Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribución a las reservas de carbono en el ecosistema

dc.contributor.advisorMancera Pineda, José Ernestospa
dc.contributor.authorPerdomo Trujillo, Laura Victoriaspa
dc.contributor.researchgroupModelacion de Ecosistemas Costerosspa
dc.date.accessioned2020-08-19T15:19:47Zspa
dc.date.available2020-08-19T15:19:47Zspa
dc.date.issued2020-04-14spa
dc.description.abstractAdemás de los múltiples servicios provistos por los manglares, en la última década ha cobrado importancia su facultad de capturar carbono (C), ya que se ha demostrado que su capacidad de almacenamiento puede ser hasta cinco veces la de otros bosques terrestres tropicales. A pesar de la importancia de este servicio ambiental, existen todavía áreas con vacíos de información sobre el tamaño y la variación de los depósitos de C; aún más, en aquellos manglares donde han ocurrido mortalidades o degradación del bosque. En Colombia algunos autores han estimado las reservas en la biomasa aérea, sin embargo, son pocos los reportes que han considerado mediciones in situ de las raíces y el suelo, este último, considerado el mayor reservorio de C del ecosistema. El objetivo de este estudio fue evaluar y comparar (i) el aporte de las raíces a la biomasa total, (ii) las principales condiciones ambientales que influyen en la biomasa y producción de raíces, (iii) el contenido de C en el suelo y (iv) las reservas de C en sitios con diferente estado de conservación. Los muestreos se realizaron en el mayor parche de manglar del Caribe colombiano, donde ocurrió mortalidad masiva del bosque debido a altas salinidades entre 1956 y 1995, año en que se implementó un proyecto de rehabilitación basado en el restablecimiento del balance hídrico. Sitios conservados se compararon con aquellos que sufrieron mortalidad y recuperaron el bosque, y con otros que no han logrado recuperarlo. La biomasa de raíces representó entre el 6 y el 20 % de la biomasa total de los árboles y fue mayor en los rodales conservados en comparación con los restaurados. Los principales factores ambientales que determinaron la biomasa y producción del sistema radicular fueron la salinidad, el tiempo de inundación y el potencial redox. Más del 57 % de las reservas de C de los sitios de estudio se encontró en el suelo (medido hasta 1 m de profundidad). Contrario a lo reportado por otros estudios, los manglares restaurados presentaron mayores depósitos de C (390 y 394 Mg C ha-1), en comparación con rodales naturales (271 Mg C ha-1) y con aquellos degradados que no han recuperado el manglar (258 Mg C ha-1). Este resultado se explicó por la gran cantidad de materia orgánica aportada por la mortalidad masiva del bosque y otros tipos de vegetación, ocurrida antes de la restauración y revegetación de estos sitios. Ambientes anóxicos (<-100 mV) y salinidades por encima de 40 han limitado la descomposición de gran cantidad de este material orgánico. La biomasa aérea representó entre el 12 y 37 % del total del C en los sitios de estudio, con depósitos de 42 a 73,5 Mg C ha-1 en los sitios restaurados y 102 Mg C ha-1 en el conservado. Los resultados obtenidos en este estudio sirven de base para tomar decisiones en programas de manejo y en la elaboración de propuestas de reducción de emisiones de C de ecosistemas de manglar degradados o con procesos de recuperación.spa
dc.description.abstractIn addition to the multiple services provided by mangroves, in the last decade its ability to capture carbon (C) has gained importance, as it has been shown that its storage capacity can be up to five times than in other tropical terrestrial forests. Despite the importance of this environmental service, there is still a lack of information in some areas about the size and variation of ecosystem C stocks; even more, in those mangroves forests where mortalities or degradation have occurred. In Colombia, some authors have estimated reserves in aboveground biomass, however, there are no reports that consider belowground biomass and soil, the latter, considered the largest C reservoir of the ecosystem. The objective of this study was to evaluate and compare (i) the contribution of roots to total biomass, (ii) the main environmental conditions that influence root biomass and production, (iii) the soil C stock, and (iv) ecosystem C stock (trees, roots and soil). Sampling was performed in the largest mangrove stand of the Colombian Caribbean, where massive forest mortality occurred due to high salinities between 1956 and 1995, the last, the year in which a rehabilitation project was implemented based on the water balance reestablishment. Preserved sites were compared with those who suffered mortality and then recovery of the forest cover, and with others that were not able to recover it. Root biomass represented between 6 and 20% of total biomass, and was higher in preserved stands compared to restored. The main environmental factors that determined the root biomass and production were salinity, flood time and redox potential. More than 57 % of the sites ecosystem C stock were found in the soil (measured up to 1 m deep). Contrary to what was reported by other studies, restored mangroves showed higher ecosystem c stocks (390 and 394 Mg C ha-1), compared with natural stands (271 Mg C ha-1) and with those degraded that had not mangrove recovery (258 Mg C ha-1). This result was explained by the large amount of organic matter contributed by the massive mortality of the forest and other types of vegetation, which occurred before and during the rehabilitation project. Anoxic environments (<-100 mV) and salinities above 40 have limited the decomposition of a large amount of this organic material. The aboveground biomass represented between 12 and 37% of the total ecosystem C stock, with deposits of 42 to 73,5 Mg C ha-1 in the restored sites and 102 Mg C ha-1 in those conserved. The results obtained in the present study serve as the basis for decisions making in management programs and in the elaboration of proposals to reduce C emissions from degraded mangrove ecosystems or in recovery processes.spa
dc.description.degreelevelDoctoradospa
dc.description.projectEfecto del estado sucesional de bosques de manglar del caribe colombiano en los procesos de control de la erosión costera y de almacenamiento de carbono (blue carbon)spa
dc.description.sponsorshipColciencias cod. 110171451047-Universidad Nacional de Colombia cod. Hermes 31393spa
dc.format.extent90spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationPerdomo Trujillo, L.V. 2020. Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribución a las reservas de carbono en el ecosistema. Tesis Doctorado en Ciencias-Biología Marina. Universidad Nacional de Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78085
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribespa
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMARspa
dc.publisher.facultyFacultad Caribespa
dc.publisher.programCaribe - Caribe - Doctorado en Ciencias - Biologíaspa
dc.relation.referencesAdame, M.F., Cherian, S., Reef, R., Stewart-Koster, B., 2017. Mangrove root biomass and the uncertainty of belowground carbon estimations. For. Ecol. Manage. 403, 52–60. https://doi.org/10.1016/j.foreco.2017.08.016spa
dc.relation.referencesAdame, M.F., Kauffman, J.B., Medina, I., Gamboa, J.N., Torres, O., Caamal, J.P., Reza, M., Herrera-Silveira, J.A., 2013. Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS One 8, 1–13. https://doi.org/10.1371/journal.pone.0056569spa
dc.relation.referencesAdame, M.F., Santini, N.S., Tovilla, C., Vázquez-Lule, A., Castro, L., Guevara, M., 2015. Carbon stocks and soil sequestration rates of tropical riverine wetlands. Biogeosciences 12, 3805–3818. https://doi.org/10.5194/bg-12-3805-2015spa
dc.relation.referencesAdame, M.F., Teutli, C., Santini, N.S., Caamal, J.P., Zaldívar-Jiménez, A., Herńndez, R., Herrera-Silveira, J.A., 2014. Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands 34, 479–488. https://doi.org/10.1007/s13157-014-0514-5spa
dc.relation.referencesAdame, M.F., Zacaria, R.M., Fry, B., Chong, V.C., Then, Y.H.A., Brown, C.J., Lee, S.Y., 2018. Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean Coast. Manag. 161, 117–126. https://doi.org/10.1016/j.ocecoaman.2018.04.019spa
dc.relation.referencesAlongi, D.M., 2002. Present state and future of the world´s mangrove forest. Environmental Conservation 29 (3): 331-349. DOI:10.1017/S0376892902000231spa
dc.relation.referencesAlongi, D.M., Dixon, P., 2000. Mangrove primary production and above and below ground biomass in Sawi Bay, Southern Thailand. Phuket Mar. Biol. Cent. Spec. Publ. 22, 31–38.spa
dc.relation.referencesAlongi, D.M., Tirendi, F., Clough, B.F., 2000. Below-ground decomposition of organic matter in forests of the mangroves Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat. Bot. 68, 97–122. https://doi.org/10.1016/S0304-3770(00)00110-8spa
dc.relation.referencesÁlvarez-León, R., Casas-Monroy, O., Carbonó-De La Hoz, E., Reyes-Forero, S.P., Troncoso-Olivo, W., 2004. La vegetación terrestre, eurihalina y dulceacuícola de la ecorregión Ciénaga Grande de Santa Marta, in: Garay, J., Restrepo, J., Casas-Monroy, O., Solano, O.D., Newmark, F. (Eds.), Los Manglares de La Ecoregión Ciénaga Grandede Santa Marta: Pasado, Presente y Futuro. INVEMAR-Serie de publicaciones especiales No. 11, Santa Marta, pp. 75–96.spa
dc.relation.referencesAngeles, G., López–Portillo, J., Ortega-Escalona, F., 2002. Functional anatomy of the secondary xylem of roots of the mangrove Laguncularia racemosa (L.) Gaertn. (Combretaceae). Trees - Struct. Funct. 16, 338–345. https://doi.org/10.1007/s00468-002-0171-9spa
dc.relation.referencesAspila, K.I., Agemian, H., Chau, S.Y., 1976. A Semi-automated method for determination of inorganic, organic and total phosphate in sediments. Analyst 101, 187–197.spa
dc.relation.referencesAtwood, T.B., Connolly, R.M., Almahasheer, H., Carnell, P.E., Duarte, C.M., Lewis, C.J.E., Irigoien, X., Kelleway, J.J., Lavery, P.S., Macreadie, P.I., Serrano, O., Sanders, C.J., Santos, I., Steven, A.D.L., Lovelock, C.E., 2017. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528. https://doi.org/10.1038/nclimate3326spa
dc.relation.referencesBetancourt-Portela, J.M., Parra, J.P., Villamil, C., 2013. Emisión de metano y óxido nitroso de los sedimentos de manglar de la ciénaga grande de santa marta, Caribe Colombiano. Bol. Investig. Mar. y Costeras 42, 131–152. https://doi.org/10.25268/bimc.invemar.2013.42.1.64spa
dc.relation.referencesBindoff, N.L., Cheung, W.W.L., Kairo, J.G., Arístegui, J., Guinder, V.A., Hallberg, R., Hilmi, N., Jiao, N., Karim, M.S., Levin, L., O’Donoghue, S., Purca Cuicapusa, S.R., Rinkevich, B., Suga, T., Tagliabue, A., Williamson, P. 2019: Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [(Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M. (eds.)].spa
dc.relation.referencesBhomia, R.K., Kauffman, J.B., McFadden, T.N., 2016. Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetl. Ecol. Manag. 24, 187–201. https://doi.org/10.1007/s11273-016-9483-1spa
dc.relation.referencesBlanco-Libreros, J.F., Álvarez-León, R., 2019. Mangroves of Colombia revisited in an era of open data, global changes, and socio-political transition: Homage to Heliodoro Sánchez-Páez. Rev. la Acad. Colomb. Ciencias Exactas, Fis. y Nat. 43, 84–97. https://doi.org/10.18257/raccefyn.780spa
dc.relation.referencesBlanco-Libreros, J.F., Ortiz-Acevedo, L.F., Urrego, L.E., 2015. Reservorios de biomasa aérea y de carbono en los manglares del golfo de Urabá (Caribe colombiano). Actual. Biológicas 37, 131–141. https://doi.org/10.17533/udea.acbi.v37n103a02spa
dc.relation.referencesBlanco, J.A., Viloria, E.A., Narváez, J.C., 2006. ENSO and salinity changes in the Ciénaga Grande de Santa Marta coastal lagoon system, Colombian Caribbean. Estuar. Coast. Shelf Sci. 66, 157–167. https://doi.org/10.1016/j.ecss.2005.08.001spa
dc.relation.referencesBotero, L., Mancera-Pineda, J.E., 1996. Síntesis de los cambios de origen antrópico ocurridos en los últimos 40 años en la Ciénaga de Santa Marta (Colombia). Rev. Acad. Colomb. Cienc. 20 (78), 465-474.spa
dc.relation.referencesBotero, L., Salzwedel, H., 1999. Rehabilitation of the Cienaga Grande de Santa Marta, a mangrove-estuarine system in the Caribbean coast of Colombia. Ocean Coast. Manag. 42, 243–256. https://doi.org/10.1016/S0964-5691(98)00056-8spa
dc.relation.referencesBouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Lee, S.Y., Marchand, C., Middelburg, J.J., Rivera-Monroy, V.H., Smith, T.J., Twilley, R.R., 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochem. Cycles 22, 1–12. https://doi.org/10.1029/2007GB003052spa
dc.relation.referencesBulmer, R.H., Schwendenmann, L., Lundquist, C.J., 2016. Carbon and Nitrogen Stocks and Below-Ground Allometry in Temperate Mangroves. Front. Mar. Sci. 3, 1–11. https://doi.org/10.3389/fmars.2016.00150spa
dc.relation.referencesCahoon, D.R., Hensel, P., Rybczyk, J., Mckee, K.L., Proffitt, E., Pérez, B., 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105.spa
dc.relation.referencesCardona, P., 1991. Característica de los suelos del manglar del costado Noraccidental de la Ciénaga Grande de Santa Marta (Complejo de Pajares e Isla de Salamanca) y su relacióncon algunos atributos de la vegetación. Universidad de Antióquia. Tesis de Maestría en Biología.spa
dc.relation.referencesCardona, P., Botero, L., 1998. Soil Characteristics and Vegetation Structure in a Heavily Deteriorated Mangrove Forest in the Caribbean Coast of Colombia. Biotropica 30 (1), 24–34.spa
dc.relation.referencesCasas-Monroy, O., 1999. Patrones de regeneración natural del manglar de la region de la Ciénaga Grande de Santa Marta, Caribe Colombiano. Universidad Jorge Tadeo Lozano.Tesis Biología Marina.spa
dc.relation.referencesCastañeda-Moya, E., Twilley, R.R., Rivera-Monroy, V.H., Marx, B.D., Coronado-Molina, C., Ewe, S.M.L., 2011. Patterns of Root Dynamics in Mangrove Forests Along Environmental Gradients in the Florida Coastal Everglades, USA. Ecosystems 14, 1178–1195. https://doi.org/10.1007/s10021-011-9473-3spa
dc.relation.referencesChiu, C.-Y., Lee, S.-C., Chen, T.-H., Tian, G., 2004. Denitrification associated N loss in mangrove soil. Nutr. Cycl. Agroecosystems 69, 185–189. https://doi.org/10.1023/Bspa
dc.relation.referencesChowdhury, R.R., Uchida, E., Chen, L., Osorio, V., Yoder, L., 2017. Anthropogenic drivers of mangrove loss: Geographic patterns and implications for livelihoods. Mangrove Ecosyst. A Glob. Biogeogr. Perspect. Struct. Funct. Serv. 275–300. https://doi.org/10.1007/978-3-319-62206-4_9spa
dc.relation.referencesCintrón, G., Schaeffer-Novelli, Y., 1983. Introducción a la Ecología del Manglar. UNESCO, Montevideo-Uruguay.spa
dc.relation.referencesConrad, S., Brown, D.R., Alvarez, P.G., Bates, B., Ibrahim, N., Reid, A., Monteiro, L.S., Silva, D.A., Mamo, L.T., Bowtell, J.R., Lin, H.A., Tolentino, N.L., Sanders, C.J., 2019. Does Regional Development Influence Sedimentary Blue Carbon Stocks? A Case Study From Three Australian Estuaries. Front. Mar. Sci. 5. https://doi.org/10.3389/fmars.2018.00518spa
dc.relation.referencesCormier, N., Twilley, R.R., Ewel, K.C., Krauss, K.W., 2015. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia 750, 69–87. https://doi.org/10.1007/s10750-015-2178-4spa
dc.relation.referencesDahdouh-Guebas, F., Kairo, J.G., De Bondt, R., Koedam, N., 2007. Pneumatophore height and density in relation to microtopography in the grey mangrove Avicennia marina. Belgian J. Bot. 140, 213–221.spa
dc.relation.referencesDavies, B.E., 1974. Published January, 1974 150. Soil Sci. Soc. Am. J. 38, 150–151. https://doi.org/10.2136/sssaj1974.03615995003800010046xspa
dc.relation.referencesDe la Peña, A., Rojas, C., De la Peña, M., 2010. Valoración Económica del Manglar por el Almacenamiento de Carbono, Ciénaga Grande de Santa Marta. CLIO América 4, 133–150. https://doi.org/10.21676/23897848.400spa
dc.relation.referencesDe Oliveira Marques, J.D., Luizão, F.J., Teixeira, W.G., Nogueira, E.M., Fearnside, P.M., Sarrazin, M., 2017. Soil Carbon Stocks under Amazonian Forest: Distribution in the Soil Fractions and Vulnerability to Emission. Open J. For. 07, 121–142. https://doi.org/10.4236/ojf.2017.72008spa
dc.relation.referencesDonato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., 2011. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123spa
dc.relation.referencesDoussan, C., Pagès, L., Pierret, A., 2003. Soil exploration and resource acquisition by plant roots: an architectural and modelling point of view. Agronomie 23, 419–431. https://doi.org/10.1051/agrospa
dc.relation.referencesElster, C., Perdomo, L., 1999. Rooting and vegetative propagation in Laguncularia racemosa. Aquat. Bot. 63, 83–93. https://doi.org/10.1016/S0304-3770(98)00122-3spa
dc.relation.referencesEstrada, G.C.D., Soares, M.L.G., 2017. Global patterns of aboveground carbon stock and sequestration in mangroves. An. Acad. Bras. Cienc. 89, 973–989. https://doi.org/10.1590/0001-3765201720160357spa
dc.relation.referencesFAO, 2007. The world’s mangrove forest 1980 -2005. (No. 153), FAO Forestry Paper. FAO, Rome.spa
dc.relation.referencesFriess, D.A., Krauss, K.W., Horstman, E.M., Balke, T., Bouma, T.J., Galli, D., Webb, E.L., 2012. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol. Rev. 87, 346–366. https://doi.org/10.1111/j.1469-185X.2011.00198.xspa
dc.relation.referencesGeißler, N., Schnetter, R., Schnetter, M.L., 2002. The pneumathodes of Laguncularia racemosa: Little known rootlets of surprising structure, and notes on a new fluorescent dye for lipophilic substances. Plant Biol. 4, 729–739. https://doi.org/10.1055/s-2002-37404spa
dc.relation.referencesGiraldo, B., 1995. Regeneración natural del manglar en el Sector occidental (Isla Salamnaca - Complejo Pajarales) de la Ciénega Grande de Santa Marta, Caribe Colobiano. Universidad del Valle. Tesis Biología (Biología Marina).spa
dc.relation.referencesGithaiga, M.N., 2013. Structure and Biomass Accumulation of Natural Mangrove Forest at Gazi Bay, Kenya. Kenyatta University.spa
dc.relation.referencesHamilton, S.E., Casey, D., 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738. https://doi.org/10.1111/geb.12449spa
dc.relation.referencesHargis, T.G., Twilley, R.R., 1994. Multi-depth probes for measuring Oxidation-Reduction (Redox) Potential in wetland soils. J. Sediment. Res. 64, 684–685.spa
dc.relation.referencesHaris, A.A., Chhabra, V., Biswas, S., 2013. Carbon sequestration for mitigation of climate change. Agric. Rev. 2, 129–236.spa
dc.relation.referencesHoward, J., Hoyt, S., Isensee, K., Pidgeon, E., Telszewski, M., 2014. Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Consevation international, Intergovermental Oceanographic Commission of UNESCO, International Union forn Conservation of Nature, Arlington, Virginia, USA.spa
dc.relation.referencesIacono, C.L., Mateo, M. A., Gràcia, L., Guasch, L., Carbonell, R., Serrano, L., Dañobeitia, J., 2008. Very high-resolution seismoacoustic imaging of seagrass meadows (Mediterranean Sea): Implications for carbon sink estimates, Geophys. Res. Lett., 35, L18601, doi:10.1029/2008GL034773.spa
dc.relation.referencesIbarra, K.P., Gómez, M.C., Viloria, E.A., Arteaga, E., Cuadrado, I., Martínez, M.F., Nieto, Y., Rodríguez, J.A., Licero, L.V., Perdomo, L.V., Chávez, S., Romero, J.A., Rueda, M., 2014. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Santa Marta, Colombia.spa
dc.relation.referencesIbarra, K.P., Villamil, C., Viloria, E.A., Vega, D., Bautista, P.A., Cadavid, B.C., Parra, J.P., Espinosa, L.F., Gómez, M.C., Agudelo, C.M., Perdomo, L. V, Mármol, D., Rueda, M., 2013. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2012. Santa Marta, Colombia.spa
dc.relation.referencesINVEMAR, 2018a. Cifras SIAM-Sistema de Información Ambiental Marina. Santa Marta, Colombiaspa
dc.relation.referencesINVEMAR, 2018b. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2018. Volumen 17. Santa Marta, Colombia.spa
dc.relation.referencesINVEMAR, 2017. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2016. Volumen 15. Santa Marta, Colombia.spa
dc.relation.referencesINVEMAR, 2016. Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Informe Técnico Final 2015. Volumen 14. Santa Marta, Colombia.spa
dc.relation.referencesINVEMAR. 2015a. Caracterización de la estructura y contenido de carbono de los bosques de manglar en el Distrito de Manejo Integrado Bahía Cispata-Tinajones-La Balsa. Proyecto GEF-SAMP, como parte del PDD Manglares para Plan Vivo. (Contratista: Carbono & Bosques).spa
dc.relation.referencesINVEMAR. 2015b. Caracterización de la estructura y contenido de carbono de los bosques de manglar en el área de jurisdicción del consejo comunitario la plata, bahía Málaga, Valle del Cauca. Proyecto GEF-SAMP (Contratistas: Monsalve, A., Ramírez, G., Carbono & Bosques). 80pspa
dc.relation.referencesKauffman, J.B., Bhomia, R.K., 2017. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLoS One 12, 1–17. https://doi.org/10.1371/journal.pone.0187749spa
dc.relation.referencesKauffman, J.B., Donato, D.C., 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. CIFOR. Working Paper (No. 86). Bogor, Indonesia. https://doi.org/10.17528/cifor/003749spa
dc.relation.referencesKauffman, J.B., Heider, C., Cole, T.G., Dwire, K.A., Donato, D.C., 2011. Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 31, 343–352. https://doi.org/10.1007/s13157-011-0148-9spa
dc.relation.referencesKauffman, J.B., Heider, C., Norfolk, J., Payton, F., 2014. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24, 518–527. https://doi.org/10.1890/13-0640.1spa
dc.relation.referencesKhan, M.N.I., Suwa, R., Hagihara, A., 2007. Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: Vertical distribution in the soil-vegetation system. Wetl. Ecol. Manag. 15, 141–153. https://doi.org/10.1007/s11273-006-9020-8spa
dc.relation.referencesKomiyama, A., Havanond, S., Srisawantt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S., Miyagi, T., 2000. Top / root biomass ratio of a secondary mangrove forest. For. Ecol. Manage. 139, 127–134.spa
dc.relation.referencesKomiyama, A., Ogino, K., Aksornkoae, S., Sabhasri, S., 1987. Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. J. Trop. Ecol. 3, 97–108. https://doi.org/10.1017/S0266467400001826spa
dc.relation.referencesKomiyama, A., Ong, J.E., Poungparn, S., 2008. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 89, 128–137. https://doi.org/10.1016/j.aquabot.2007.12.006spa
dc.relation.referencesKomiyama, A., Poungparn, S., Kato, S., 2005. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21, 471–477. https://doi.org/10.1017/S0266467405002476spa
dc.relation.referencesKrauss, K.W., Mckee, K.L., Lovelock, C.E., Cahoon, D.R., Saintilan, N., Reef, R., Chen, L., 2014. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34.spa
dc.relation.referencesLacerda, L.D., Ittekkot, V., Patchineelam, S.R., 1995. Biogeochemistry of Mangrove Soil Organic Matter: a Comparison Between Rhizophora and Avicennia Soils in South - eastern Brazil. Estuar. Coast. Shelf Sci. 40, 713–720.spa
dc.relation.referencesLovelock, C.E., Duarte, C.M. 2019 Dimensions of Blue Carbon and emerging perspectives. Biol. Lett. 15: 20180781. http://dx.doi.org/10.1098/rsbl.2018.0781spa
dc.relation.referencesLovelock, C.E., Ruess, R.W., Feller, I.C., 2011. CO2 efflux from cleared mangrove peat. PLoS One 6, 1–4. https://doi.org/10.1201/b16845spa
dc.relation.referencesLovelock, C.E., Sorrell, B.K., Hancock, N., Hua, Q., Swales, A., 2010. Mangrove forest and soil development on a rapidly accreting shore in New Zealand. Ecosystems 13, 437–451. https://doi.org/10.1007/s10021-010-9329-2spa
dc.relation.referencesLukac, M., 2012. Fine Root Turnover, in: Mancuso, S. (Ed.), Measuring Roots: An Updated Approach. Berlin Heidelberg, pp. 363–373. https://doi.org/10.1007/978-3-642-22067-8spa
dc.relation.referencesMacreadie, P.I., Anton, A., Raven, J.A., Beaumont, N., Connolly, R.M., Friess, D.A., Kelleway, J.J., Kennedy, H., Kuwae, T., Lavery, P.S., Lovelock, C.E., Smale, D.A., Apostolaki, E.T., Atwood, T.B., Baldock, J., Bianchi, T.S., Chmura, G.L., Eyre, B.D., Fourqurean, J.W., Hall-Spencer, J.M., Huxham, M., Hendriks, I.E., Krause-Jensen, D., Laffoley, D., Luisetti, T., Marbà, N., Masque, P., McGlathery, K.J., Megonigal, J.P., Murdiyarso, D., Russell, B.D., Santos, R., Serrano, O., Silliman, B.R., Watanabe, K., Duarte, C.M., 2019. The future of Blue Carbon science. Nat. Commun. 10, 1–13. https://doi.org/10.1038/s41467-019-11693-wspa
dc.relation.referencesMcCormack, M.L., Adams, T.S., Smithwick, E.A.H., Eissenstat, D.M., 2012. Predicting fine root lifespan from plant functional traits in temperate trees. New Phytol. 195, 823–831. https://doi.org/10.1111/j.1469-8137.2012.04198.xspa
dc.relation.referencesMcKee, K.L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar. Coast. Shelf Sci. 91, 475–483. https://doi.org/10.1016/j.ecss.2010.05.001spa
dc.relation.referencesMckee, K.L., Cahoon, D.R., Feller, I.C., 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556. https://doi.org/10.1111/j.1466-8238.2007.00317.xspa
dc.relation.referencesMcKee, K.L., Faulkner, P.L., 2000. Restoration of biogeochemical function in mangrove forests. Restor. Ecol. 8, 247–259. https://doi.org/10.1046/j.1526-100X.2000.80036.xspa
dc.relation.referencesMcKee, K.L., Mendelssohn, I.A., Hester, M.W., 1988. Reexamination of Pore Water Sulfide Concentrations and Redox Potentials Near the Aerial Roots of Rhizophora mangle and Avicennia germinans. Am. J. Bot. 75, 1352–1359. https://doi.org/10.2307/2444458spa
dc.relation.referencesMcLeod, E., Chmura, G.L., Bouillon, S., Salm, R., Björk, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H., Silliman, B.R., 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560. https://doi.org/10.1890/110004spa
dc.relation.referencesMedina, J.H., 2016. Estructura, Asignación de Biomasa y Producción Primaria Neta en Bosques de Manglar de un Complejo Karstico de Origen Carbonatado en una Isla Oceánica. Universidad Nacional de colombia.spa
dc.relation.referencesMiddleton, B.A., Mckee, K.L., 2001. Degradation of Mangrove Tissues and Implications for Peat Formation in Belizean Island Forests. J. Ecol. 89, 818–828.spa
dc.relation.referencesNellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., Grimsditch, G. (Eds). 2009. Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal, www.grida.no.spa
dc.relation.referencesOchoa-Bejarano, G., 1988. Algunas características Funcionales del Manglar de la Ciénaga Grande de Santa Marta, con énfasis en Rhizophora mangle y Avicennia germinans. Universidad del Valle.spa
dc.relation.referencesOtero, X.L., Méndez, A., Nóbrega, G.N., Ferreira, T.O., Santiso-Taboada, M.J., Meléndez, W., Macías, F., 2017. High fragility of the soil organic C pools in mangrove forests. Mar. Pollut. Bull. 119, 460–464. https://doi.org/10.1016/j.marpolbul.2017.03.074spa
dc.relation.referencesPalacios, M.L., Cantera, J.R., Peña, E.J., 2019. Carbon stocks in mangrove forests of the Colombian Pacific. Estuar. Coast. Shelf Sci. 227, 106299. https://doi.org/10.1016/j.ecss.2019.106299spa
dc.relation.referencesPendleton, L., Donato, D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet, S., Craft, C., Fourqurean, J.W., Kauffman, J.B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., Baldera, A., 2012. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS One 7, 1–7. https://doi.org/10.1371/journal.pone.0043542spa
dc.relation.referencesRamos e Silva, C.A., Oliveira, S.R., Rêgo, R.D.P., Mozeto, A.A., 2007. Dynamics of phosphorus and nitrogen through litter fall and decomposition in tropical mangrove forest. Mar. Environ. Res. 64, 524–534. https://doi.org/10.1016/j.marenvres.2007.04.007spa
dc.relation.referencesReef, R., Feller, I.C., Lovelock, C.E., 2010. Nutrition of mangroves. Tree Physiol. 30, 1148–1160. https://doi.org/10.1093/treephys/tpq048spa
dc.relation.referencesRivera-Monroy, V.H., Mancera-Pineda, J.., Twilley, R., Casas-Monroy, O., Castañeda-Moya, E., Restrepo, J., Daza-Monroy, F., Perdomo, L., Reyes-Forero, S.P., Campos, E., Villamil, M., F, P.-N., 2001. Estructura y función de un ecosistema de manglar a lo largo de una trayectoria de restauración en diferentes niveles de perturbación. Informe Técnico Final. Contrato 429-97 INVEMAR-COLCIENCIAS. Código 2105-09-13080-97. Santa Marta.spa
dc.relation.referencesRobert, M., 2002. Captura de carbono en los suelos para un mejor manejo de la tierra. Informe sobre recursos mundiales de suelos No. 96, Fao.spa
dc.relation.referencesRöderstein, M., Perdomo, L., Villamil, C., Hauffe, T., Schnetter, M.L., 2014. Long-term vegetation changes in a tropical coastal lagoon system after interventions in the hydrological conditions. Aquat. Bot. 113, 19–31. https://doi.org/10.1016/j.aquabot.2013.10.008spa
dc.relation.referencesRodríguez-Rodríguez, J.A., Mancera-Pineda, J.E., Rodríguez-P., J.M., 2016. Validación y aplicación de un modelo de restauración de manglar basado en individuos para tres especies en la Ciénaga Grande de Santa Marta. Caldasia 38, 285–299. https://doi.org/10.15446/caldasia.v38n2.55360spa
dc.relation.referencesRodríguez-Rodríguez, J.A., Mancera, J.E., Perdomo Trujillo, L.V., Rueda, M., Ibarra-gutiérrez, K.P., 2018. Ciénaga Grande de Santa Marta: The Largest Lagoon-Delta Ecosystem in the Colombian Caribbean, in: Finlayson, C., Milton, G., Prentice, R., Davidson, N. (Eds.), The Wetland Book. Springer Netherlands, Dordrecht-Netherlands, pp. 1–16. https://doi.org/10.1007/978-94-007-6173-5spa
dc.relation.referencesRovai, A.S., Twilley, R.R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P.A., Simonassi, J.C., Fonseca, A.L., Pagliosa, P.R., 2018. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538. https://doi.org/10.1038/s41558-018-0162-5spa
dc.relation.referencesRuiz-Fernández, A.C., Carnero-Bravo, V., Sanchez-Cabeza, J.A., Pérez-Bernal, L.H., Amaya-Monterrosa, O.A., Bojórquez-Sánchez, S., López-Mendoza, P.G., Cardoso-Mohedano, J.G., Dunbar, R.B., Mucciarone, D.A., Marmolejo-Rodríguez, A.J., 2018. Carbon burial and storage in tropical salt marshes under the influence of sea level rise. Sci. Total Environ. 630, 1628–1640. https://doi.org/10.1016/j.scitotenv.2018.02.246spa
dc.relation.referencesSánchez-Paéz, H., Álvarez-León, R., Pinto-Nolla, F., Sánchez-Alférez, A.S., Pino-Renjifo, J.C., García-Hansen, I., Acosta-Peñaloza, M.T., 1997. Diagnóstico y Zonificación Preliminar de los Manglares del Caribe de colombia. Ministerio del Medio Ambiente, Bogotá, Colombia.spa
dc.relation.referencesSasmito, S.D., Taillardat, P., Clendenning, J.N., Cameron, C., Friess, D.A., Murdiyarso, D., Hutley, L.B., 2019. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Glob. Chang. Biol. 25, 4291–4302. https://doi.org/10.1111/gcb.14774spa
dc.relation.referencesSchnetter, M.L., 2002. El sistema radical del mangle blanco (Avicennia germinans), un ejemplo de adaptaciones morfológicas y anatómicas en espermatófitos a condiciones ecológicas adversas. Rev. la Acad. Colomb. Ciencias Exactas, Fis. y Nat. 26, 111–126.spa
dc.relation.referencesSerrano Díaz, L.A., Botero, L., Cardona, P., Mancera-Pineda, J.E., 1995. Estructura del manglar en el Delta Exterior del río Magdalena-Ciénaga Grande de Santa Marta, una zona tensionada por alteraciones del equilibrio hídrico. An.Inst.Invest.Mar.Punta Betín 24, 135–164.spa
dc.relation.referencesSimard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V.H., Castañeda-Moya, E., Thomas, N., Van der Stocken, T., 2019. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45. https://doi.org/10.1038/s41561-018-0279-1spa
dc.relation.referencesTamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J.G., Kirui, B., 2008. Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. For. Ecol. Manage. 256, 1290–1297. https://doi.org/10.1016/j.foreco.2008.06.026spa
dc.relation.referencesTomlinson, P.B., 1986. The botany of mangroves. Press Syndicate of the University of Cambridge, Cambridge.spa
dc.relation.referencesTwilley, R.R., Castañeda-Moya, E., Rivera-Monroy, V.H., Rovai, A., 2017. Productivity and Carbon Dynamics in Mangrove Wetlands, in: Mangrove Ecosystems: A Global Biogeographic Perspective. Structure, Funtion and Services. pp. 113–162. https://doi.org/10.1007/978-3-319-62206-4spa
dc.relation.referencesTwilley, R.R., Rivera-Monroy, V.H., 2005. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J. Coast. Res. 21, 79–93.spa
dc.relation.referencesTwilley, R.R., Rivera-monroy, V.H., Chen, R., Botero, L., 1998. Adapting an Ecological Mangrove Model to Simulate Trajectories in Restoration Ecology 37 (8–12), 404–419. https://doi.org/10.1016/S0025-326X(99)00137-Xspa
dc.relation.referencesValiela, I., Cole, M.L., 2002. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5, 92–102. https://doi.org/10.1007/s10021-001-0058-4spa
dc.relation.referencesValiela, I., Collins, G., Kremer, J., Lajtha, K., Geist, M., Seely, B., Brawley, J., Sham, C.H., 1997. Nitrogen Loading From Coastal Watersheds to Receiving Estuaries: New Method and Application. Ecol. Appl. 7, 358–380.spa
dc.relation.referencesVogt, K.A., Vogt, D.J., Bloomfield, J., 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200, 71–89. https://doi.org/10.1023/Aspa
dc.relation.referencesVölkel, H., Bolivar, J.M., Sierra, C.A., 2018. Stabilization of carbon in mineral soils from mangroves of the Sinú river delta, Colombia. Wetl. Ecol. Manag. 26, 931–942. https://doi.org/10.1007/s11273-018-9621-zspa
dc.relation.referencesVon Prahl, H., Cantera, J.R., Contreras, R., 1990. Manglares y Hombres del Pacífico colombiano, Primera. ed. Colombia.spa
dc.relation.referencesWorld Bank, 2019. State and Trends of Carbon Pricing 2019, State and Trends of Carbon Pricing 2019. Washington, DC. https://doi.org/10.1596/978-1-4648-1435-8spa
dc.relation.referencesWorthington, T., Spalding, M., 2018. Mangrove Restoration Potential A global map highlighting a critical opportunity. Geol. Surv. 36.spa
dc.relation.referencesYepes, A., Zapata, M., Bolivar, J.M., Monsalve, A., Espinosa, S.M., Sierra-Correa, P.C., Sierra, A., 2016. Ecuaciones alométricas de biomasa aérea para la estimación de los contenidos de carbono en manglares del Caribe Colombiano. Rev. Biol. Trop. 64, 913–926. https://doi.org/10.15517/rbt.v64i2.18141spa
dc.relation.referencesZhang, J.P., Shen, C.D., Ren, H., Wang, J., Han, W.D., 2012. Estimating Change in Sedimentary Organic Carbon Content During Mangrove Restoration in Southern China Using Carbon Isotopic Measurements. Pedosphere 22, 58–66. https://doi.org/10.1016/S1002-0160(11)60191-4spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.proposalmanglares del caribe colombianospa
dc.subject.proposalmanglares degradadosspa
dc.subject.proposalcarbono azulspa
dc.subject.proposalCiénaga Grande de Santa Martaspa
dc.titleBiomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribución a las reservas de carbono en el ecosistemaspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
51977164.2020.pdf
Tamaño:
1.7 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: