Metodología para la identificación de fosas comunes a partir de imágenes multiespectrales

Cargando...
Miniatura

Autores

Mejía López, Andrés Alejando

Document language:

Español

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

En Colombia, la identificación de fosas comunes se ha realizado de forma manual en la mayoría de los casos, es decir, para encontrar los sitios de enterramiento se usa como insumo la información dada por los victimarios o por los relatos de los familiares de las víctimas; estos métodos, además de imprecisos, son extremadamente lentos y costosos. Para incrementar las posibilidades de éxito se han abordado métodos de búsqueda basados en resistividad geofísica, magnetometría o radar de penetración del suelo; estos métodos sólo pueden ser usados en un área delimitada a menudo pequeña y que en muchos casos pueden ser de difícil acceso o se pueden encontrar en zonas en conflicto. Por esto, se ha visto la necesidad de implementar métodos que no impliquen acceso directo al terreno y que puedan abarcar áreas mayores, para agilizar la búsqueda, reduciendo el coste en tiempo y en dinero. En este trabajo se plantea que las fosas comunes se pueden identificar correlacionando los índices espectrales NDVI, GNDVI y GCI con el contenido de materia orgánica enterrada en las fosas comunes, entendiendo cómo afecta el contenido de materia orgánica de las fosas comunes la salud de las plantas que se encuentran sobre el área a estudiar. En la fase experimental se usó un sensor multiespectral con el fin de obtener imágenes del área en la cual se simularon tumbas con materia orgánica de origen animal y restos óseos humanos. Se obtuvieron y procesaron 297 imágenes en diferentes bandas, se construyeron ortoimágenes en el espectro verde, infrarrojo y rojo para calcular cada uno de los índices espectrales escogidos. Posteriormente, se realizó una clasificación supervisada, aplicando algoritmos de aprendizaje de máquinas, para identificar los sitios en los que se encontraban las fosas simuladas. (Texto tomado de la fuente).

Abstract

Identification of mass graves in Colombia has mostly been done manually, meaning that locating the burial sites relies on the information given by the perpetrator or the victims’ families. This method is imprecise, in addition to being extremely slow and expensive. Alternative methods, including geophysical resistivity, magnetometry and ground penetrating radar, have been explored in an attempt to increase the chances of success. However, the tested methods have drawbacks, notably the necessity to cover a restricted range of areas to yield results which often render these techniques impractical, especially in conflict zones. Hence, there is a need to deploy new methods that circumvent the need for direct access to the field and enable broader coverage, with the aim of facilitating the search process, which will save time and reduce the financial investment required. This work poses the possibility of identifying burial sites by correlating the spectral index (NDVI, GNDVI and GCI) with the amount of organic matter buried in the mass graves to analyze how the organic matter affects the health of the plants growing in the area. In the experimental phase, a multispectral sensor was used to get images over the area where simulated graves were prepared with organic matter of animal origin and human bone remains. 297 images across different bandwidths were obtained and processed, wherewith the orthophotos in green, infrared, and red spectrums were constructed so as to calculate each chosen spectral index. Afterwards, there was a supervised classification using Machine Learning to identify the location of the simulated graves.

Descripción

ilustraciones, diagramas, mapas

Palabras clave

Citación