeiro, R. V. (1999). Heuristic guided simulator for the operational planning of the transport of sugar cane. Journal of the Operational Research Society, 50(5), 451-459.spa
dc.relation.referencesHaj Hasan, A., & Avami, A. (2018). Comparative assessment of bioethanol supply chain: Insights from Iran. Biofuels, 1-9. https://doi.org/10.1080/17597269.2018.1496385spa
dc.relation.referencesHall, J., Matos, S., & Silvestre, B. (2012). Understanding why firms should invest in sustainable supply chains: A complexity approach. International Journal of Production Research, 50(5), 1332-1348. https://doi.org/10.1080/00207543.2011.571930spa
dc.relation.referencesHasani, A., & Khosrojerdi, A. (2016). Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study. Transportation Research Part E: Logistics and Transportation Review, 87, 20-52. https://doi.org/10.1016/j.tre.2015.12.009spa
dc.relation.referencesHenao, R., Sarache, W., & Gómez, I. (2019). Lean manufacturing and sustainable performance: Trends and future challenges. Journal of Cleaner Production, 208, 99-116. https://doi.org/10.1016/j.jclepro.2018.10.116spa
dc.relation.referencesHenao, R., Sarache, W., & Gomez, I. (2021). A social performance metrics framework for sustainable manufacturing. International Journal of Industrial and Systems Engineering, 38(2), 167-197.spa
dc.relation.referencesHiggins, A. (2006). Scheduling of road vehicles in sugarcane transport: A case study at an Australian sugar mill. European Journal of Operational Research, 170(3), 987-1000. https://doi.org/10.1016/j.ejor.2004.07.055spa
dc.relation.referencesHiggins, A., Antony, G., Sandell, G., Davies, I., Prestwidge, D., & Andrew, B. (2004). A framework for integrating a complex harvesting and transport system for sugar production. Agricultural Systems, 82(2), 99-115. https://doi.org/10.1016/j.agsy.2003.12.004spa
dc.relation.referencesHiggins, A., & Davies, I. (2005). A simulation model for capacity planning in sugarcane transport. Computers and Electronics in Agriculture, 47(2), 85-102. https://doi.org/10.1016/j.compag.2004.10.006spa
dc.relation.referencesHiggins, A. J. (1999). Optimizing cane supply decisions within a sugar mill region. Journal of Scheduling, 2(5), 229-244.spa
dc.relation.referencesHiggins, A. J. (2002). Australian Sugar Mills Optimize Harvester Rosters to Improve Production. Interfaces, 32(3), 15-25. https://doi.org/10.1287/inte.32.3.15.41spa
dc.relation.referencesHiggins, A. J., & Laredo, L. A. (2006). Improving harvesting and transport planning within a sugar value chain. Journal of the Operational Research Society, 57(4), 367-376. https://doi.org/10.1057/palgrave.jors.2602024spa
dc.relation.referencesHiggins, A. J., & Muchow, R. C. (2003). Assessing the potential benefits of alternative cane supply arrangements in the Australian sugar industry. Agricultural Systems, 76(2), 623-638.spa
dc.relation.referencesHiggins, A., Muchow, R. C., Rudd, A. V., & Ford, A. W. (1998). Optimising harvest date in sugar production: A case study for the Mossman mill region in Australia I. Development of operations research model and solution. Field Crops Research, 57, 153-162.spa
dc.relation.referencesHiggins, A., Thorburn, P., Archer, A., & Jakku, E. (2007). Opportunities for value chain research in sugar industries. Agricultural Systems, 94(3), 611-621. https://doi.org/10.1016/j.agsy.2007.02.011spa
dc.relation.referencesHua, Z., Jun, L., Zhaonian, Y., Sanji, G., Yingying, Y., & Zhaoli, L. (2013). Agronomic techniques to sugarcane mechanical seeding [J]. Journal of Chinese Agricultural Mechanization, 1, 020.spa
dc.relation.referencesHuijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147. https://doi.org/10.1007/s11367-016-1246-yspa
dc.relation.referencesIllukpitiya, P., Yanagida, J. F., Ogoshi, R., & Uehara, G. (2013). Sugar-ethanol-electricity co-generation in Hawai’i: An application of linear programming (LP) for optimizing strategies. Biomass and Bioenergy, 48, 203-212. https://doi.org/10.1016/j.biombioe.2012.11.003spa
dc.relation.referencesJ. W. Mishoe, J. W. Jones, & G. J. Gascho. (1979). Harvesting Scheduling of Sugarcane for Optimum Biomass Production. Transactions of the ASAE, 22(6), 1299-1304. https://doi.org/10.13031/2013.35202spa
dc.relation.referencesJaehn, F. (2016). Sustainable Operations. European Journal of Operational Research, 253(2), 243-264. https://doi.org/10.1016/j.ejor.2016.02.046spa
dc.relation.referencesJahani, H., Abbasi, B., & Talluri, S. (2019). Supply Chain Network Redesign: A Technical Note on Optimising Financial Performance. Decision Sciences, deci.12374. https://doi.org/10.1111/deci.12374spa
dc.relation.referencesJena, S. D., & Poggi, M. (2013). Harvest planning in the Brazilian sugar cane industry via mixed integer programming. European Journal of Operational Research, 230(2), 374-384. https://doi.org/10.1016/j.ejor.2013.04.011spa
dc.relation.referencesJiao, Z., Higgins, A. J., & Prestwidge, D. B. (2005). An integrated statistical and optimisation approach to increasing sugar production within a mill region. Computers and Electronics in Agriculture, 48(2), 170-181. https://doi.org/10.1016/j.compag.2005.03.004spa
dc.relation.referencesJin, S., Jeong, S., & Kim, K. (2017). A Linkage Model of Supply Chain Operation and Financial Performance for Economic Sustainability of Firm. Sustainability, 9(1), 139. https://doi.org/10.3390/su9010139spa
dc.relation.referencesJoelsson, E., Erdei, B., Galbe, M., & Wallberg, O. (2016). Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw. Biotechnology for Biofuels, 9, 1. https://doi.org/10.1186/s13068-015-0423-8spa
dc.relation.referencesJonker, J. G. G., Junginger, H. M., Verstegen, J. A., Lin, T., Rodríguez, L. F., Ting, K. C., Faaij, A. P. C., & van der Hilst, F. (2016). Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil. Applied Energy, 173, 494-510. https://doi.org/10.1016/j.apenergy.2016.04.069spa
dc.relation.referencesJunqueira, R. de Á. R., & Morabito, R. (2019). Modeling and solving a sugarcane harvest front scheduling problem. International Journal of Production Economics, 213, 150-160.spa
dc.relation.referencesKarp, S. G., Medina, J. D. C., Letti, L. A. J., Woiciechowski, A. L., de Carvalho, J. C., Schmitt, C. C., de Oliveira Penha, R., Kumlehn, G. S., & Soccol, C. R. (2021). Bioeconomy and biofuels: The case of sugarcane ethanol in Brazil. Biofuels, Bioproducts and Biorefining, n/a(n/a). https://doi.org/10.1002/bbb.2195spa
dc.relation.referencesKhamjan, W., Khamjan, S., & Pathumnakul, S. (2013). Determination of the locations and capacities of sugar cane loading stations in Thailand. Computers & Industrial Engineering, 66(4), 663-674. https://doi.org/10.1016/j.cie.2013.09.006spa
dc.relation.referencesKhan, S. A. R., Yu, Z., Golpira, H., Sharif, A., & Mardani, A. (2021). A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. Journal of Cleaner Production, 278, 123357. https://doi.org/10.1016/j.jclepro.2020.123357spa
dc.relation.referencesKhatiwada, D., Leduc, S., Silveira, S., & McCallum, I. (2016). Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renewable Energy, 85, 371-386. https://doi.org/10.1016/j.renene.2015.06.009spa
dc.relation.referencesKittilertpaisan, K., & Pathumnakul, S. (2017). Integrating a multiple crop year routing design for sugarcane harvesters to plant a new crop. Computers and Electronics in Agriculture, 136, 58-70. https://doi.org/10.1016/j.compag.2017.03.001spa
dc.relation.referencesKostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2010). Integrating pricing policies in the strategic planning of supply chains: A case study of the sugar cane industry in Argentina. En S. Pierucci & G. B. Ferraris (Eds.), Computer Aided Chemical Engineering (Vol. 28, pp. 103-108). Elsevier. https://doi.org/10.1016/S1570-7946(10)28018-5spa
dc.relation.referencesKostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2011). A novel rolling horizon strategy for the strategic planning of supply chains. Application to the sugar cane industry of Argentina. Computers & Chemical Engineering, 35(11), 2540-2563. https://doi.org/10.1016/j.compchemeng.2011.04.006spa
dc.relation.referencesKostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2012). Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty. Chemical Engineering Research and Design, 90(3), 359-376. https://doi.org/10.1016/j.cherd.2011.07.013spa
dc.relation.referencesKravanja, Z., & Čuček, L. (2013). Multi-objective optimisation for generating sustainable solutions considering total effects on the environment. Applied Energy, 101, 67-80. https://doi.org/10.1016/j.apenergy.2012.04.025spa
dc.relation.referencesKulkarni, V. G. (2016). Modeling and analysis of stochastic systems. Chapman and Hall/CRC.spa
dc.relation.referencesKumar, N., Patel, S. S., Chalodia, A. L., Vadaviya, O. U., Pandya, H. R., Pisal, R. R., Dakhore, K. K., & Patel, M. L. (2015). Markov chain and incomplete Gamma distribution analysis of weekly rainfall over Navsari region of south Gujarat. Mausam, 10.spa
dc.relation.referencesKusumastuti, R. D., Donk, D. P. van, & Teunter, R. (2016). Crop-related harvesting and processing planning: A review. International Journal of Production Economics, 174, 76-92. https://doi.org/10.1016/j.ijpe.2016.01.010spa
dc.relation.referencesLe Gal, P.-Y., Le Masson, J., Bezuidenhout, C. N., & Lagrange, L. F. (2009). Coupled modelling of sugarcane supply planning and logistics as a management tool. Computers and Electronics in Agriculture, 68(2), 168-177. https://doi.org/10.1016/j.compag.2009.05.006spa
dc.relation.referencesLe Gal, P.-Y., Lyne, P. W. L., Meyer, E., & Soler, L.-G. (2008). Impact of sugarcane supply scheduling on mill sugar production: A South African case study. Agricultural Systems, 96(1), 64-74. https://doi.org/10.1016/j.agsy.2007.05.006spa
dc.relation.referencesLeduc, S., Starfelt, F., Dotzauer, E., Kindermann, G., McCallum, I., Obersteiner, M., & Lundgren, J. (2010). Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. Energy, 35(6), 2709-2716. https://doi.org/10.1016/j.energy.2009.07.018spa
dc.relation.referencesLejars, C., Le Gal, P.-Y., & Auzoux, S. (2008). A decision support approach for cane supply management within a sugar mill area. Computers and Electronics in Agriculture, 60(2), 239-249. https://doi.org/10.1016/j.compag.2007.08.008spa
dc.relation.referencesLiobikiene, G., Balezentis, T., Streimikiene, D., & Chen, X. (2019). Evaluation of bioeconomy in the context of strong sustainability. Sustainable Development, 27(5), 955-964. https://doi.org/10.1002/sd.1984spa
dc.relation.referencesLiu, L., Parlar, M., & Zhu, S. X. (2007). Pricing and Lead Time Decisions in Decentralized Supply Chains. Management Science, 53(5), 713-725. https://doi.org/10.1287/mnsc.1060.0653spa
dc.relation.referencesLiu, S., & Papageorgiou, L. G. (2018). Fair profit distribution in multi-echelon supply chains via transfer prices. Omega, 80, 77-94. https://doi.org/10.1016/j.omega.2017.08.010spa
dc.relation.referencesLondoño, L. (2017). Desempeño de la Agroindustria de la Caña en Colombia 2016-2017, Performance of the Agroindustry of the Sugarcane in Colombia 2016-2017 (pp. 1-32). http://www.asocana.org//documentos/2452017.pdfspa
dc.relation.referencesLonginidis, P., & Georgiadis, M. C. (2011). Integration of financial statement analysis in the optimal design of supply chain networks under demand uncertainty. International Journal of Production Economics, 129(2), 262-276. https://doi.org/10.1016/j.ijpe.2010.10.018spa
dc.relation.referencesLonginidis, P., & Georgiadis, M. C. (2013). Managing the trade-offs between financial performance and credit solvency in the optimal design of supply chain networks under economic uncertainty. Computers & Chemical Engineering, 48, 264-279. https://doi.org/10.1016/j.compchemeng.2012.09.019spa
dc.relation.referencesLonginidis, P., & Georgiadis, M. C. (2014). Integration of sale and leaseback in the optimal design of supply chain networks. Omega, 47, 73-89. https://doi.org/10.1016/j.omega.2013.08.004spa
dc.relation.referencesLonginidis, P., Georgiadis, M. C., & Kozanidis, G. (2015). Integrating Operational Hedging of Exchange Rate Risk in the Optimal Design of Global Supply Chain Networks. Industrial & Engineering Chemistry Research, 54(24), 6311-6325. https://doi.org/10.1021/acs.iecr.5b00349spa
dc.relation.referencesLopez Milan, E., Miquel Fernandez, S., & Pla Aragones, L. M. (2006). Sugar cane transportation in Cuba, a case study. European Journal of Operational Research, 174(1), 374-386. https://doi.org/10.1016/j.ejor.2005.01.028spa
dc.relation.referencesLowe, T. J., & Preckel, P. V. (2004). Decision Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a Call for Research. Manufacturing & Service Operations Management, 6(3), 201-208. https://doi.org/10.1287/msom.1040.0051spa
dc.relation.referencesMacowski, D. H., Bonfim-Rocha, L., Orgeda, R., Camilo, R., & Ravagnani, M. A. S. S. (2020). Multi-objective optimization of the Brazilian industrial sugarcane scenario: A profitable and ecological approach. Clean Technologies and Environmental Policy, 22(3), 591-611. https://doi.org/10.1007/s10098-019-01802-0spa
dc.relation.referencesMallawaarachchi, T., & Quiggin, J. (2001). Modelling socially optimal land allocations for sugar cane growing in North Queensland: A linked mathematical programming and choice modelling study. Australian Journal of Agricultural and Resource Economics, 45(3), 383-409. https://doi.org/10.1111/1467-8489.00149spa
dc.relation.referencesMarin, F., Jones, J. W., & Boote, K. J. (2017). A Stochastic Method for Crop Models: Including Uncertainty in a Sugarcane Model. Agronomy Journal, 109(2), 483. https://doi.org/10.2134/agronj2016.02.0103spa
dc.relation.referencesMartínez-Guido, SergioI., Betzabe González-Campos, J., Ponce-Ortega, JoséM., Nápoles-Rivera, F., & El-Halwagi, MahmoudM. (2016). Optimal reconfiguration of a sugar cane industry to yield an integrated biorefinery. Clean Technologies and Environmental Policy, 18(2), 553-562. https://doi.org/10.1007/s10098-015-1039-1spa
dc.relation.referencesMartinez-Hernandez, E. (2017). Trends in sustainable process design—From molecular to global scales. Current Opinion in Chemical Engineering, 17, 35-41. https://doi.org/10.1016/j.coche.2017.05.005spa
dc.relation.referencesMatindi, R., Masoud, M., Hobson, P., Kent, G., & Liu, S. Q. (2018). Harvesting and transport operations to optimise biomass supply chain and industrial biorefinery processes. International Journal of Industrial Engineering Computations, 265-288. https://doi.org/10.5267/j.ijiec.2017.9.001spa
dc.relation.referencesMatis, J. H., Saito, T., Grant, W. E., Iwig, W. C., & Ritchie, J. T. (1985). A Markov chain approach to crop yield forecasting. Agricultural Systems, 18(3), 171-187. https://doi.org/10.1016/0308-521X(85)90030-7spa
dc.relation.referencesMaxwell, D., & van der Vorst, R. (2003). Developing sustainable products and services. Journal of Cleaner Production, 11(8), 883-895. https://doi.org/10.1016/S0959-6526(02)00164-6spa
dc.relation.referencesMeemken, E.-M., Barrett, C. B., Michelson, H. C., Qaim, M., Reardon, T., & Sellare, J. (2021). Sustainability standards in global agrifood supply chains. Nature Food, 2(10), 758-765. https://doi.org/10.1038/s43016-021-00360-3spa
dc.relation.referencesMele, F. D., Kostin, A. M., Guillén-Gosálbez, G., & Jiménez, L. (2011). Multiobjective Model for More Sustainable Fuel Supply Chains. A Case Study of the Sugar Cane Industry in Argentina. Industrial & Engineering Chemistry Research, 50(9), 4939-4958. https://doi.org/10.1021/ie101400gspa
dc.relation.referencesMelo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401-412. https://doi.org/10.1016/j.ejor.2008.05.007spa
dc.relation.referencesMessmann, L., Zender, V., Thorenz, A., & Tuma, A. (2020). How to quantify social impacts in strategic supply chain optimization: State of the art. Journal of Cleaner Production, 257, 120459. https://doi.org/10.1016/j.jclepro.2020.120459spa
dc.relation.referencesMeza-Palacios, R., Aguilar-Lasserre, A. A., Morales-Mendoza, L. F., Pérez-Gallardo, J. R., Rico-Contreras, J. O., & Avarado-Lassman, A. (2019). Life cycle assessment of cane sugar production: The environmental contribution to human health, climate change, ecosystem quality and resources in México. Journal of Environmental Science and Health, Part A, 54(7), 668-678. https://doi.org/10.1080/10934529.2019.1579537spa
dc.relation.referencesMinisterio de Ciencia, Tecnología e Innovación. (2019). Descripción de focos y líneas de investigación. https://minciencias.gov.co/sites/default/files/upload/convocatoria/anexo_1._descripcion_de_focos_y_lineas_de_investigacion.pdfspa
dc.relation.referencesMinisterio Minas y Energía. (2018). Resolución 40185. República de Colombia.spa
dc.relation.referencesMohammadi, A., Abbasi, A., Alimohammadlou, M., Eghtesadifard, M., & Khalifeh, M. (2017). Optimal design of a multi-echelon supply chain in a system thinking framework: An integrated financial-operational approach. Computers & Industrial Engineering, 114, 297-315. https://doi.org/10.1016/j.cie.2017.10.019spa
dc.relation.referencesMorales Chávez, M. M., Sarache, W., & Costa, Y. (2018). Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transportation Research Part E: Logistics and Transportation Review, 116, 136-162. https://doi.org/10.1016/j.tre.2018.06.001spa
dc.relation.referencesMorales Chavez, M. M., Sarache, W., Costa, Y., & Soto, J. (2020). Multiobjective stochastic scheduling of upstream operations in a sustainable sugarcane supply chain. Journal of Cleaner Production, 276, 123305. https://doi.org/10.1016/j.jclepro.2020.123305spa
dc.relation.referencesMorales-Chávez, M. M., Soto-Mejía, J. A., & Sarache, W. A. (2016). A mixed-integer linear programming model for harvesting, loading and transporting sugarcane. A case study in Peru. DYNA, 83(195), 173-179. https://doi.org/10.15446/dyna.v83n195.49490spa
dc.relation.referencesMota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2015). Towards supply chain sustainability: Economic, environmental and social design and planning. Journal of Cleaner Production, 105, 14-27. https://doi.org/10.1016/j.jclepro.2014.07.052spa
dc.relation.referencesMuchow, R. C., Higgins, A. J., Rudd, A. V., & Ford, A. W. (1998). Optimising harvest date in sugar production: A case study for the Mossman mill region in Australia: II. Sensitivity to crop age and crop class distribution. Field Crops Research, 57(3), 243-251.spa
dc.relation.referencesMutenurea, M., Čučekb, L., Isafiade, A. J., & Kravanjab, Z. (2016). Synthesis of South Africa’s Biomass to Bioethanol Supply Network. CHEMICAL ENGINEERING, 52.spa
dc.relation.referencesMutran, V. M., Ribeiro, C. O., Nascimento, C. A. O., & Chachuat, B. (2020). Risk-conscious optimization model to support bioenergy investments in the Brazilian sugarcane industry. Applied Energy, 258, 113978. https://doi.org/10.1016/j.apenergy.2019.113978spa
dc.relation.referencesOliveira, J. B., Lima, R. S., & Montevechi, J. A. B. (2016). Perspectives and relationships in Supply Chain Simulation: A systematic literature review. Simulation Modelling Practice and Theory, 62, 166-191. https://doi.org/10.1016/j.simpat.2016.02.001spa
dc.relation.referencesOmetto, A. R., Hauschild, M. Z., & Roma, W. N. L. (2009). Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess, 12.spa
dc.relation.referencesOsaki, M. R., & Seleghim Jr, P. (2017). Bioethanol and power from integrated second generation biomass: A Monte Carlo simulation. Energy Conversion and Management, 141, 274-284.spa
dc.relation.referencesOsmani, A., & Zhang, J. (2013). Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties. Energy, 59, 157-172. https://doi.org/10.1016/j.energy.2013.07.043spa
dc.relation.referencesPaiva, R. P. O., & Morabito, R. (2009). An optimization model for the aggregate production planning of a Brazilian sugar and ethanol milling company. Annals of Operations Research, 169(1), 117-130. https://doi.org/10.1007/s10479-008-0428-9spa
dc.relation.referencesPashangpour, R., Faghihi, F., & Soleymani, S. (2018). Optimized scheduling for electric lift trucks in a sugarcane agro-industry based on thermal, biomass and solar resources. International Journal of Environmental Science and Technology, 15(11), 2349-2358.spa
dc.relation.referencesPathumnakul S., & Nakrachata-Amon T. (2015). The Applications of Operations Research in Harvest Planning: A Case Study of the Sugarcane Industry in Thailand. Journal of Japan Industrial Management Association, 65(4E), 328-333. https://doi.org/10.11221/jima.65.328spa
dc.relation.referencesPelletier, N., Ustaoglu, E., Benoit, C., Norris, G., Rosenbaum, E., Vasta, A., & Sala, S. (2018). Social sustainability in trade and development policy. The International Journal of Life Cycle Assessment, 23(3), 629-639. https://doi.org/10.1007/s11367-016-1059-zspa
dc.relation.referencesPereira, R. D., Badino, A. C., & Cruz, A. J. (2020). Framework Based on Artificial Intelligence to Increase Industrial Bioethanol Production. Energy & Fuels, 34(4), 4670-4677.spa
dc.relation.referencesPiewthongngam, K., Pathumnakul, S., & Setthanan, K. (2009). Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry. Agricultural Systems, 102(1-3), 58-66. https://doi.org/10.1016/j.agsy.2009.07.002spa
dc.relation.referencesPitakaso, R., & Sethanan, K. (2019). Adaptive large neighborhood search for scheduling sugarcane inbound logistics equipment and machinery under a sharing infield resource system. Computers and Electronics in Agriculture, 158, 313-325. https://doi.org/10.1016/j.compag.2019.02.001eng
dc.relation.referencesPlà, L. M., Sandars, D. L., & Higgins, A. J. (2014). A perspective on operational research prospects for agriculture. Journal of the Operational Research Society, 65(7), 1078-1089. https://doi.org/10.1057/jors.2013.45eng
dc.relation.referencesPolo, A., Peña, N., Muñoz, D., Cañón, A., & Escobar, J. W. (2018). Robust design of a closed-loop supply chain under uncertainty conditions integrating financial criteria. Omega. https://doi.org/10.1016/j.omega.2018.09.003eng
dc.relation.referencesPoltroniere, S. C., Aliano Filho, A., Caversan, A. S., Balbo, A. R., & Florentino, H. de O. (2021). Integrated planning for planting and harvesting sugarcane and energy-cane for the production of sucrose and energy. Computers and Electronics in Agriculture, 184, 105956. https://doi.org/10.1016/j.compag.2020.105956eng
dc.relation.referencesPrasara-A, J., & Gheewala, S. H. (2016). Sustainability of sugarcane cultivation: Case study of selected sites in north-eastern Thailand. Journal of Cleaner Production, 134, 613-622. https://doi.org/10.1016/j.jclepro.2015.09.029eng
dc.relation.referencesProcaña. (2018). Colombian sugarcane Industry: Description. http://www.procana.org/new/quienes-somos/presentacion-del-sector.htmleng
dc.relation.referencesQureshi, M. E., Qureshi, S. E., Bajracharya, K., & Kirby, M. (2008). Integrated Biophysical and Economic ModellingFramework to Assess Impacts of Alternative Groundwater Management Options. Water Resources Management, 22(3), 321-341. https://doi.org/10.1007/s11269-007-9164-1eng
dc.relation.referencesQureshi, M. E., Qureshi, S. E., & Wegener, M. K. (2007). Economic implications of alternative mill mud management options in the Australian sugar industry. Agricultural Economics, 36(1), 113-122.eng
dc.relation.referencesRamezani, M., Kimiagari, A. M., & Karimi, B. (2014). Closed-loop supply chain network design: A financial approach. Applied Mathematical Modelling, 38(15-16), 4099-4119. https://doi.org/10.1016/j.apm.2014.02.004eng
dc.relation.referencesRamirez, C. A. M. (2017). Asocaña. Sector Agroindustrial de la Caña. https://www.asocana.org/spa
dc.relation.referencesRamirez, C. A. M. (2021a). Balance azucarero colombiano Asocaña 2000—2020 (toneladas). Asocaña - Sector Agroindustrial de la Caña. http://www.asocana.org/modules/documentos/5528.aspxspa
dc.relation.referencesRamirez, C. A. M. (2021b). Informe anual 2019—2020. Asocaña - Sector Agroindustrial de la Caña. http://www.asocana.org/modules/documentos/15398.aspxspa
dc.relation.referencesRebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment. Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701-720. https://doi.org/10.1016/j.envint.2003.11.005eng
dc.relation.referencesRenouf, M. A., Wegener, M. K., & Pagan, R. J. (2010). Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. The International Journal of Life Cycle Assessment, 15(9), 927-937. https://doi.org/10.1007/s11367-010-0226-xeng
dc.relation.referencesReynolds, C., Buckley, J., Weinstein, P., & Boland, J. (2014). Are the Dietary Guidelines for Meat, Fat, Fruit and Vegetable Consumption Appropriate for Environmental Sustainability? A Review of the Literature. Nutrients, 6(6), 2251-2265. https://doi.org/10.3390/nu6062251eng
dc.relation.referencesRivera-Cadavid, L., Manyoma-Velásquez, P. C., & Manotas-Duque, D. F. (2019). Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR). Sustainability, 11(23), 6565.eng
dc.relation.referencesRojas, L. S. B. (2011). OPORTUNIDADES Y AMENAZAS DE LOS BIOCOMBUSTIBLES EN COLOMBIA [PONTIFICIA UNIVERSIDAD JAVERIANA]. https://repository.javeriana.edu.co/bitstream/handle/10554/12377/BuenoRojasLucySikint2011.pdf?sequence=1spa
dc.relation.referencesRosa, W. (Ed.). (2017). Transforming Our World: The 2030 Agenda for Sustainable Development. En A New Era in Global Health. Springer Publishing Company. https://doi.org/10.1891/9780826190123.ap02eng
dc.relation.referencesRoss, S. M. (2014). Introduction to probability models. Academic press.eng
dc.relation.referencesRota, C., Pugliese, P., Hashem, S., & Zanasi, C. (2018). Assessing the level of collaboration in the Egyptian organic and fair trade cotton chain. Journal of Cleaner Production, 170, 1665-1676. https://doi.org/10.1016/j.jclepro.2016.10.011eng
dc.relation.referencesSahebi, H., Nickel, S., & Ashayeri, J. (2014). Strategic and tactical mathematical programming models within the crude oil supply chain context—A review. Computers & Chemical Engineering, 68, 56-77. https://doi.org/10.1016/j.compchemeng.2014.05.008eng
dc.relation.referencesSantibañez-Aguilar, J. E., González-Campos, J. B., Ponce-Ortega, J. M., Serna-González, M., & El-Halwagi, M. M. (2014). Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. Journal of Cleaner Production, 65, 270-294. https://doi.org/10.1016/j.jclepro.2013.08.004eng
dc.relation.referencesSantoro, E., Soler, E. M., & Cherri, A. C. (2017). Route optimization in mechanized sugarcane harvesting. Computers and Electronics in Agriculture, 141, 140-146. https://doi.org/10.1016/j.compag.2017.07.013eng
dc.relation.referencesSaranwong, S., & Likasiri, C. (2017). Bi-level programming model for solving distribution center problem: A case study in Northern Thailand’s sugarcane management. Computers & Industrial Engineering, 103, 26-39. https://doi.org/10.1016/j.cie.2016.10.031eng
dc.relation.referencesSarkar, B., Mridha, B., Pareek, S., Sarkar, M., & Thangavelu, L. (2021). A flexible biofuel and bioenergy production system with transportation disruption under a sustainable supply chain network. Journal of Cleaner Production, 317, 128079. https://doi.org/10.1016/j.jclepro.2021.128079eng
dc.relation.referencesSartori, M. M. P., de Oliveira Florentino, H., Basta, C., & Leão, A. L. (2001). Determination of the optimal quantity of crop residues for energy in sugarcane crop management using linear programming in variety selection and planting strategy. Energy, 26(11), 1031-1040.eng
dc.relation.referencesScully, M. J., Norris, G. A., Alarcon Falconi, T. M., & MacIntosh, D. L. (2021). Carbon intensity of corn ethanol in the United States: State of the science. Environmental Research Letters, 16(4), 043001. https://doi.org/10.1088/1748-9326/abde08eng
dc.relation.referencesSemboloni, F. (2006). The CityDev Project: An Interactive Multi-agent Urban Model on the Web. En J. Portugali (Ed.), Complex Artificial Environments (pp. 155-163). Springer-Verlag. https://doi.org/10.1007/3-540-29710-3_10eng
dc.relation.referencesSemenzato, R. (1995). A simulation study of sugar cane harvesting. Agricultural Systems, 47(4), 427-437. https://doi.org/10.1016/0308-521X(95)92108-Ieng
dc.relation.referencesSeuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699-1710. https://doi.org/10.1016/j.jclepro.2008.04.020eng
dc.relation.referencesShafie, S. M., Othman, Z., & Hami, N. (2020). Optimum location of biomass waste residue power plant in northern region: Economic and environmental assessment. International Journal of Energy Economics and Policy, 10(1), 150.eng
dc.relation.referencesShapiro, A. (2003). Monte Carlo Sampling Methods. En Handbooks in Operations Research and Management Science (Vol. 10, pp. 353-425). Elsevier. https://doi.org/10.1016/S0927-0507(03)10006-0eng
dc.relation.referencesShukla, M., & Jharkharia, S. (2013). Agri‐fresh produce supply chain management: A state‐of‐the‐art literature review. International Journal of Operations & Production Management, 33(2), 114-158. https://doi.org/10.1108/01443571311295608eng
dc.relation.referencesSihombing, L., Latief, Y., Rarasati, A. D., & Wibowo, A. (2018). Utilizing uncertainty management to analyze the uncertainty of toll road land acquisition. International Journal of Civil Engineering and Technology, 9(6), 1221-1228. Scopus.eng
dc.relation.referencesSimchi-Levi, D., Chen, X., & Bramel, J. (2005). The logic of logistics. Theory, Algorithms, and Applications for Logistics and Supply Chain Management.eng
dc.relation.referencesSørensen, C. G., & Bochtis, D. D. (2010). Conceptual model of fleet management in agriculture. Biosystems Engineering, 105(1), 41-50. https://doi.org/10.1016/j.biosystemseng.2009.09.009eng
dc.relation.referencesSoto-Silva, W. E., González-Araya, M. C., Oliva-Fernández, M. A., & Plà-Aragonés, L. M. (2017). Optimizing fresh food logistics for processing: Application for a large Chilean apple supply chain. Computers and Electronics in Agriculture, 136, 42-57. https://doi.org/10.1016/j.compag.2017.02.020eng
dc.relation.referencesSoto-Silva, W. E., Nadal-Roig, E., González-Araya, M. C., & Pla-Aragones, L. M. (2016). Operational research models applied to the fresh fruit supply chain. European Journal of Operational Research, 251(2), 345-355. https://doi.org/10.1016/j.ejor.2015.08.046eng
dc.relation.referencesSowlati, T. (2016). Modeling of forest and wood residues supply chains for bioenergy and biofuel production. En Biomass Supply Chains for Bioenergy and Biorefining (pp. 167-190). Elsevier. https://doi.org/10.1016/B978-1-78242-366-9.00008-3eng
dc.relation.referencesSoysal, M., Bloemhof-Ruwaard, J. M., Meuwissen, M. P., & van der Vorst, J. G. (2012). A review on quantitative models for sustainable food logistics management. International Journal on Food System Dynamics, 3(2), 136-155.eng
dc.relation.referencesStandfield, L., Comans, T., & Scuffham, P. (2014). Markov modeling and discrete event simulation in health care: A systematic comparison. International Journal of Technology Assessment in Health Care, 30(2), 165-172. https://doi.org/10.1017/S0266462314000117eng
dc.relation.referencesStray, B. J., van Vuuren, J. H., & Bezuidenhout, C. N. (2012). An optimisation-based seasonal sugarcane harvest scheduling decision support system for commercial growers in South Africa. Computers and Electronics in Agriculture, 83, 21-31. https://doi.org/10.1016/j.compag.2012.01.009eng
dc.relation.referencesSun, F., Aguayo, M. M., Ramachandran, R., & Sarin, S. C. (2018). Biomass feedstock supply chain design–a taxonomic review and a decomposition-based methodology. International Journal of Production Research, 56(17), 5626-5659.eng
dc.relation.referencesSun, O., & Fan, N. (2020). A Review on Optimization Methods for Biomass Supply Chain: Models and Algorithms, Sustainable Issues, and Challenges and Opportunities. Process Integration and Optimization for Sustainability. https://doi.org/10.1007/s41660-020-00108-9eng
dc.relation.referencesTeixeira, E. dos S., Rangel, S., Florentino, H. de O., & de Araujo, S. A. (2021). A review of mathematical optimization models applied to the sugarcane supply chain. International Transactions in Operational Research.eng
dc.relation.referencesTsolakis, N. K., Keramydas, C. A., Toka, A. K., Aidonis, D. A., & Iakovou, E. T. (2014). Agrifood supply chain management: A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosystems Engineering, 120, 47-64. https://doi.org/10.1016/j.biosystemseng.2013.10.014eng
dc.relation.referencesUN. (2017). United Nations sustainable development agenda. United Nations Sustainable Development. http://www.un.org/sustainabledevelopment/development-agenda/eng
dc.relation.referencesUPME. (2018). BOLETÍN ESTADÍSTICO DE MINAS Y ENERGÍA 2016—2018. Unidad de Planeación Minero Energética, UPME. Bogotá. https://www1.upme.gov.co/PromocionSector/SeccionesInteres/Documents/Boletines/Boletin_Estadistico_2018.pdfspa
dc.relation.referencesValin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., Bodirsky, B., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Mason-D’Croz, D., Paltsev, S., Rolinski, S., Tabeau, A., van Meijl, H., von Lampe, M., & Willenbockel, D. (2014). The future of food demand: Understanding differences in global economic models. Agricultural Economics, 45(1), 51-67. https://doi.org/10.1111/agec.12089eng
dc.relation.referencesvan den Wall Bake, J. D., Junginger, M., Faaij, A., Poot, T., & Walter, A. (2009). Explaining the experience curve: Cost reductions of Brazilian ethanol from sugarcane. Biomass and Bioenergy, 33(4), 644-658. https://doi.org/10.1016/j.biombioe.2008.10.006eng
dc.relation.referencesvan Eijck, J., Batidzirai, B., & Faaij, A. (2014). Current and future economic performance of first and second generation biofuels in developing countries. Applied Energy, 135, 115-141. https://doi.org/10.1016/j.apenergy.2014.08.015eng
dc.relation.referencesVerweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G., & Shapiro, A. (2003). The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study. Computational Optimization and Applications, 24(2), 289-333. https://doi.org/10.1023/A:1021814225969eng
dc.relation.referencesWill M. Bertrand, J., & Fransoo, J. C. (2002). Operations management research methodologies using quantitative modeling. International Journal of Operations & Production Management, 22(2), 241-264.eng
dc.relation.referencesWu, D., Baron, O., & Berman, O. (2009). Bargaining in competing supply chains with uncertainty. European Journal of Operational Research, 197(2), 548-556.eng
dc.relation.referencesYue, D., & You, F. (2014). Game-theoretic modeling and optimization of multi-echelon supply chain design and operation under Stackelberg game and market equilibrium. Computers & Chemical Engineering, 71, 347-361. https://doi.org/10.1016/j.compchemeng.2014.08.010eng
dc.relation.referencesYue, D., You, F., & Snyder, S. W. (2014). Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering, 66, 36-56. https://doi.org/10.1016/j.compchemeng.2013.11.016eng
dc.relation.referencesZahraee, S. M. (2020). Biomass supply chain environmental and socio-economic analysis: 40-Years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass and Bioenergy, 33.eng
dc.relation.referencesZandi Atashbar, N., Labadie, N., & Prins, C. (2018). Modelling and optimisation of biomass supply chains: A review. International Journal of Production Research, 56(10), 3482-3506. https://doi.org/10.1080/00207543.2017.1343506eng
dc.relation.referencesZheng, X.-X., Liu, Z., Li, K. W., Huang, J., & Chen, J. (2019). Cooperative game approaches to coordinating a three-echelon closed-loop supply chain with fairness concerns. International Journal of Production Economics, 212, 92-110. https://doi.org/10.1016/j.ijpe.2019.01.011eng
dc.relation.referencesZiolkowska, J. R. (2020). Biofuels technologies: An overview of feedstocks, processes, and technologies. En Biofuels for a More Sustainable Future (pp. 1-19). Elsevier. https://doi.org/10.1016/B978-0-12-815581-3.00001-4eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.lembCadenas de abastecimiento -- Metodología -- Toma de decisiones -- Modelos matemáticosspa
dc.subject.proposalCadenas de abastecimientospa
dc.subject.proposalprogramación estocástica de dos etapasspa
dc.subject.proposalCadenas de Markovspa
dc.subject.proposalOptimización multi-objetivospa
dc.subject.proposalBiocombustiblesspa
dc.subject.proposalCaña de azúcarspa
dc.subject.proposalDesempeño sosteniblespa
dc.subject.proposalDistribución justa del beneficiospa
dc.subject.proposalSupply chainseng
dc.subject.proposalTwo-stage stochastic programmingeng
dc.subject.proposalMarkov chainseng
dc.subject.proposalMulti-objective optimizationeng
dc.subject.proposalBiofuels, sugarcaneeng
dc.subject.proposalSustainable performanceeng
dc.subject.proposalFair profit distributioneng
dc.titleDesempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcarspa
dc.title.translatedDesigning supply chain under uncertain conditions from sustainable performance perspective. An application at sugarcane based biofuel productioneng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1110459365.2022.pdf
Tamaño:
4.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Industria y Organizaciones

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
4.57 KB
Formato:
Item-specific license agreed upon to submission
Descripción: