Metodología para evaluar la vulnerabilidad ambiental en los ecosistemas de páramo asociada a los usos del suelo: Caso de estudio complejo de páramos Pisba (Boyacá, Colombia)

dc.contributor.advisorRodríguez Eraso, Nelly
dc.contributor.authorRamirez Gomez, Juan Camilo
dc.coverage.regionPisba, Boyacá
dc.date.accessioned2022-08-12T18:22:36Z
dc.date.available2022-08-12T18:22:36Z
dc.date.issued2022-08-12
dc.descriptionilustraciones, graficas, mapasspa
dc.description.abstractLa evaluación de la vulnerabilidad es esencial para la toma de decisiones en el marco de la gestión ambiental y la conservación de los ecosistemas. Igualmente, es un proceso complejo que combinar factores biofísicos, sociales y económicos, donde el uso de la geomática, brinda un soporte conceptual y técnico para su integración y análisis. El presente trabajo se enfocó en proponer y aplicar una metodología para evaluar la vulnerabilidad del Complejo de Páramos del Pisba (Departamento de Boyacá) asociada a la cobertura del suelo, aplicando análisis espacial y un enfoque de jerarquía analítica (AHP). Se identificaron 25 variables agrupadas en 11 factores que reflejan la sensibilidad, exposición y resiliencia del ecosistema trabajadas a una escala de 1:25.000. Mediante un análisis de percepción remota, geoestadística, distancias euclidianas y análisis del paisaje, los factores con mayor incidencia fueron: estado de la vegetación, condiciones abióticas, actividades agropecuarias e incendios. Los bordes occidentales del páramo tienden a ser más vulnerables, asociados a los cambios en coberturas por actividades antrópicas. Se encontró que el 18,06% del área de estudio presenta una vulnerabilidad alta, 21,96% una vulnerabilidad media y 59,98% vulnerabilidad baja, donde los hotspots están ubicados en zonas de borde. En general el Complejo de Pisba tienen cerca de 46461 ha en categorías alta y media de vulnerabilidad, siendo las coberturas naturales más afectadas los bosques (10,6% y 32,82% en vulnerabilidad alta y media respectivamente), seguido por la vegetación de paramo (10,18% y 18,18% en vulnerabilidad alta y media respectivamente). Se espera que la presente investigación, se pueda replicar en los diferentes páramos de del país, previendo diferencias intra-regionales, que ayuden a generar acciones urgentes de manejo en estos ecosistemas estratégico, a partir de información espacial disponible, usando elementos que desde la Geomática como ciencia, soportan la identificación y análisis de la vulnerabilidad ambiental para la planificación ambiental del territorio. (Texto tomado de la fuente)spa
dc.description.abstractVulnerability assessment is essential for decision-making in the framework of environmental management and ecosystem conservation. Likewise, it is a complex process that combines biophysical, social, and economic factors, where the use of geomatics provides conceptual and technical support for its integration and analysis. The present work focused on proposing and applying a methodology to assess the vulnerability of the Pisba moorland complex (Department of Boyacá) associated with land cover, applying spatial analysis and an analytical hierarchy approach (AHP). 25 variables grouped into 11 factors that reflect the sensitivity, exposure, and resilience of the ecosystem were identified. Through an analysis of remote sensing, geostatistics, Euclidean distances, and landscape analysis, the factors with the highest incidence were: the state of the vegetation, abiotic conditions, agricultural activities, and fires. The western edges of the páramo tend to be more vulnerable, associated with changes in coverage due to anthropic activities. It was found that 18.06% of the study area has high vulnerability, 21.96% medium vulnerability, and 59.98% low vulnerability, where the hotspots are located in border areas. In general, the Pisba Complex has about 46,461 ha in high and medium vulnerability categories, with the most affected natural cover being forests (10.6% and 32.82% in high and medium vulnerability, respectively), followed by the vegetation of moorland (10.18% and 18.18% in high and medium vulnerability, respectively). It is expected that this research can be replicated in the different moors of the country, anticipating intra-regional differences that help generate urgent management actions in these strategic ecosystems, based on available spatial information, use of spatial methodologies that support the identification, and environmental vulnerability analysis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Geomáticaspa
dc.description.researchareaGeoinformación para el uso sostenible de los recursos naturalesspa
dc.format.extent117 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81889
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Geomáticaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAdger, W.N., 2006. Vulnerability. Global Environmental Change, 16(3), pp.268–281. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0959378006000422.spa
dc.relation.referencesAdriano Coronel, 2012. GESTIÓN DE RIESGOS en Gestión de proyectos. Wiki-EOI.spa
dc.relation.referencesAryafar, A., Yousefi, S. & Doulati Ardejani, F., 2013. The weight of interaction of mining activities: Groundwater in environmental impact assessment using fuzzy analytical hierarchy process (FAHP). Environmental Earth Sciences, 68(8), pp.2313–2324.spa
dc.relation.referencesAscough, J.C. et al., 2008. Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecological Modelling, 219(3–4), pp.383–399.spa
dc.relation.referencesAwange, J.L. & Kyalo Kiema, J.B., 2013. Environmental Geoinformatics, Available at: http://www.springer.com/series/3234%0Ahttp://link.springer.com/10.1007/978-3-642-34085-7.spa
dc.relation.referencesBagdanavičiute, I. & Valiunas, J., 2013. GIS-based land suitability analysis integrating multi-criteria evaluation for the allocation of potential pollution sources. Environmental Earth Sciences, 68(6), pp.1797–1812.spa
dc.relation.referencesBar, S., Parida, B.R. & Pandey, A.C., 2020. Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sensing Applications: Society and Environment, 18(January), p.100324. Available at: https://doi.org/10.1016/j.rsase.2020.100324.spa
dc.relation.referencesBarredo, J.I. & Bosque-Sendra, J., 1998. Multi-criteria evaluation methods for ordinal data in a GIS environment. Geographical Systems, 5(4), pp.313–327.spa
dc.relation.referencesBaxter, M.J., 1979. THE APPLICATION OF LOGIT REGRESSION ANALYSIS TO PRODUCTION-CONSTRAINED GRAVITY MODELS*. Journal of Regional Science, 19(2), pp.171–177. Available at: http://doi.wiley.com/10.1111/j.1467-9787.1979.tb00583.x [Accessed September 26, 2020].spa
dc.relation.referencesocco, G., Mendoza, M. & Masera, O.R., 2001. La dinámica del cambio del uso del suelo en Michoacán.Una propuesta metodológica para el estudio de los procesos de deforestación. Investigaciones Geograficas, 44, pp.18–38.spa
dc.relation.referencesBourgoin, C. et al., 2020. Assessing the ecological vulnerability of forest landscape to agricultural frontier expansion in the Central Highlands of Vietnam. International Journal of Applied Earth Observation and Geoinformation, 84(July 2019), p.101958. Available at: https://doi.org/10.1016/j.jag.2019.101958.spa
dc.relation.referencesBreiman, L., 2001. Random forests. Machine Learning, pp.1–122.spa
dc.relation.referencesCabrera, M. & Ramírez, W., 2014. Restauración ecológica de los páramos en colombia: transformación y herramientas para su conservación.spa
dc.relation.referencesCalvo González, J., 2006. La Fragilidad de Páramos. , (June), pp.123–144.spa
dc.relation.referencesCAR, C., 2018. Guía ilustrativa sobre Analisis de la vulnerabilidad territorial ante el cambio climatico, Available at: https://www.car.gov.co/uploads/files/5cc8af9bc943b.pdf.spa
dc.relation.referencesCárdenas, M.F., 2016. Ecohydrology of paramos in Colombia: vulnerability to climate change and land use. , p.139. Available at: http://www.bdigital.unal.edu.co/56394/.spa
dc.relation.referencesCavazzana, G.H. et al., 2016. Natural and environmental vulnerability along the touristic “Estradas parque pantanal” by GIS algebraic mapping. In Handbook of Environmental Chemistry. Springer Verlag, pp. 209–226. Available at: https://link-springer-com.ezproxy.unal.edu.co/chapter/10.1007/698_2014_328 [Accessed September 27, 2020].spa
dc.relation.referencesChoudhary, K., Boori, M.S. & Kupriyanov, A., 2018. Spatial modelling for natural and environmental vulnerability through remote sensing and GIS in Astrakhan, Russia. Egyptian Journal of Remote Sensing and Space Science, 21(2), pp.139–147. Available at: https://doi.org/10.1016/j.ejrs.2017.05.003.spa
dc.relation.referencesCinner, J.E. et al., 2013. Evaluating social and ecological vulnerability of coral reef fisheries to climate change. PloS one, 8(9).spa
dc.relation.referencesCorrea Ayram, C.A. et al., 2020. Spatiotemporal evaluation of the human footprint in Colombia: Four decades of anthropic impact in highly biodiverse ecosystems. Ecological Indicators, 117(June), p.106630. Available at: https://doi.org/10.1016/j.ecolind.2020.106630.spa
dc.relation.referencesCresso, M. et al., 2020. Future Climate Change Renders Unsuitable Conditions for Paramo Ecosystems in Colombia. Sustainability, 12(20), p.8373. Available at: https://www.mdpi.com/2071-1050/12/20/8373 [Accessed November 15, 2020].spa
dc.relation.referencesDuguy, B. et al., 2012. Modelling the ecological vulnerability to forest fires in mediterranean ecosystems using geographic information technologies. Environmental Management, 50(6), pp.1012–1026.spa
dc.relation.referencesDurán Gil, C.A., 2017. Análisis espacial de las condiciones de vulnerabilidad social, económica, física y ambiental en el territorio colombiano. Perspectiva Geográfica, 22(1), pp.11–32.spa
dc.relation.referencesEastman, R., 2012. IDRISI Selva. Guía para SIG y procesamiento de imágenes. Clark University, 53(9), p.321.spa
dc.relation.referencesEcheverría, M., Rosero, C. & Bravo, L., 2018. Vulnerabilidad a nivel de ecosistema de Páramo frente al Cambio Climático en la zona de Igualata Parroquia San Isidro, Cantón Guano Provincia de Chimborazo. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalurgica y Geográfica, 20(39), pp.137–148.spa
dc.relation.referencesEguiguren-Velepucha, P.A. et al., 2016. Tropical ecosystems vulnerability to climate change in southern Ecuador. Tropical Conservation Science, 9(4), p.194008291666800. Available at: http://journals.sagepub.com/doi/10.1177/1940082916668007 [Accessed November 15, 2020].spa
dc.relation.referencesElisa Zanella, M., Wanderley Correia Dantas, E. & Luís Sampaio Olímpio, J., 2012. a Vulnerabilidade Natural E Ambiental Do Município De Fortaleza/Ce. Boletim Goiano de Geografia, 31(2), pp.13–27.spa
dc.relation.referencesESRI, 2016. Comprender el análisis de distancia euclidiana—Ayuda. ArcGIS for Desktop. Available at: https://pro.arcgis.com/es/pro-app/2.8/tool-reference/spatial-analyst/understanding-euclidean-distance-analysis.htm [Accessed July 14, 2022].spa
dc.relation.referencesEtter, A. et al., 2020. Assessing restoration priorities for high-risk ecosystems: An application of the IUCN red list of ecosystems. Land Use Policy, 99(42), p.104874. Available at: https://doi.org/10.1016/j.landusepol.2020.104874.spa
dc.relation.referencesFischer, M. & Getis, A., 1997. Recent Developments in Spatial Analysis – Spatial Statistics, Behavioural Modelling and Computational Intelligence. , (February 2016), p.433pp.spa
dc.relation.referencesGalik, E., 2013. Tecnología del Sistema de Información Geográfica (SIG).spa
dc.relation.referencesGaravito, G., Gómez Zárate, D.P. & Palacio Tamayo, D., 2018. Gobernanza territorial en los páramos Chingaza y Sumapaz-Cruz Verde. Una comparación de sus principales actores y problemáticas. Perspectiva Geográfica, 23(1), pp.11–30.spa
dc.relation.referencesGerardo, López, E. & Mendoza, Manuel, B., 2001. Predicción del cambio de cobertura y uso de suelo. Estudio de caso de la Ciudad de Morelia. Investigaciones geográficas, 28(45), p.134. Available at: http://pbidi.unam.mx:8080/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=cat02029a&AN=tes.TES01000666406&lang=es&site=eds-live.spa
dc.relation.referencesGetis, A., 1995. Cliff, A.D. and Ord, J.K. 1973: Spatial autocorrelation. London: Pion. Progress in Human Geography, 19(2), pp.245–249. Available at: http://journals.sagepub.com/doi/10.1177/030913259501900205 [Accessed September 26, 2020].spa
dc.relation.referencesGomarasca, M.A., 2010. Basics of geomatics. Applied Geomatics, 2(3), pp.137–146.spa
dc.relation.referencesGuarderas, P., Smith, F. & Dufrene, M., 2021. Land use land cover dynamics through time and their proximate drivers of change in a tropical mountain system : a case study in a highland landscape of northern Ecuador Land use transitions and drivers of change in a highland landscape of northern Ecuador.spa
dc.relation.referencesHe, H.S., DeZonia, B.E. & Mladenoff, D.J., 2001. Erratum: An aggregation index (AI) to quantify spatial patterns of landscapes (Landscape Ecology (200) 15 (591-601)). Landscape Ecology, 16(1), p.87.spa
dc.relation.referencesHong, W. et al., 2016. Establishing an ecological vulnerability assessment indicator system for spatial recognition and management of ecologically vulnerable areas in highly urbanized regions: A case study of Shenzhen, China. Ecological Indicators, 69, pp.540–547. Available at: https://doi.org/10.1016/j.landusepol.2017.01.010. [Accessed November 15, 2020].spa
dc.relation.referencesHuang, P.H., Tsai, J.S. & Lin, W.T., 2010. Using multiple-criteria decision-making techniques for eco-environmental vulnerability assessment: A case study on the Chi-Jia-Wan Stream watershed, Taiwan. Environmental Monitoring and Assessment, 168(1–4), pp.141–158.spa
dc.relation.referencesDEAM, 2012. Fuertes impactos del cambio climático en los páramos de Colombia, Bogotá.spa
dc.relation.referencesIppolito, A. et al., 2010. Ecological vulnerability analysis: A river basin case study. Science of the Total Environment, 408(18), pp.3880–3890. Available at: http://dx.doi.org/10.1016/j.scitotenv.2009.10.002.spa
dc.relation.referencesang, W.S., Engel, B. & Yeum, C.M., 2020. Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning. Environmental Modelling & Software, 124, p.104602.spa
dc.relation.referencesJeanneth, H., 2002. Aproximación a un modelo para la evaluación de la vulnerabilidad de las coberturas vegetales de Colombia ante un posible cambio climático utilizando SIG. Meteorología Colombiana, 6, pp.55–63.spa
dc.relation.referencesJones, D. & Tamiz, M., 2016. Multiple criteria Decision Analysis,spa
dc.relation.referencesJonse, a P.C. & Coutinho, L.C., 2016. Remote Sensing and Spatial Decision Support System. Comparative and General Pharmacology, 00(1), pp.17–19.spa
dc.relation.referencesJuzga, M.A., 2016. COMPARACIÓN DE ÍNDICES DE VEGETACIÓN EN EL CERRO DE LA CONEJERA DE LA CIUDAD DE BOGOTÁ. , p.2016.spa
dc.relation.referencesKangas, J. et al., 2000. Improving the quality of landscape ecological forest planning by utilising advanced decision-support tools. Forest Ecology and Management, 132(2–3), pp.157–171.spa
dc.relation.referencesKhan, S., 2012. Vulnerability assessments and their planning implications: A case study of the Hutt Valley, New Zealand. Natural Hazards, 64(2), pp.1587–1607.spa
dc.relation.referencesKia, M.B. et al., 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67(1), pp.251–264.spa
dc.relation.referencesDe Lange, H.J. et al., 2010. Ecological vulnerability in risk assessment - A review and perspectives. Science of the Total Environment, 408(18), pp.3871–3879. Available at: http://dx.doi.org/10.1016/j.scitotenv.2009.11.009.spa
dc.relation.referencesLi, A. et al., 2006. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS - A case study in the upper reaches of Minjiang River, China. Ecological Modelling, 192(1–2), pp.175–187.spa
dc.relation.referencesLi, J. & Heap, A.D., 2008. A Review of Spatial Interpolation Methods for Environmental Scientists. Australian Geological Survey Organisation, GeoCat# 68(2008/23), p.154.spa
dc.relation.referencesLi, Y. et al., 2017. Mapping the hotspots and coldspots of ecosystem services in conservation priority setting. Journal of Geographical Sciences, 27(6), pp.681–696.spa
dc.relation.referencesLiao, X., Li, W. & Hou, J., 2013. Application of GIS Based Ecological Vulnerability Evaluation in Environmental Impact Assessment of Master Plan of Coal Mining Area. Procedia Environmental Sciences, 18, pp.271–276. Available at: http://dx.doi.org/10.1016/j.proenv.2013.04.035.spa
dc.relation.referencesLiu, Y. et al., 2020. Variability in Regional Ecological Vulnerability: A Case Study of Sichuan Province, China. International Journal of Disaster Risk Science, pp.1–13. Available at: https://doi.org/10.1007/s13753-020-00295-6 [Accessed November 15, 2020].spa
dc.relation.referencesLollino, G. et al., 2015. Slope Stability Analyses of the Proposed Reconstituted Slope of the Quarry Heights Drive Landslide, Durban, South Africa. Engineering Geology for Society and Territory - Volume 2: Landslide Processes, 2, pp.1–2177.spa
dc.relation.referencesLongley, P.A. et al., 2005. Geographical Information Systems and Science, Available at: http://www.amazon.com/Geographic-Information-Systems-Science-Longley/dp/0470870001/ref=sr_1_2?ie=UTF8&qid=1430849641&sr=8-2&keywords=Geographical+Information+Systems+and+Science+longley+2005.spa
dc.relation.referencesLuo, D., Caldas, M.M. & Goodin, D.G., 2021. Estimating environmental vulnerability in the Cerrado with machine learning and Twitter data. Journal of Environmental Management, 289, p.112502.spa
dc.relation.referencesMalczewski, J., 1999. GIS and Multicriteria Decision Analysis,spa
dc.relation.referencesMalekmohammadi, B. & Jahanishakib, F., 2017. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecological Indicators, 82(July), pp.293–303. Available at: http://dx.doi.org/10.1016/j.ecolind.2017.06.060.spa
dc.relation.referencesMattivi, P. et al., 2019. TWI computation: a comparison of different open source GISs. Open Geospatial Data, Software and Standards 2019 4:1, 4(1), pp.1–12. Available at: https://opengeospatialdata.springeropen.com/articles/10.1186/s40965-019-0066-y [Accessed July 14, 2022].spa
dc.relation.referencesMeneses Moreno, L.H. et al., 2006. Plan De Manejo Parque Nacional Natural. , p.313.spa
dc.relation.referencesMercier, A. et al., 2019. Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest–Agriculture Mosaics in Temperate and Tropical Landscapes. Remote Sensing 2019, Vol. 11, Page 979, 11(8), p.979. Available at: https://www.mdpi.com/2072-4292/11/8/979/htm [Accessed March 30, 2022].spa
dc.relation.referencesMinisterio Medio del Medio Ambiente, 2002. Programa para el manejjo sostenible y restauración de ecosistemas de alta montaña. The Journal of Rural Health, 11(3), pp.177–184.spa
dc.relation.referencesMohamed, S.A., 2020. Coastal vulnerability assessment using GIS-Based multicriteria analysis of Alexandria-northwestern Nile Delta, Egypt. Journal of African Earth Sciences, 163, p.103751. Available at: https://www-sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S1464343X20300029 [Accessed September 27, 2020].spa
dc.relation.referencesMoizo Marrubio, P., 2004. La percepción remota y la tecnología SIG: una aplicación en Ecología de Paisaje. Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica, (4), p.10.spa
dc.relation.referencesMorales, M. et al., 2007. Atlas de páramos de Colombia, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Available at: http://repository.humboldt.org.co/handle/20.500.11761/35044#.YoOwPRqwbuE.mendeley.spa
dc.relation.referencesMoreno Ortegón, C.D. & Palma Barragan, J.D., 2016. Vulnerabilidad Ecológica Del Complejo De Páramos Chilí-Barragán a Los Incrementos De Temperatura En Un Escenario De Cambio Climático. , p.307.spa
dc.relation.referencesNaciones Unidas, 2009. 2009 UNISDR Terminología sobre Reducción del Riesgo de Desastres. Estrategia Internacional para la Reducción de Desastres de las Naciones Unidas (UNISDR), p.43.spa
dc.relation.referencesNandy, S. et al., 2015. Environmental vulnerability assessment of eco-development zone of Great Himalayan National Park, Himachal Pradesh, India. Ecological Indicators, 57, pp.182–195. Available at: http://dx.doi.org/10.1016/j.ecolind.2015.04.024.spa
dc.relation.referencesNguyen, K.A. & Liou, Y.A., 2019. Global mapping of eco-environmental vulnerability from human and nature disturbances. Science of the Total Environment, 664, pp.995–1004. Available at: https://doi.org/10.1016/j.scitotenv.2019.01.407.spa
dc.relation.referencesNiu, L. et al., 2021. Degradation of river ecological quality in Tibet plateau with overgrazing: A quantitative assessment using biotic integrity index improved by random forest. Ecological Indicators, 120, p.106948.spa
dc.relation.referencesOmann, I., Stocker, A. & Jäger, J., 2009. Climate change as a threat to biodiversity: An application of the DPSIR approach. Ecological Economics, 69(1), pp.24–31. Available at: http://dx.doi.org/10.1016/j.ecolecon.2009.01.003.spa
dc.relation.referencesOsorio Fernández, A.Y., 2015. Explotación minera en el páramo de Pisba-Boyacá. Abadín J (2007).Agricultura sostenible en los Andes Tropicales. Importancia de la Materia Orgánica en la conservación de la fertilidad del suelo, pp.1–21. Available at: https://repository.unimilitar.edu.co/handle/10654/7798#.XoJMWjUEz2I.mendeley.spa
dc.relation.referencesPalacios Saldaña, R. & Pacheco Bonrostro, J., 2016. Los métodos de decisión multicriterio discretos. Un punto de vista racional aplicado a la toma de decisiones. Anáhuac Journal, 16(1), pp.47–78. Available at: http://search.ebscohost.com/login.aspx?direct=true&db=fap&AN=126288689&lang=es&site=eds-live.spa
dc.relation.referencesPei, H. et al., 2015. Methods and applications for ecological vulnerability evaluation in a hyper-arid oasis: a case study of the Turpan Oasis, China. Environmental Earth Sciences, 74(2), pp.1449–1461. Available at: http://dx.doi.org/10.1007/s12665-015-4134-z.spa
dc.relation.referencesPerring, M.P. et al., 2016. Global environmental change effects on ecosystems: The importance of land-use legacies. Global Change Biology, 22(4), pp.1361–1371.spa
dc.relation.referencesPeyre, G. et al., 2021. Mapping the páramo land-cover in the Northern Andes. International Journal of Remote Sensing, 42(20), pp.7777–7797. Available at: https://www.tandfonline.com/doi/abs/10.1080/01431161.2021.1964709 [Accessed March 30, 2022].spa
dc.relation.referencesRezaei, F., Safavi, H.R. & Ahmadi, A., 2013. Groundwater vulnerability assessment using fuzzy logic: A case study in the zayandehrood aquifers, Iran. Environmental Management, 51(1), pp.267–277.spa
dc.relation.referencesRiitters, K. et al., 2000. Global-scale patterns of forest fragmentation. Ecology and Society, 4(2).spa
dc.relation.referencesRivera, D. & Rodríguez, C., 2011. Guía divulgativa de criterios para la delimitación de páramos de Colombia,spa
dc.relation.referencesRivera Ospina, D. & Rodríguez, C., 2011. Guía divulgativa de criterios para la delimitación de páramos de Colombia.spa
dc.relation.referencesSalvati, L. et al., 2013. Landscape changes and environmental quality: The evolution of land vulnerability and potential resilience to degradation in Italy. Regional Environmental Change, 13(6), pp.1223–1233.spa
dc.relation.referencesSarmiento Pinzón, C.E. et al., 2013. Aportes a la conservación estratégica de los páramos de Colombia : actualización de la cartografía de los complejos de páramo a escala 1:100.000, Available at: http://repository.humboldt.org.co/handle/20.500.11761/31406#.XR0GZNq7t58.mendeley.spa
dc.relation.referencesSGC, 2017. Guía Metodológica para la Zonificación de Amenaza por Movimientos en Masa Escala 1:25000,spa
dc.relation.referencesSong, G. et al., 2010. The ecological vulnerability evaluation in southwestern mountain region of China based on GIS and AHP method. Procedia Environmental Sciences, 2(5), pp.465–475. Available at: http://dx.doi.org/10.1016/j.proenv.2010.10.051.spa
dc.relation.referencesThiemann, F. & Sester, M., 2018. Trends in Spatial Analysis and Modelling.spa
dc.relation.referencesTurner, B.L. et al., 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences, 100(14), pp.8074–8079. Available at: http://www.pnas.org/lookup/doi/10.1073/pnas.1231335100.spa
dc.relation.referencesSenisterra, G.E., Gaspari, F.J. & Delgado, M.I., 2015. Zonificación de la vulnerabilidad ambiental en una cuenca serrana rural, Argentina. , pp.38–58.spa
dc.relation.referencesValencia, J.B. et al., 2020. Climate Vulnerability Assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. Frontiers in Ecology and Evolution, 8, p.565708. Available at: https://www.igac.gov.co [Accessed November 15, 2020].spa
dc.relation.referencesVargas, O., 2013. Disturbios en los páramos andinos. , (March), pp.39–57. Available at: https://www.researchgate.net/publication/260438569_Disturbios_en_los_paramos_andinos.spa
dc.relation.referencesXiaolei, Z. et al., 2011. Assessment of eco-environment vulnerability in the northeastern margin of the Qinghai-Tibetan Plateau, China. Environmental Earth Sciences, 63(4), pp.667–674. Available at: https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s12665-010-0731-z [Accessed September 27, 2020].spa
dc.relation.referencesYang, F., Ma, C. & Fang, H., 2022. Simulation of critical transitions and vulnerability assessment of Tibetan Plateau key ecosystems. Journal of Mountain Science 2022 19:3, 19(3), pp.673–688. Available at: https://link-springer-com.ezproxy.unal.edu.co/article/10.1007/s11629-021-6960-7 [Accessed March 30, 2022].spa
dc.relation.referencesYang, S. et al., 2015. Screening of social vulnerability to natural hazards in China. Natural Hazards, 76(1), pp.1–18. Available at: https://link-springer-com.ezproxy.unal.edu.co/article/10.1007%2Fs11069-014-1225-1 [Accessed November 15, 2020].spa
dc.relation.referencesYi, C. & Jackson, N., 2021. A review of measuring ecosystem resilience to disturbance. Environmental Research Letters, 16(5).spa
dc.relation.referencesZadeh, L. a., 1965. Fuzzy sets. Information and Control, 8(3), pp.338–353.spa
dc.relation.referencesZadeh, L.A., 1971. Fuzzy Semantics. Information Sciences, 3, pp.159–176.spa
dc.relation.referencesZhang, X. et al., 2017. Ecological vulnerability assessment based on PSSR in Yellow River Delta. Journal of Cleaner Production, 167, pp.1106–1111. Available at: http://dx.doi.org/10.1016/j.jclepro.2017.04.106.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc350 - Administración pública y ciencia militar::354 - Administración pública de la economía y el medio ambientespa
dc.subject.lembAREAS PROTEGIDASspa
dc.subject.lembProtected areaseng
dc.subject.lembPROTECCION DEL MEDIO AMBIENTEspa
dc.subject.lembEnvironmental protection-8a. ed.eng
dc.subject.proposalVulnerabilidad ambientalspa
dc.subject.proposalAnálisis espacialspa
dc.subject.proposalAnálisis multicriteriospa
dc.subject.proposalPáramosspa
dc.subject.proposalSpatial analysiseng
dc.subject.proposalEnvironmental vulnerabilityeng
dc.subject.proposalPáramo de Pisbaspa
dc.subject.proposalSpatial analysiseng
dc.titleMetodología para evaluar la vulnerabilidad ambiental en los ecosistemas de páramo asociada a los usos del suelo: Caso de estudio complejo de páramos Pisba (Boyacá, Colombia)spa
dc.title.translatedMethodology to assess environmental vulnerability in moorland ecosystems associated with land use: A case study of the Pisba moorland complex (Boyacá, Colombia)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentMedios de comunicaciónspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018462280.2022.pdf
Tamaño:
6.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Geomática

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: