Variabilidad en genes candidatos y su asociación con la respuesta de defensa a la bacteriosis vascular en yuca (Manihot esculenta Crantz)

dc.contributor.advisorSoto Sedano, Johana Carolinaspa
dc.contributor.advisorLópez Carrascal, Camilo Ernestospa
dc.contributor.authorIshikawa García, Emilispa
dc.contributor.orcidIshikawa, Emili [0000000195549300]spa
dc.contributor.refereeChacón Sanchéz, Maria Isabelspa
dc.contributor.refereeBernal Jiménez, Adrianaspa
dc.contributor.researchgroupManihot Biotecspa
dc.date.accessioned2025-09-16T01:42:27Z
dc.date.available2025-09-16T01:42:27Z
dc.date.issued2025-08-22
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa yuca, Manihot esculenta Crantz, es un cultivo indispensable para la seguridad alimentaria en países del trópico. Su producción se ve amenazada por diversas enfermedades, de las cuales la bacteriosis vascular de la yuca (CBB por Cassava Bacterial Blight) es una de las más limitantes. La CBB es causada por Xanthomonas phaseoli pv. manihotis (Xpm), un patógeno presente en todos los países donde se cultiva yuca. La siembra de materiales resistentes es la estrategia más efectiva para la mitigación de la enfermedad. Por ende, es necesaria la exploración y profundización de las bases genéticas responsables de la resistencia. El propósito de este trabajo fue asociar la variabilidad alélica en genes candidatos (GCs) de resistencia con la respuesta fenotípica frente a la infección por Xpm, empleando un enfoque de mapeo por asociación. El panel de estudio estuvo compuesto de 107 cultivares (genotipos) de yuca colectados en Colombia, junto a 60444, un cultivar de origen africano previamente reportado como susceptible. Los GCs fueron seleccionados con base en una búsqueda de literatura enfocada en Xpm681, la cual incluyó a) genes con expresión diferencial entre plantas inoculadas vs no inoculadas y b) genes que co-localizan con loci de caracteres cuantitativos (QTLs, Quantitative Trait Loci) asociados con resistencia a CBB. Los polimorfismos de nucleótido único (SNPs, Single Nucleotide Polymorphisms) dentro de estos genes fueron identificados mediante genotipificación por secuenciación (GBS por Genotyping By Sequencing). Para evaluar la asociación estadística entre los SNPs y la respuesta fenotípica, se empleó un modelo lineal mixto (MLM) que incorporó la estructura poblacional y la relación de parentesco. Cinco SNPs ubicados en cinco GCs estuvieron significativamente asociados con la resistencia (LOD > 3.0). De los GC asociados, se destacan especialmente los genes Manes.15G053800 y Manes.16G020100, que codifican una proteína con dominio SWI/SNF y un transportador de azúcar, relacionados previamente con resistencia en otros patosistemas. (Texto tomado de la fuente).spa
dc.description.abstractCassava (Manihot esculenta Crantz) is an essential crop for food security in tropical countries. Its production is threatened by various diseases, among which Cassava Bacterial Blight (CBB) is one of the most limiting. CBB is caused by Xanthomonas phaseoli pv. manihotis (Xpm), a pathogen presents in all countries where cassava is cultivated. Planting resistant varieties is the most effective strategy for disease mitigation. Therefore, exploring and deepening the understanding of the genetic basis underlying resistance is necessary. This study aimed to associate allelic variability in candidate resistance genes (CGs) with phenotypic response to Xpm infection, using an association mapping approach. The panel of genotypes included 107 cassava cultivars collected in Colombia, along with 60444, a cultivar of African origin previously reported as susceptible. CGs were selected based on a literature review focused on Xpm681, which included: a) genes with differential expression between inoculated and non-inoculated plants and b) genes located in quantitative trait loci (QTLs) associated with resistance to CBB. Single-nucleotide polymorphisms (SNPs) within these genes were identified using genotyping-by-sequencing (GBS). To evaluate the statistical association between SNPs and phenotypic response, a mixed linear model (MLM) was employed, incorporating population structure and kinship. Five SNPs located in five CGs were significantly associated with resistance (LOD > 3.0). Among the associated GCs, the genes Manes.15G053800 and Manes.16G020100—which encode a SWI/SNF domain-containing protein and a sugar transporter, respectively—stand out for their prior association with resistance in other pathosystems.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaGenética y fitomejoramientospa
dc.description.sponsorshipFundación para la promoción de la investigación y la tecnología (Banco de la República).spa
dc.format.extentx, 61 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88787
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Agronomíaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesAdjebeng-Danquah, J., Manu-Aduening, J., Asante, I. K., Agyare, R. Y., Gracen, V., & Offei, S. K. (2020). Genetic diversity and population structure analysis of Ghanaian and exotic cassava accessions using simple sequence repeat (SSR) markers. Heliyon, 6(1), e03154. https://doi.org/10.1016/j.heliyon.2019.e03154
dc.relation.referencesAlliance Bioversity International - CIAT. (2021). Cassava collection. Retrieved January 28, 2025, disponible en https://alliancebioversityciat.org/colombia-genebank
dc.relation.referencesAmelework, A. B., & Bairu, M. W. (2022). Advances in Genetic Analysis and Breeding of Cassava (Manihot esculenta Crantz): A Review. Plants, 11(12). https://doi.org/10.3390/plants11121617
dc.relation.referencesBarrera, A. del P., Soto-Sedano, J., & López Carrascal, C. E. (2020). Identificación de polimorfismos en el gen RXAM1 de yuca y su asociación con la resistencia a la bacteriosis vascular. Acta Biológica Colombiana, 25(2), 185–193. https://doi.org/10.15446/abc.v25n2.77564
dc.relation.referencesBarrios, A., Caminero, C., García, P., Krezdorn, N., Hoffmeier, K., Winter, P., & Pérez de la Vega, M. (2017). Deep Super-SAGE transcriptomic analysis of cold acclimation in lentil (Lens culinaris Medik.). BMC Plant Biology, 17(1), 111. https://doi.org/10.1186/s12870-017-1057-8
dc.relation.referencesBenjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
dc.relation.referencesBoch, J., & Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annual Review of Phytopathology, 48, 419–436. https://doi.org/10.1146/annurev-phyto-080508-081936
dc.relation.referencesBoller, T., & Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
dc.relation.referencesBredeson, J. V., Lyons, J. B., Prochnik, S. E., Wu, G. A., Ha, C. M., Edsinger-Gonzales, E., Grimwood, J., Schmutz, J., Rabbi, I. Y., Egesi, C., Nauluvula, P., Lebot, V., Ndunguru, J., Mkamilo, G., Bart, R. S., Setter, T. L., Gleadow, R. M., Kulakow, P., Ferguson, M. E., … Rokhsar, D. S. (2016). Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology, 34(5), 562–570. https://doi.org/10.1038/nbt.3535
dc.relation.referencesBurbano-Figueroa, Ó. (2020). Resistencia de plantas a patógenos: una revisión sobre los conceptos de resistencia vertical y horizontal. Revista argentina de microbiología, 52(3), 245-255. https://doi.org/10.1016/j.ram.2020.04.006
dc.relation.referencesByju, G., & Suja, G. (2020). Mineral nutrition of cassava. Advances in Agronomy, 159, 169-235. https://doi.org/10.1016/bs.agron.2019.08.005
dc.relation.referencesCanales, N., & Trujillo, M. (2023). The cassava value web and its potential for Colombia’s bioeconomy. Stockholm Environment Institute. https://doi.org/10.51414/sei2023.038
dc.relation.referencesCao, Y., Wang, K., Lu, F., Li, Q., Yang, Q., Liu, B., Muhammad, H., Wang, Y., Fu, F., Li, W., & Yu, H. (2024). Comprehensive identification of maize ZmE2F transcription factors and the positive role of ZmE2F6 in response to drought stress. BMC Genomics, 25(1), 465. https://doi.org/10.1186/s12864-024-10369-0
dc.relation.referencesCardi, T., Murovec, J., Bakhsh, A., Boniecka, J., Bruegmann, T., Bull, S. E., Eeckhaut, T., Fladung, M., Galovic, V., Linkiewicz, A., Lukan, T., Mafra, I., Michalski, K., Kavas, M., Nicolia, A., Nowakowska, J., Sági, L., Sarmiento, C., Yıldırım, K., … Van Laere, K. (2023). CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. Trends in Plant Science, 28(10), 1144–1165. https://doi.org/10.1016/j.tplants.2023.05.012
dc.relation.referencesCarter, S. (2023). Euphorbiaceae. In U. Eggli & R. Nyffeler (Eds.), Dicotyledons: Rosids (pp. 287–291). Springer International Publishing. https://doi.org/10.1007/978-3-030-93492-7_58
dc.relation.referencesCarvajal-Yepes, M., Ospina, J. A., Aranzales, E., Velez-Tobon, M., Correa Abondano, M., Manrique-Carpintero, N. C., & Wenzl, P. (2023). Identifying genetically redundant accessions in the world’s largest cassava collection. Frontiers in Plant Science, 14, 1338377. https://doi.org/10.3389/fpls.2023.1338377
dc.relation.referencesCarvalho, I. C. B., Lima, H. P. R., Carvalho, A. M. S., Vieira, E. A., Lourenço, V., & Rossato, M. (2025). Resistance classification to bacterial blight (Xanthomonas phaseoli pv. manihotis) in Brazilian cassava (Manihot esculenta) cultivars, clones, and accessions using a novel qualitative ordinal scale. Tropical Plant Pathology, 50(1), 27. https://doi.org/10.1007/s40858-025-00716-1
dc.relation.referencesCasati, P. (2023). E2F transcription factors and their complementary roles during DNA damage responses. Molecular Plant, 16(9), 1373–1375. https://doi.org/10.1016/j.molp.2023.08.008
dc.relation.referencesCeballos, H., & de la Cruz, G. A. (2002). Taxonomía y morfología de la yuca. In Ospina, B. & Ceballos, H. (Eds). La yuca en el tercer milenio, 16-31. Centro Internacional de Agricultura Tropical (CIAT).
dc.relation.referencesChege, M. N., Wamunyokoli, F., Kamau, J., & Nyaboga, E. N. (2017). Phenotypic and genotypic diversity of Xanthomonas axonopodis pv. manihotis causing bacterial blight disease of cassava in Kenya. Journal of Applied Biology and Biotechnology, 5(2), 38-44. https://doi.org/10.7324/JABB.2017.50206
dc.relation.referencesCingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695
dc.relation.referencesCodjia, E., Olasanmi, B., Ugoji, C. E., & Rabbi, I. Y. (2023). SNP-based marker-assisted selection for high provitamin A content in African cassava genetic background. South African Journal of Science, 119(11–12), 1–10. https://doi.org/10.17159/sajs.2023/15115
dc.relation.referencesCohn, M., Bart, R. S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., Hou, B.-H., Frommer, W. B., Lahaye, T., & Staskawicz, B. J. (2014). Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Molecular Plant-Microbe Interactions, 27(11), 1186–1198. https://doi.org/10.1094/MPMI-06-14-0161-R
dc.relation.referencesCohn, M., Morbitzer, R., Lahaye, T., & Staskawicz, B. J. (2016). Comparison of gene activation by two TAL effectors from Xanthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava. Molecular Plant Pathology, 17(6), 875–889. https://doi.org/10.1111/mpp.12337
dc.relation.referencesCollier, S. M., & Moffett, P. (2009). NB-LRRs work a “bait and switch” on pathogens. Trends in Plant Science, 14(10), 521–529. https://doi.org/10.1016/j.tplants.2009.08.001
dc.relation.referencesConstantin, E. C., Cleenwerck, I., Maes, M., Baeyen, S., Van Malderghem, C., De Vos, P., & Cottyn, B. (2016). Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology, 65(5), 792–806. https://doi.org/10.1111/ppa.12461
dc.relation.referencesContreras, E., & López, C. (2011). Identificación de polimorfismos en RXam2, un gen candidato de resistencia a la bacteriosis vascular de yuca. Revista Colombiana de Biotecnología, 13(2), 63–69.
dc.relation.referencesCook, D. E., Mesarich, C. H., & Thomma, B. P. H. J. (2015). Understanding plant immunity as a surveillance system to detect invasion. Annual Review of Phytopathology, 53(1), 541–563. https://doi.org/10.1146/annurev-phyto-080614-120114
dc.relation.referencesCortés, S., & López, C. (2010). Estrategia de silenciamiento génico en yuca para la validación de genes de resistencia. Acta Biológica Colombiana, 15(2), 203–218.
dc.relation.referencesCouto, D., & Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 16(9), 537-552. https://doi.org/10.1038/nri.2016.77
dc.relation.referencesDíaz Tatis, P. A., Herrera Corzo, M., Ochoa Cabezas, J. C., Medina Cipagauta, A., Prías, M. A., Verdier, V., ... & López Carrascal, C. E. (2018). The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. Planta, 247, 1031-1042. https://doi.org/10.1007/s00425-018-2863-4
dc.relation.referencesDíaz-Tatis, P. A., Ochoa, J. C., Rico, E. M., Rodríguez, C., Medina, A., Szurek, B., Chavarriaga, P., & López, C. E. (2022). RXam2, a NLR from cassava (Manihot esculenta) contributes partially to the quantitative resistance to Xanthomonas phaseoli pv. manihotis. Plant Molecular Biology, 109(3), 313–324. https://doi.org/10.1007/s11103-021-01211-2
dc.relation.referencesDomínguez-Figueroa, J., Gómez-Rojas, A., & Escobar, C. (2024). Functional studies of plant transcription factors and their relevance in the plant root-knot nematode interaction. Frontiers in Plant Science, 15, 1370532. https://doi.org/10.3389/fpls.2024.1370532
dc.relation.referencesDoughari, J. (2015). An Overview of Plant Immunity. J. Plant Pathol. Microbiol, 6(11). 10-4172. DOI: 10.4172/2157-7471.1000322
dc.relation.referencesElliott, K., Berry, J. C., Kim, H., & Bart, R. S. (2022). A comparison of ImageJ and machine learning based image analysis methods to measure cassava bacterial blight disease severity. Plant Methods, 18(1), 86. https://doi.org/10.1186/s13007-022-00906-x
dc.relation.referencesElliott, K., Veley, K. M., Jensen, G., Gilbert, K. B., Norton, J., Kambic, L., Yoder, M., Weil, A., Motomura-Wages, S., & Bart, R. S. (2024). CRISPR/Cas9-generated mutations in a sugar transporter gene reduce cassava susceptibility to bacterial blight. Plant Physiology, 195(4), 2566–2578. https://doi.org/10.1093/plphys/kiae243
dc.relation.referencesElshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. Plos One, 6(5), e19379. https://doi.org/10.1371/journal.pone.0019379
dc.relation.referencesEndelman, J. B. (2011). Ridge Regression and Other Kernels for Genomic Selection with R Package rrBLUP. The Plant Genome Journal, 4(3), 250. https://doi.org/10.3835/plantgenome2011.08.0024
dc.relation.referencesFan, X.W., Sun, J.L., Cai, Z., Zhang, F., Li, Y.Z., & Palta, J. A. (2023). MeSWEET15a/b genes play a role in the resistance of cassava (Manihot esculenta Crantz) to water and salt stress by modulating sugar distribution. Plant Physiology and Biochemistry, 194, 394–405. https://doi.org/10.1016/j.plaphy.2022.11.027
dc.relation.referencesFanou, A.A., & Wydra, K. (2015). Physical and chemical treatments for the control of Xanthomonas axonopodis pv. manihotis in cassava seeds. Journal of Experimental Biology and Agricultural Sciences, 3(1), 54–59.
dc.relation.referencesFanou, A.A., & Wydra, K. (2018). Effect of intercropping on the development of cassava bacterial blight. Journal of Experimental Biology and Agricultural Sciences, 6(3), 531–537. https://doi.org/10.18006/2018.6(3).531.537
dc.relation.referencesFanou, A.A., Zinsou, V. A., & Wydra, K. (2017). Cassava bacterial blight: A devastating disease of cassava. In V. Waisundara (Ed.), Cassava. InTech. https://doi.org/10.5772/intechopen.71527
dc.relation.referencesFAO: Food and Agriculture Organization of the United Nations. (2023). Cassava production. Recuperado el 20 de mayo de 2023, de https://ourworldindata.org/grapher/cassava-production
dc.relation.referencesFerguson, M., Rabbi, I., Kim, D.-J., Gedil, M., Lopez-Lavalle, L. A. B., & Okogbenin, E. (2012). Molecular markers and their application to cassava breeding: past, present and future. Tropical Plant Biology, 5(1), 95–109. https://doi.org/10.1007/s12042-011-9087-0
dc.relation.referencesFlor, H. H. (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology, 9(1), 275–296. https://doi.org/10.1146/annurev.py.09.090171.001423
dc.relation.referencesFrichot, E., & François, O. (2015). LEA : AnR package for landscape and ecological association studies. Methods in Ecology and Evolution, 6(8), 925–929. https://doi.org/10.1111/2041-210X.12382
dc.relation.referencesFrichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient estimation of individual ancestry coefficients. Genetics, 196(4), 973–983. https://doi.org/10.1534/genetics.113.160572
dc.relation.referencesGangurde, S. S., Xavier, A., Naik, Y. D., Jha, U. C., Rangari, S. K., Kumar, R., ... & Thudi, M. (2022). Two decades of association mapping: Insights on disease resistance in major crops. Frontiers in Plant Science, 13, 1064059. https://doi.org/10.3389/fpls.2022.1064059
dc.relation.referencesGao, M., Hao, Z., Ning, Y., & He, Z. (2024). Revisiting growth-defence trade-offs and breeding strategies in crops. Plant Biotechnology Journal, 22(5), 1198–1205. https://doi.org/10.1111/pbi.14258
dc.relation.referencesGibson, A. K. (2022). Genetic diversity and disease: The past, present, and future of an old idea. Evolution, 76(S1), 20–36. https://doi.org/10.1111/evo.14395
dc.relation.referencesGil, J., & López Carrascal, C. E. (2019). El dominio STK de la proteína de resistencia a la bacteriosis vascular de yuca RXAM1 interactúa con una E3 Ubiquitin Ligasa. Acta Biológica Colombiana, 24(1), 139–149. https://doi.org/10.15446/abc.v24n1.70821
dc.relation.referencesGlaubitz, J. C., Casstevens, T. M., Lu, F., Harriman, J., Elshire, R. J., Sun, Q., & Buckler, E. S. (2014). TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. Plos One, 9(2), e90346. https://doi.org/10.1371/journal.pone.0090346
dc.relation.referencesGöhre, V., & Robatzek, S. (2008). Breaking the barriers: microbial effector molecules subvert plant immunity. Annual Review of Phytopathology, 46, 189–215. https://doi.org/10.1146/annurev.phyto.46.120407.110050
dc.relation.referencesGómez-Cano, F., Soto, J., Restrepo, S., Bernal, A., López-Kleine, L., & López, C. E. (2019). Gene co-expression network for Xanthomonas-challenged cassava reveals key regulatory elements of immunity processes. European Journal of Plant Pathology, 153(4), 1–22. https://doi.org/10.1007/s10658-018-01628-4
dc.relation.referencesGoutam, U., Thakur, K., Salaria, N., & Kukreja, S. (2018). Recent approaches for late blight disease management of potato caused by Phytophthora infestans. In Fungi and their role in sustainable development: Current perspectives (pp. 311-325). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-0393-7_18
dc.relation.referencesHillocks, R. J., & Thresh, J. M. (Eds.). (2002). Cassava: biology, production and utilization. CABI. https://doi.org/10.1079/9780851995243.0000
dc.relation.referencesHuang, C.Y., Rangel, D.S., Qin, X., Bui, C., Li, R., Jia, Z., Cui, X., & Jin, H. (2021). The chromatin-remodeling protein BAF60/SWP73A regulates the plant immune receptor NLRs. Cell Host & Microbe, 29(3), 425-434.e4. https://doi.org/10.1016/j.chom.2021.01.005
dc.relation.referencesHuard-Chauveau, C., Perchepied, L., Debieu, M., Rivas, S., Kroj, T., Kars, I., Bergelson, J., Roux, F., & Roby, D. (2013). An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLoS Genetics, 9(9), e1003766. https://doi.org/10.1371/journal.pgen.1003766
dc.relation.referencesIge, A. D., Olasanmi, B., Bauchet, G. J., Kayondo, I. S., Mbanjo, E. G. N., Uwugiaren, R., Motomura-Wages, S., Norton, J., Egesi, C., Parkes, E. Y., Kulakow, P., Ceballos, H., Dieng, I., & Rabbi, I. Y. (2022). Validation of KASP-SNP markers in cassava germplasm for marker-assisted selection of increased carotenoid content and dry matter content. Frontiers in Plant Science, 13, 1016170. https://doi.org/10.3389/fpls.2022.1016170
dc.relation.referencesIge, A. D., Olasanmi, B., Mbanjo, E. G. N., Kayondo, I. S., Parkes, E. Y., Kulakow, P., Ng, E… & Lopez-Lavalle, L.A.B.; et al. (2021). Conversion and Validation of Uniplex SNP Markers for Selection of Resistance to Cassava Mosaic Disease in Cassava Breeding Programs. Agronomy, 11, 420. https://doi.org/10.3390/ agronomy11030420
dc.relation.referencesIgwe, D. O. (2023). Diseases of Cassava. In W. H. Elmer, M. McGrath, & R. J. McGovern (Eds.), Handbook of vegetable and herb diseases (pp. 1–36). Springer International Publishing. https://doi.org/10.1007/978-3-030-35512-8_31-2
dc.relation.referencesInternational Organization for Standardization. (2020). Codes for the representation of names of countries and their subdivisions (ISO 3166). https://www.iso.org/iso-3166-country-codes.html
dc.relation.referencesJeger, M. J., & Viljanen-Rollinson, S. L. H. (2001). The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theoretical and Applied Genetics, 102, 32-40. https://doi.org/10.1007/s001220051615
dc.relation.referencesJerzmanowski, A. (2007). SWI/SNF chromatin remodeling and linker histones in plants. Biochimica et Biophysica Acta, 1769(5–6), 330–345. https://doi.org/10.1016/j.bbaexp.2006.12.003
dc.relation.referencesJian, Y., Shim, W.-B., & Ma, Z. (2021). Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions. Stress Biology, 1(1), 18. https://doi.org/10.1007/s44154-021-00019-w
dc.relation.referencesJones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286
dc.relation.referencesJorge, V., Fregene, M. A., Duque, M. C., Bonierbale, M. W., Tohme, J., & Verdier, V. (2000). Genetic mapping of resistance to bacterial blight disease in cassava (Manihot esculenta Crantz). TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik, 101(5–6), 865–872. https://doi.org/10.1007/s001220051554
dc.relation.referencesJorge, V., Fregene, M., Velez, C. M., Duque, M. C., Tohme, J., & Verdier, V. (2001). QTL analysis of field resistance to Xanthomonas axonopodis pv. manihotis in cassava. Theoretical and Applied Genetics, 102, 564-571. https://doi.org/10.1007/s001220051683
dc.relation.referencesKarasov, T. L., Chae, E., Herman, J. J., & Bergelson, J. (2017). Mechanisms to Mitigate the Trade-Off between Growth and Defense. The Plant Cell, 29(4), 666–680. https://doi.org/10.1105/tpc.16.00931
dc.relation.referencesKarasov, T. L., Horton, M. W., & Bergelson, J. (2014). Genomic variability as a driver of plant-pathogen coevolution? Current Opinion in Plant Biology, 18, 24–30. https://doi.org/10.1016/j.pbi.2013.12.003
dc.relation.referencesKern, D., Roy, H., & Becker, H. D. (2013). Asparaginyl-tRNA synthetases. In Madame Curie Bioscience Database [Internet]. Landes Bioscience. Disponible en https://www.ncbi.nlm.nih.gov/books/NBK6048/
dc.relation.referencesKpémoua, K., Boher, B., Nicole, M., Calatayud, P., & Geiger, J. P. (1996). Cytochemistry of defense responses in cassava infected by Xanthomonas campestris pv. manihotis. Canadian Journal of Microbiology, 42(11), 1131–1143. https://doi.org/10.1139/m96-145
dc.relation.referencesKruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–621. https://doi.org/10.1080/01621459.1952.10483441
dc.relation.referencesKushalappa, A. C., Yogendra, K. N., & Karre, S. (2016). Plant innate immune response: qualitative and quantitative resistance. Critical Reviews in Plant Sciences, 35(1), 38-55. https://doi.org/10.1080/07352689.2016.1148980
dc.relation.referencesLai, R., Ikram, M., Li, R., Xia, Y., Yuan, Q., Zhao, W., Zhang, Z., Siddique, K. H. M., & Guo, P. (2021). Identification of Novel Quantitative Trait Nucleotides and Candidate Genes for Bacterial Wilt Resistance in Tobacco (Nicotiana tabacum L.) Using Genotyping-by-Sequencing and Multi-Locus Genome-Wide Association Studies. Frontiers in Plant Science, 12, 744175. https://doi.org/10.3389/fpls.2021.744175
dc.relation.referencesLata, C., Manjul, A. S., Prasad, P., Gangwar, O. P., Adhikari, S., Sonu, Kumar, S., Bhardwaj, S. C., Singh, G., Samota, M. K., Choudhary, M., Bohra, A., & Varshney, R. K. (2023). Unraveling the diversity and functions of sugar transporters for sustainable management of wheat rust. Functional & Integrative Genomics, 23(3), 213. https://doi.org/10.1007/s10142-023-01150-9
dc.relation.referencesLi, M., Liu, Y., Tao, Y., Xu, C., Li, X., Zhang, X., Han, Y., Yang, X., Sun, J., Li, W., Li, D., Zhao, X., & Zhao, L. (2019). Identification of genetic loci and candidate genes related to soybean flowering through genome wide association study. BMC Genomics, 20(1), 987. https://doi.org/10.1186/s12864-019-6324-7
dc.relation.referencesLiu, Q., Dang, H., Chen, Z., Wu, J., Chen, Y., Chen, S., & Luo, L. (2018). Genome-Wide Identification, Expression, and Functional Analysis of the Sugar Transporter Gene Family in Cassava (Manihot esculenta). International Journal of Molecular Sciences, 19(4). https://doi.org/10.3390/ijms19040987
dc.relation.referencesLópez, C. E., & Bernal, A. J. (2012). Cassava bacterial blight: using genomics for the elucidation and management of an old problem. Tropical Plant Biology, 5(1), 117–126. https://doi.org/10.1007/s12042-011-9092-3
dc.relation.referencesLópez, C. E., Quesada-Ocampo, L. M., Bohórquez, A., Duque, M. C., Vargas, J., Tohme, J., & Verdier, V. (2007). Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome, 50(12), 1078–1088. https://doi.org/10.1139/G07-087
dc.relation.referencesLopez, C. E., Zuluaga, A. P., Cooke, R., Delseny, M., Tohme, J., & Verdier, V. (2003). Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Molecular Genetics and Genomics, 269, 658-671. https://doi.org/10.1007/s00438-003-0868-5
dc.relation.referencesLopez, C., Jorge, V., Piégu, B., Mba, C., Cortes, D., Restrepo, S., Soto, M., Laudié, M., Berger, C., Cooke, R., Delseny, M., Tohme, J., & Verdier, V. (2004). A unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology, 56(4), 541–554. https://doi.org/10.1007/s11103-004-0123-4
dc.relation.referencesLozano, J. C. (1986). Cassava bacterial blight: a manageable disease. Plant Disease, 70(12).
dc.relation.referencesLu, Y., & Tsuda, K. (2021). Intimate Association of PRR- and NLR-Mediated Signaling in Plant Immunity. Molecular Plant-Microbe Interactions, 34(1), 3–14. https://doi.org/10.1094/MPMI-08-20-0239-IA
dc.relation.referencesMalinovsky, F. G., Fangel, J. U., & Willats, W. G. T. (2014). The role of the cell wall in plant immunity. Frontiers in Plant Science, 5, 178. https://doi.org/10.3389/fpls.2014.00178
dc.relation.referencesMartínez-Reina, A. M., Araujo, H., Regino, S. M., Espitia, A., Tordecilla, L., Grandett, L., Pérez, S., Martínez, R., & Rosero, A. (2025). Farmers’ typologies for the construction of a technological and socioeconomic baseline of industrial cassava organizations to guide research, production, and policy design in colombian caribbean region. Agriculture, 15(5), 488. https://doi.org/10.3390/agriculture15050488
dc.relation.referencesMbaringong, G. A., Nyaboga, E. N., Wang’ondu, V., & Kanduma, E. (2017). Evaluation of selected cassava (Manihot esculenta Crantz) cultivars grown in Kenya for resistance to bacterial blight disease. World Journal of Agricultural Research, 5(2), 94-101. https://doi.org/10.12691/wjar-5-2-5
dc.relation.referencesMedina, C. A., Reyes, P. A., Trujillo, C. A., Gonzalez, J. L., Bejarano, D. A., Montenegro, N. A., Jacobs, J. M., Joe, A., Restrepo, S., Alfano, J. R., & Bernal, A. (2018). The role of type III effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology, 19(3), 593–606. https://doi.org/10.1111/mpp.12545
dc.relation.referencesMoeller, D. A., & Tiffin, P. (2008). Geographic variation in adaptation at the molecular level: a case study of plant immunity genes. Evolution, 62(12), 3069-3081. https://doi.org/10.1111/j.1558-5646.2008.00511.x
dc.relation.referencesMora, R. E., Rodriguez, M. A., Gayosso, L. Y., & López, C. E. (2019). Using in vitro plants to study the cassava response to Xanthomonas phaseoli pv. manihotis infection. Tropical Plant Pathology, 44(5), 423–429. https://doi.org/10.1007/s40858-019-00296-x
dc.relation.referencesMora, R.E., Sánchez, J.S., Ishikawa, E. Jiménez, A.D.M., Díaz-Tatis, P.A., López, C.E., Soto-Sedano, J.C. (en revision). Exploring genetic diversity and selective signatures, a journey through Colombian cassava’s landscape.
dc.relation.referencesMoreno-Cadena, P., Hoogenboom, G., Cock, J. H., Ramirez-Villegas, J., Pypers, P., Kreye, C., Tariku, M., Ezui, K. S., Becerra Lopez-Lavalle, L. A., & Asseng, S. (2021). Modeling growth, development and yield of cassava: A review. Field Crops Research, 267, 108140. https://doi.org/10.1016/j.fcr.2021.108140
dc.relation.referencesMorkunas, I., & Ratajczak, L. (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum / Polish Academy of Sciences, Committee of Plant Physiology Genetics and Breeding, 36(7), 1607–1619. https://doi.org/10.1007/s11738-014-1559-z
dc.relation.referencesMuñoz-Bodnar, A., Perez-Quintero, A. L., Gomez-Cano, F., Gil, J., Michelmore, R., Bernal, A., Szurek, B., & Lopez, C. (2014). RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis. Plant Cell Reports, 33(11), 1901–1912. https://doi.org/10.1007/s00299-014-1667-7
dc.relation.referencesMurray, K. D., & Borevitz, J. O. (2018). Axe: rapid, competitive sequence read demultiplexing using a trie. Bioinformatics, 34(22), 3924–3925. https://doi.org/10.1093/bioinformatics/bty432
dc.relation.referencesMutka, A. M., Fentress, S. J., Sher, J. W., Berry, J. C., Pretz, C., Nusinow, D. A., & Bart, R. (2016). Quantitative, Image-Based Phenotyping Methods Provide Insight into Spatial and Temporal Dimensions of Plant Disease. Plant Physiology, 172(2), 650–660. https://doi.org/10.1104/pp.16.00984
dc.relation.referencesNtui, V. O., Tripathi, J. N., Kariuki, S. M., & Tripathi, L. (2024). Cassava molecular genetics and genomics for enhanced resistance to diseases and pests. Molecular Plant Pathology, 25(1), e13402. https://doi.org/10.1111/mpp.13402
dc.relation.referencesParmar, A., Sturm, B., & Hensel, O. (2017). Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Security, 9(5), 907–927. https://doi.org/10.1007/s12571-017-0717-8
dc.relation.referencesPereira, L. F., Goodwin, P. H., & Erickson, L. (2000). Peroxidase activity during susceptible and resistant interactions between cassava (Manihot esculenta) and Xanthomonas axonopodis pv. manihotis and Xanthomonas cassavae. Journal of Phytopathology, 148(11‐12), 575-578. https://doi.org/10.1111/j.1439-0434.2000.00548.x
dc.relation.referencesPérez, D., Duputié, A., Vernière, C., Szurek, B., & Caillon, S. (2022). Biocultural Drivers Responsible for the Occurrence of a Cassava Bacterial Pathogen in Small-Scale Farms of Colombian Caribbean. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.841915
dc.relation.referencesPilet-Nayel, M. L., Moury, B., Caffier, V., Montarry, J., Kerlan, M. C., Fournet, S., ... & Delourme, R. (2017). Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Frontiers in plant science, 8, 1838. https://doi.org/10.3389/fpls.2017.01838
dc.relation.referencesPushpalatha, R., & Gangadharan, B. (2020). Is Cassava (Manihot esculenta Crantz) a Climate “Smart” Crop? A Review in the Context of Bridging Future Food Demand Gap. Tropical Plant Biology, 13(3), 201–211. https://doi.org/10.1007/s12042-020-09255-2
dc.relation.referencesRamirez, E., Dereeper, A., Bernal, A., Szurek, B., & López, C. (2020). Resistance and susceptibility to Xanthomonas phaseoli pv. manihotis in cassava: A transcriptomic comparison (or two sides of the same coin). Physiological and Molecular Plant Pathology, 112, 101535. https://doi.org/10.1016/j.pmpp.2020.101535
dc.relation.referencesRasmann, S., Vilas, J. S., Glauser, G., Cartolano, M., Lempe, J., Tsiantis, M., & Pannell, J. R. (2018). Pleiotropic effect of theFlowering Locus C on plant resistance and defence against insect herbivores. The Journal of Ecology, 106(3), 1244–1255. https://doi.org/10.1111/1365-2745.12894
dc.relation.referencesRestrepo, S, Duque, M. C., & Verdier, V. (2000). Characterization of pathotypes among isolates of Xanthomonas axonopodis pv. manihotis in Colombia. Plant Pathology, 49(6), 680–687. https://doi.org/10.1046/j.1365-3059.2000.00513.x
dc.relation.referencesRoux, F., Voisin, D., Badet, T., Balagué, C., Barlet, X., Huard-Chauveau, C., Roby, D., & Raffaele, S. (2014). Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Molecular Plant Pathology, 15(5), 427–432. https://doi.org/10.1111/mpp.12138
dc.relation.referencesSimon, M. F., Mendoza Flores, J. M., Liu, H.L., Martins, M.L. L., Drovetski, S. V., Przelomska, N. A. S., Loiselle, H., Cavalcanti, T. B., Inglis, P. W., Mueller, N. G., Allaby, R. G., Freitas, F. de O., & Kistler, L. (2021). Phylogenomic analysis points to a South American origin of Manihot and illuminates the primary gene pool of cassava. The New Phytologist, 233(1), 534–545. https://doi.org/10.1111/nph.17743
dc.relation.referencesSong, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., Gardner, J., Wang, B., Zhai, W. X., Zhu, L. H., Fauquet, C., & Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 270(5243), 1804–1806. https://doi.org/10.1126/science.270.5243.1804
dc.relation.referencesSong, Z.T., Liu, J.X., & Han, J.J. (2021). Chromatin remodeling factors regulate environmental stress responses in plants. Journal of Integrative Plant Biology, 63(3), 438–450. https://doi.org/10.1111/jipb.13064
dc.relation.referencesSoto Sedano, J. C., Mora Moreno, R. E., Mathew, B., Léon, J., Gómez Cano, F. A., Ballvora, A., & López Carrascal, C. E. (2017). Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis. Frontiers in Plant Science, 8, 1169. https://doi.org/10.3389/fpls.2017.01169
dc.relation.referencesSoto Sedano, J.C. (2016). Genetic and molecular analysis of the inmmunity to cassava bacterial blight through genetic mapping and RNA-seq approaches. [Tesis doctoral, Universidad Nacional de Colombia]. Repositorio Institucional UNAL. https://repositorio.unal.edu.co/handle/unal/58082
dc.relation.referencesSoto, J. C., Ortiz, J. F., Perlaza-Jiménez, L., Vásquez, A. X., Lopez-Lavalle, L. A. B., Mathew, B., Léon, J., Bernal, A. J., Ballvora, A., & López, C. E. (2015). A genetic map of cassava (Manihot esculenta Crantz) with integrated physical mapping of immunity-related genes. BMC Genomics, 16(1), 190. https://doi.org/10.1186/s12864-015-1397-4
dc.relation.referencesTappiban, P., Sraphet, S., Srisawad, N., Smith, D. R., & Triwitayakorn, K. (2018). Identification and expression of genes in response to cassava bacterial blight infection. Journal of Applied Genetics, 59, 391-403. https://doi.org/10.1007/s13353-018-0457-2
dc.relation.referencesTeixeira, J. H. dos S., Guimarães, M. A. S., Cardoso, S. C., Brito, A. dos S., Diniz, R. P., de Oliveira, E. J., & de Oliveira, S. A. S. (2021). Evaluation of resistance to bacterial blight in Brazilian cassava germoplasm and disease-yield relationships. Tropical Plant Pathology, 46(3), 324–335. https://doi.org/10.1007/s40858-021-00419-3
dc.relation.referencesTimilsina, S., Potnis, N., Newberry, E. A., Liyanapathiranage, P., Iruegas-Bocardo, F., White, F. F., Goss, E. M., & Jones, J. B. (2020). Xanthomonas diversity, virulence and plant-pathogen interactions. Nature Reviews Microbiology, 18(8), 415–427. https://doi.org/10.1038/s41579-020-0361-8
dc.relation.referencesTorkamaneh, D., & Belzile, F. (2015). Scanning and filling: ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data. PloS one, 10(7), e0131533. https://doi.org/10.1371/journal.pone.0131533
dc.relation.referencesToure, H. M. A. C., Ehui, K. J. N., Abo, K., & Kone, D. (2020). Four years assessment of Cassava Bacterial Blight expression according to weather conditions in Côte d’Ivoire. SN Applied Sciences, 2(7), 1301. https://doi.org/10.1007/s42452-020-3135-z
dc.relation.referencesTrujillo, C. A., Ochoa, J. C., Mideros, M. F., Restrepo, S., López, C., & Bernal, A. (2014). A complex population structure of the cassava pathogen Xanthomonas axonopodis pv. manihotis in recent years in the Caribbean Region of Colombia. Microbial Ecology, 68(1), 155–167. https://doi.org/10.1007/s00248-014-0411-8
dc.relation.referencesvan der Burgh, A. M., & Joosten, M. H. A. J. (2019). Plant immunity: thinking outside and inside the box. Trends in Plant Science, 24(7), 587–601. https://doi.org/10.1016/j.tplants.2019.04.009
dc.relation.referencesVanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414–4423. https://doi.org/10.3168/jds.2007-0980
dc.relation.referencesVasconcelos, L. M., Brito, A. C., Carmo, C. D., & Oliveira, E. J. (2016). Polymorphism of starch pathway genes in cassava. Genetic and Molecular Research, 15. http://dx.doi.org/10.4238/gmr15049082
dc.relation.referencesVeley, K. M., Elliott, K., Jensen, G., Zhong, Z., Feng, S., Yoder, M., Gilbert, K. B., Berry, J. C., Lin, Z.-J. D., Ghoshal, B., Gallego-Bartolomé, J., Norton, J., Motomura-Wages, S., Carrington, J. C., Jacobsen, S. E., & Bart, R. S. (2023). Improving cassava bacterial blight resistance by editing the epigenome. Nature Communications, 14(1), 85. https://doi.org/10.1038/s41467-022-35675-7
dc.relation.referencesWang, G., Zhang, D., Wang, H., Kong, J., Chen, Z., Ruan, C., Deng, C., Zheng, Q., Guo, Z., Liu, H., Li, W., Wang, X., & Guo, W. (2024). Natural SNP Variation in GbOSM1 Promotor Enhances Verticillium Wilt Resistance in Cotton. Advanced Science, 11(45), 2406522. https://doi.org/10.1002/advs.202406522
dc.relation.referencesWilk, M. B., & Gnanadesikan, R. (1968). Probability plotting methods for the analysis of data. Biometrika, 55(1), 1–17. https://doi.org/10.2307/2334448
dc.relation.referencesWolfe, M. D., Del Carpio, D. P., Alabi, O., Ezenwaka, L. C., Ikeogu, U. N., Kayondo, I. S., ... & Jannink, J. L. (2017). Prospects for genomic selection in cassava breeding. The Plant Genome, 10(3), plantgenome2017-03. https://doi.org/10.3835/plantgenome2017.03.0015
dc.relation.referencesWu, Q., Han, T.S., Chen, X., Chen, J.F., Zou, Y.P., Li, Z.W., Xu, Y.C., & Guo, Y.L. (2017). Long-term balancing selection contributes to adaptation in Arabidopsis and its relatives. Genome Biology, 18(1), 217. https://doi.org/10.1186/s13059-017-1342-8
dc.relation.referencesWydra, K., Zinsou, V., Jorge, V., & Verdier, V. (2004). Identification of Pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and Detection of Quantitative Trait Loci and Markers for Resistance to Bacterial Blight of Cassava. Phytopathology, 94(10), 1084–1093. https://doi.org/10.1094/PHYTO.2004.94.10.1084
dc.relation.referencesWydra, K., Zinsou, V., Jorge, V., & Verdier, V. (2004). Identification of Pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and Detection of Quantitative Trait Loci and Markers for Resistance to Bacterial Blight of Cassava. Phytopathology, 94(10), 1084–1093. https://doi.org/10.1094/PHYTO.2004.94.10.1084
dc.relation.referencesXiao, L., Cheng, D., Ou, W., Chen, X., Rabbi, I. Y., Wang, W., Li, K., & Yan, H. (2025). Advancements and strategies of genetic improvement in cassava (Manihot esculenta Crantz): from conventional to genomic approaches. Horticulture Research, 12(3), uhae341. https://doi.org/10.1093/hr/uhae341
dc.relation.referencesYamada, K., Saijo, Y., Nakagami, H., & Takano, Y. (2016). Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science, 354(6318), 1427–1430. https://doi.org/10.1126/science.aah5692
dc.relation.referencesYang, C., Dolatabadian, A., & Fernando, W. G. D. (2022). The wonderful world of intrinsic and intricate immunity responses in plants against pathogens. Canadian Journal of Plant Pathology, 44(1), 1–20. https://doi.org/10.1080/07060661.2021.1960610
dc.relation.referencesYu, X., Feng, B., He, P., & Shan, L. (2017). From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 55, 109–137. https://doi.org/10.1146/annurev-phyto-080516-035649
dc.relation.referencesZárate-Chaves, Carlos A, Gómez de la Cruz, D., Verdier, V., López, C. E., Bernal, A., & Szurek, B. (2021a). Cassava diseases caused by Xanthomonas phaseoli pv. manihotis and Xanthomonas cassavae. Molecular Plant Pathology, 22(12), 1520–1537. https://doi.org/10.1111/mpp.13094
dc.relation.referencesZárate-Chaves, Carlos A, Osorio-Rodríguez, D., Mora, R. E., Pérez-Quintero, Á. L., Dereeper, A., Restrepo, S., López, C. E., Szurek, B., & Bernal, A. (2021b). TAL Effector Repertoires of Strains of Xanthomonas phaseoli pv. manihotis in Commercial Cassava Crops Reveal High Diversity at the Country Scale. Microorganisms, 9(2). https://doi.org/10.3390/microorganisms9020315
dc.relation.referencesZekarias, T., Basa, B., & Herago, T. (2019). Medicinal, Nutritional and Anti- Nutritional Properties of Cassava (Manihot esculenta): A Review. Academic Journal of Nutrition, 8(3). DOI:10.5829/idosi.ajn.2019.34.46
dc.relation.referencesZhang, H., Ye, Z., Liu, Z., Sun, Y., Li, X., Wu, J., Zhou, G., & Wan, Y. (2022). The Cassava NBS-LRR Genes Confer Resistance to Cassava Bacterial Blight. Frontiers in Plant Science, 13, 790140. https://doi.org/10.3389/fpls.2022.790140
dc.relation.referencesZhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and prospects of association mapping in plants. The plant genome, 1(1). https://doi.org/10.3835/plantgenome2008.02.0089
dc.relation.referencesZimaro, T., Gottig, N., Garavaglia, B. S., Gehring, C., & Ottado, J. (2011). Unraveling plant responses to bacterial pathogens through proteomics. Journal of Biomedicine & Biotechnology, 2011, 354801. https://doi.org/10.1155/2011/354801
dc.relation.referencesZinsou, V., Wydra, K., Ahohuendo, B., & Schreiber, L. (2006). Leaf waxes of cassava (manihot esculenta crantz) in relation to ecozone and resistance to xanthomonas blight. Euphytica, 149(1–2), 189–198. https://doi.org/10.1007/s10681-005-9066-3
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.agrovocAlelismospa
dc.subject.agrovocallelismeng
dc.subject.agrovocMecanismo de defensaspa
dc.subject.agrovocdefence mechanismseng
dc.subject.agrovocEnfermedad bacterianaspa
dc.subject.agrovocbacterial diseaseseng
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.proposalResistencia cuantitativaspa
dc.subject.proposalCBBspa
dc.subject.proposalSNPspa
dc.subject.proposalModelo lineal mixtospa
dc.subject.proposalQuantitative resistanceeng
dc.subject.proposalCBBeng
dc.subject.proposalSNPeng
dc.subject.proposalMixed linear modeleng
dc.titleVariabilidad en genes candidatos y su asociación con la respuesta de defensa a la bacteriosis vascular en yuca (Manihot esculenta Crantz)spa
dc.title.translatedAllelic variability in candidate genes and its association with the defense response to Cassava Bacterial Blighteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Variabilidad alélica en genes candidatos y su asociación con la respuesta de defensa a la bacteriosis vascular en yuca (Manihot esculenta Crantz).pdf
Tamaño:
1.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: