Desarrollo de sistemas instrumentales para el diagnóstico nutricional de plantas y suelos en campo

dc.contributor.advisorPérez Naranjo, Juan Carlos
dc.contributor.authorOspino Villalba, Karen Stefanie
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000558087spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=IeXlYRoAAAAJ&hl=esspa
dc.contributor.orcid0000-0002-8728-141Xspa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Karen-Ospinospa
dc.contributor.researchgroupSistemas Simbioticosspa
dc.date.accessioned2024-10-24T22:35:59Z
dc.date.available2024-10-24T22:35:59Z
dc.date.issued2024-08-23
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractThe growing global demand for food requires improved agricultural productivity and the efficient use of fertilizers, which excessively applied may possess environmental concerns. To stimulate the local development of systems to support the rational use of fertilizers, this research presents two preliminary open-source instrumental developments for crops nutritional diagnosis. The first is a 3D printing prototype coupled to a smartphone's ambient light sensor, which was evaluated to estimate the chlorophyll content in oil palm leaves (Elaeis guineensis Jacq), potato (Solanum tuberosum; L.), coffee (Coffea arabica L.), cocoa (Theobroma cacao L.), and kikuyu grass (Pennisetum clandestinum Hochst. ex Chiov.). This device presented a performance comparable to chlorophyll measurements taken with a SPAD 502™ meter or a spectrophotometer, used here as comparison gold standards. A system for analyzing nutrients based on multispectral images of leaf samples is also presented. Statistical models for leaf nutrient estimation based on light bands reflection by dried samples of cocoa (Theobroma cacao L.), rubber (Hevea brasiliensis), chrysanthemum (Dendranthema grandiflorum) and banana (Musa paradisiaca L.) indicated a reasonable estimate of 11 nutrients, with a coefficient of determination greater than 0.84 for nitrogen, phosphorous and potassium, along with a lower performance to estimate other nutrients. Not without the drawbacks tied to incipient yet open prototyping, these results are expected to stimulate the local development of technologies for less developed regions, which support the efficient use of fertilizers and agricultural productivity. Increased access to these open-source technologies would promote digital agriculture and local instrument development.eng
dc.description.abstractLa demanda creciente global de alimentos requiere mejorar la productividad agrícola y el uso eficiente de fertilizantes, los cuales, cuando son aplicados en exceso, impactan negativamente el medio ambiente. Para estimular el desarrollo local de sistemas que apoyen el uso racional de fertilizantes, esta investigación presenta dos desarrollos instrumentales preliminares de código abierto para el diagnóstico nutricional de cultivos. El primero es un prototipo de impresión 3D acoplado al sensor de luz ambiental de un teléfono inteligente, que se evaluó para estimar el contenido de clorofila en hojas de palma de aceite (Elaeis guineensis Jacq), papa (Solanum tuberosum; L.), café (Coffea arabica L.), cacao (Theobroma cacao L.) y pasto kikuyo (Pennisetum clandestinum Hochst. ex Chiov.). Este dispositivo presentó un desempeño comparable al de mediciones de clorofila con un medidor SPAD 502™ o con un espectrofotómetro, usados como estándar de comparación. También se presenta un sistema para analizar nutrientes basado en imágenes multiespectrales de muestras foliares. Modelos estadísticos basados en reflexión de bandas de luz por muestras secas de cacao (Theobroma cacao L.), caucho (Hevea brasiliensis), crisantemo (Dendranthema grandiflorum) y banano (Musa paradisiaca L.) indicaron una estimación razonable de 11 nutrientes, con coeficiente de determinación superior a 0,84 para nitrógeno, fósforo y potasio, y con un desempeño inferior para estimar otros nutrientes. Aún con limitaciones asociadas a prototipos incipientes pero abiertos, con estos resultados se espera estimular el desarrollo local de tecnologías para la agricultura digital en regiones menos desarrolladas, que apoyen el uso eficiente de fertilizantes y la productividad agrícola. (Texto tomado de la fuente)
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Agrariasspa
dc.description.researchareaDesarrollo y Adaptación de Instrumentación para la Investigaciónspa
dc.format.extentxiv, 113 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87051
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ciencias Agrariasspa
dc.relation.referencesAdalibieke, W., Cui, X., Cai, H., You, L., & Zhou, F. , 2023. Global crop-specific nitrogen fertilization dataset in 1961–2020. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02526-zspa
dc.relation.referencesAbdel-Rahman, E.M., Ahmed, F.B., van den Berg, M., 2010. Estimation of sugarcane leaf nitrogen concentration using in situ spectroscopy. International Journal of Applied Earth Observation and Geoinformation 12. https://doi.org/10.1016/j.jag.2009.11.003spa
dc.relation.referencesAbdel-Rahman, E.M., Mutanga, O., Odindi, J., Adam, E., Odindo, A., Ismail, R., 2017. Estimating Swiss chard foliar macro- and micronutrient concentrations under different irrigation water sources using ground-based hyperspectral data and four partial least squares (PLS)-based (PLS1, PLS2, SPLS1 and SPLS2) regression algorithms. Computers and Electronics in Agriculture 132, 21–33. https://doi.org/10.1016/j.compag.2016.11.008spa
dc.relation.referencesAbdi, H., 2003. Partial Least Square Regression PLS-Regression. Encyclopedia of Measurement and Statistics 6, 792–795.spa
dc.relation.referencesAbramoff, M.D., Magalhaes, P.J., Ram, S.J., 2004. Image Processing with ImageJ. Biophotonics International 11, 36–42.spa
dc.relation.referencesAdhikari, R., Li, C., Kalbaugh, K., Nemali, K., 2020. A low-cost smartphone controlled sensor based on image analysis for estimating whole-plant tissue nitrogen (N) content in floriculture crops. Computers and Electronics in Agriculture 169. https://doi.org/10.1016/j.compag.2019.105173spa
dc.relation.referencesAdhiwibawa, M. A. S., Tantono, C., Prilianti, K. R., Prihastyanti, M. N. P., Limantara, L., & Brotosudarmo, T. H. P., 2013. Rapid nitrogen determination of soybean leaves using mobile application. Proceedings - 2013 International Conference on Information Technology and Electrical Engineering: “Intelligent and Green Technologies for Sustainable Development”, ICITEE 2013, 193–196. https://doi.org/10.1109/ICITEED.2013.6676237spa
dc.relation.referencesAgrahari, R. K., Kobayashi, Y., Tanaka, T. S. T., Panda, S. K., & Koyama, H., 2021. Smart fertilizer management: the progress of imaging technologies and possible implementation of plant biomarkers in agriculture. In Soil Science and Plant Nutrition (Vol. 67, Issue 3, pp. 248–258). Taylor and Francis Ltd. https://doi.org/10.1080/00380768.2021.1897479spa
dc.relation.referencesAli, A. M., Abouelghar, M., Belal, A. A., Saleh, N., Yones, M., Selim, A. I., Amin, M. E. S., Elwesemy, A., Kucher, D. E., Maginan, S., & Savin, I., 2022. Crop yield prediction using multi sensors remote sensing (Review Article). In Egyptian Journal of Remote Sensing and Space Science (Vol. 25, Issue 3, pp. 711–716). Elsevier B.V. https://doi.org/10.1016/j.ejrs.2022.04.006spa
dc.relation.referencesAli, M. M., Al-Ani, A., Eamus, D., & Tan, D. K. Y., 2017. Leaf nitrogen determination using non-destructive techniques–A review. Journal of Plant Nutrition, 40(7), 928–953. https://doi.org/10.1080/01904167.2016.1143954spa
dc.relation.referencesAmigo, J. M., 2020. Hyperspectral and multispectral imaging: setting the scene. In Data Handling in Science and Technology (Vol. 32, pp. 3–16). Elsevier Ltd. https://doi.org/10.1016/B978-0-444-63977-6.00001-8spa
dc.relation.referencesAmigo, J.M., Grassi, S., 2020. Configuration of hyperspectral and multispectral imaging systems, in: Data Handling in Science and Technology. Elsevier Ltd, pp. 17–34. https://doi.org/10.1016/B978-0-444-63977-6.00002-Xspa
dc.relation.referencesams OSRAM. (2016, February). TMD2772/ TMD2772WA Digital ALS and Proximity Module. TMD2772/TMD2772WA Datasheet.spa
dc.relation.referencesAquino, A., Noguera, M., Millan, B., Mejías, A., Ponce, J.M., Andújar, J.M., 2022. A preliminary evaluation of a low-cost multispectral sensor for non-destructive evaluation of olive fruits’ fat content, in: XLIII Jornadas de Automática: Libro de Actas: 7, 8 y 9 de Septiembre de 2022, Logroño (La Rioja). Servizo de Publicacións da UDC, pp. 475–478. https://doi.org/10.17979/spudc.9788497498418.0475spa
dc.relation.referencesArévalo-Gardini, E., Arévalo-Hernández, C.O., Baligar, V.C., He, Z.L., 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment 605–606, 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122spa
dc.relation.referencesAronoff, S., 1950. The absorption spectra of chlorophyll and related compounds. Chemical Reviews, 47(2), 175–195. https://doi.org/10.1021/cr60147a001spa
dc.relation.referencesAscencio, J., & Lazo, J., 2009. Respuestas de escape a la sombra en Rottboellia exaltata y Leptochloa filiformis (Gramineae-Poaceae). Revista de La Facultad de Agronomía, 26, 490–507.spa
dc.relation.referencesAtes, F., y Kaya, O., 2021. The relationship between iron and nitrogen concentrations based on kjeldahl method and spad-502 readings in grapevine (Vitis vinifera L. cv. ‘Sultana Seedless’). Erwerbs-Obstbau, 63, 53–59. https://doi.org/10.1007/s10341-021-00580-8spa
dc.relation.referencesAyardulabi, R., Khamespanah, E., Abbasinia, S., & Ehtesabi, H., 2021. Point-of-care applications of smartphone-based microscopy. In Sensors and Actuators, A: Physical (Vol. 331). Elsevier B.V. https://doi.org/10.1016/j.sna.2021.113048spa
dc.relation.referencesBarman, U., & Choudhury, R. D., 2020. Smartphone image based digital chlorophyll meter to estimate the value of citrus leaves chlorophyll using Linear Regression, LMBP-ANN and SCGBP-ANN. Journal of King Saud University - Computer and Information Sciences, 34, 2938–2950. https://doi.org/10.1016/j.jksuci.2020.01.005spa
dc.relation.referencesBarnes, J. D., Balaguer, L., Manrique, E., Elvira, S., & Davison, A. W., 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 32(2), 85–100. https://doi.org/10.1016/0098-8472(92)90034-Yspa
dc.relation.referencesBaşayiğit, L., Dedeoğlu, M., Akgül, H., 2015. The prediction of iron contents in orchards using VNIR spectroscopy. Turkish Journal of Agriculture and Forestry 39, 123–134. https://doi.org/10.3906/tar-1406-33spa
dc.relation.referencesBhatla, S. C., & Lal, M. A., 2018. Plant Physiology, Development and Metabolism. In Plant Physiology, Development and Metabolism. Springer Singapore. https://doi.org/10.1007/978-981-13-2023-1spa
dc.relation.referencesBinkley, D., Stape, J. L., & Ryan, M. G., 2004. Thinking about efficiency of resource use in forests. Forest Ecology and Management, 193(1–2), 5–16. https://doi.org/10.1016/j.foreco.2004.01.019spa
dc.relation.referencesBleasdale, A.J., Blackburn, G.A., Whyatt, J.D., 2022. Feasibility of detecting apple scab infections using low-cost sensors and interpreting radiation interactions with scab lesions. International Journal of Remote Sensing 43, 4984–5005. https://doi.org/10.1080/01431161.2022.2122895spa
dc.relation.referencesBradstreet, R.B., 1954. Kjeldahl Method for Organic Nitrogen. Analytical Chemistry 26, 185–187. https://doi.org/10.1021/ac60085a028spa
dc.relation.referencesBroadley, M., Brown, P., Cakmak, I., Rengel, Z., Zhao, F., 2011. Function of nutrients: Micronutrients, in: Marschner’s mineral nutrition of higher plants: Third Edition. Elsevier Inc., pp. 191–248. https://doi.org/10.1016/B978-0-12-384905-2.00007-8spa
dc.relation.referencesBrown, L. A., Williams, O., & Dash, J., 2022. Calibration and characterisation of four chlorophyll meters and transmittance spectroscopy for non-destructive estimation of forest leaf chlorophyll concentration. Agricultural and Forest Meteorology, 323. https://doi.org/10.1016/j.agrformet.2022.109059spa
dc.relation.referencesCamburn, B., Viswanathan, V., Linsey, J., Anderson, D., Jensen, D., Crawford, R., Otto, K., & Wood, K., 2017. Design prototyping methods: State of the art in strategies, techniques, and guidelines. Design Science, 3. https://doi.org/10.1017/dsj.2017.10spa
dc.relation.referencesCao, Q., Cui, Z., Chen, X., Khosla, R., Dao, T. H., & Miao, Y., 2012. Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precision Agriculture, 13(1), 45–61. https://doi.org/10.1007/s11119-011-9244-3spa
dc.relation.referencesCarmona Rojas, L.M., Gutiérrez Rodríguez, E.A., Henao Ramirez, A.M., Urrea Trujillo, A.I., 2022. Nutrition in cacao (Theobroma cacao L.) crops: What determining factors should be considered? Revista de la Facultad de Agronomía 121, 101. https://doi.org/10.24215/16699513e101spa
dc.relation.referencesCarter, G. A., & Knapp, A. K., 2001. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll Concentration. American Journal of Botany, 88(4), 677. https://doi.org/10.2307/2657068spa
dc.relation.referencesCerovic, Z. G., Ghozlen, N. Ben, Milhade, C., Obert, M., Debuisson, S., & Le Moigne, M., 2015. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) Based on Dualex Leaf-Clip Measurements in the Field. Journal of Agricultural and Food Chemistry, 63(14), 3669–3680. https://doi.org/10.1021/acs.jafc.5b00304spa
dc.relation.referencesCerovic, Z. G., Masdoumier, G., Ghozlen, N. Ben, & Latouche, G., 2012. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum, 146(3), 251–260. https://doi.org/10.1111/j.1399-3054.2012.01639.xspa
dc.relation.referencesChacón, E., 2012. Obtención de la norma de diagnóstico y recomendación integral (DRIS) para el cultivo de caucho (Hevea brasiliensis) en la Altillanura Colombiana. (Doctoral dissertation, Universidad Nacional de Colombia).spa
dc.relation.referencesChazaux, M., Schiphorst, C., Lazzari, G., & Caffarri, S., 2022. Precise estimation of chlorophyll a, b and carotenoid content by deconvolution of the absorption spectrum and new simultaneous equations for Chl determination. Plant Journal, 109(6), 1630–1648. https://doi.org/10.1111/tpj.15643spa
dc.relation.referencesCholeva, T., Matiaki, C., & Giokas, D. L., 2023. UV photometric assays on paper-based analytical devices by contact printing photography through transparent cellophane. Sensors and Actuators B: Chemical, 386. https://doi.org/10.1016/j.snb.2023.133729spa
dc.relation.referencesChungcharoen, T., Donis-Gonzalez, I., Phetpan, K., Udompetaikul, V., Sirisomboon, P., Suwalak, R., 2022. Machine learning-based prediction of nutritional status in oil palm leaves using proximal multispectral images. Computers and Electronics in Agriculture 198. https://doi.org/10.1016/j.compag.2022.107019spa
dc.relation.referencesConfalonieri, R., Paleari, L., Movedi, E., Pagani, V., Orlando, F., Foi, M., Barbieri, M., Pesenti, M., Cairati, O., La Sala, M. S., Besana, R., Minoli, S., Bellocchio, E., Croci, S., Mocchi, S., Lampugnani, F., Lubatti, A., Quarteroni, A., De Min, D., … Acutis, M., 2015. Improving in vivo plant nitrogen content estimates from digital images: Trueness and precision of a new approach as compared to other methods and commercial devices. Biosystems Engineering, 135, 21–30. https://doi.org/http://doi.org/10.1016/j.biosystemseng.2015.04.013spa
dc.relation.referencesCoupland, P., Batchelor, M., Convine, N., Davies, K., Farrington, K., Howes, L., Kirk, A., Cockrill, J., Orchard, J., Warncke, L., & Wilson, E., 2015. Quantification of plant chlorophyll content using Google Glass. Lab on a Chip, (15)7, 1708–1716. https://doi.org/10.1039/c3lc50564b.Pleasespa
dc.relation.referencesCui, F., Kim, Minkyung, Park, C., Kim, D., Mo, K., Kim, Moonil, 2021. Application of principal component analysis (PCA) to the assessment of parameter correlations in the partial-nitrification process using aerobic granular sludge. Journal of Environmental Management 288. https://doi.org/10.1016/j.jenvman.2021.112408spa
dc.relation.referencesCurran, P. J. ,1989. Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3), 271–278. https://doi.org/https://doi.org/10.1016/0034-4257(89)90069-2spa
dc.relation.referencesDamasceno, A.S. da S., Boechat, C.L., Souza, H.A. de, Capristo-Silva, G.F., Mendes, W. de S., Teodoro, P.E., Morais, P.G.C., Oliveira, R.I. de, Della-Silva, J.L., Souza, I.A.M. de, Silva Junior, C.A. da, 2023. Nutritional monitoring of boron in Eucalyptus spp. in the Brazilian cerrado by multispectral bands of the MSI sensor (Sentinel-2). Remote Sensing Applications: Society and Environment 29. https://doi.org/10.1016/j.rsase.2022.100913spa
dc.relation.referencesDas, P., Pegu, R., Bhattacharya, S. S., & Nath, P., 2023. Fluorescence-Based Accurate Estimation of Chlorophyll in Tea Leaves Using Smartphone. IEEE Sensors Journal, 23(13), 14864–14871. https://doi.org/10.1109/JSEN.2023.3275879spa
dc.relation.referencesDavis, P. A., Caylor, S., Whippo, C. W., & Hangarter, R. P., 2011. Changes in leaf optical properties associated with light-dependent chloroplast movements. Plant, Cell and Environment, 34(12), 2047–2059. https://doi.org/10.1111/j.1365-3040.2011.02402.xspa
dc.relation.referencesDawson, C. J., & Hilton, J., 2011. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36, Supple, S14–S22. https://doi.org/http://doi.org/10.1016/j.foodpol.2010.11.012spa
dc.relation.referencesDe Oca, A. M., Flores, G., 2021. The AgriQ: A low-cost unmanned aerial system for precision agriculture. Expert Systems with Applications 182. https://doi.org/10.1016/j.eswa.2021.115163spa
dc.relation.referencesDe Souza, H. A., Vieira, P. F. de M. J., Rozane, D. E., Sagrilo, E., Leite, L. F. C., & Ferreira, A. C. M., 2020. Critical levels and sufficiency ranges for leaf nutrient diagnosis by two methods in soybean grown in the northeast of brazil. Revista Brasileira de Ciencia Do Solo, 44, 1–14. https://doi.org/10.36783/18069657rbcs20190125spa
dc.relation.referencesDiago, M. P., Rey-Carames, C., Le Moigne, M., Fadaili, E. M., Tardaguila, J., & Cerovic, Z. G., 2016. Calibration of non-invasive fluorescence-based sensors for the manual and on-the-go assessment of grapevine vegetative status in the field. Australian Journal of Grape and Wine Research, 22(3), 438–449. https://doi.org/10.1111/ajgw.12228spa
dc.relation.referencesDong, T., Shang, J., Chen, J. M., Liu, J., Qian, B., Ma, B., Morrison, M. J., Zhang, C., Liu, Y., Shi, Y., Pan, H., & Zhou, G., 2019. Assessment of portable chlorophyll meters for measuring crop leaf chlorophyll concentration. Remote Sensing, 11(22). https://doi.org/10.3390/rs11222706spa
dc.relation.referencesDonnelly, A., Yu, R., Rehberg, C., Meyer, G., & Young, E. B., 2020. Leaf chlorophyll estimates of temperate deciduous shrubs during autumn senescence using a SPAD-502 meter and calibration with extracted chlorophyll. Annals of Forest Science, 77(2). https://doi.org/10.1007/s13595-020-00940-6spa
dc.relation.referencesDraper, N. R., & Smith, H., 1998. Applied regression analysis (Vic. Barnett, R. A. Bradley, N. A. C. Cressie, N. I. Fisher, I. M. Johnstone, J. B. Kadane, D. G. Kendall, D. W. Scott, B. W. Silverman, A. F. M. Smith, J. L. Teugels, G. S. Watson, & J. S. Hunter, Eds.; 3rd ed., Vol. 326). John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118625590spa
dc.relation.referencesErisman, J. W., Bleeker, A., Galloway, J., & Sutton, M. S., 2007. Reduced nitrogen in ecology and the environment. Environmental Pollution, 150(1), 140–149. https://doi.org/https://doi.org/10.1016/j.envpol.2007.06.033spa
dc.relation.referencesErisman, J. W., Sutton, M. a, Galloway, J., Klimont, Z., & Winiwarter, W., 2008. How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10), 636–639. https://doi.org/10.1038/ngeo325spa
dc.relation.referencesFourty, T., Baret, F., Jacquemoud, S., Schmuck, G., & Verdebout, J. ,1996. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems. Remote sensing of Environment, 56(2), 104-117.spa
dc.relation.referencesFoy, C. D., Chaney, R. L., & White, M. C., 1978. The physiology of metal toxicity in plants. Annual Review of Plant Physiology, 29(1), 511–566. https://doi.org/10.1146/annurev.pp.29.060178.002455spa
dc.relation.referencesGaines, T.P., Mitchell, G.A., 1979. Boron determination in plant tissue by the azomethine h method. Communications in Soil Science and Plant Analysis 10, 1099–1108. https://doi.org/10.1080/00103627909366965spa
dc.relation.referencesGaviria-Palacio, D., Guáqueta-Restrepo, J. J., Pineda-Tobón, D. M., & Pérez, J. C., 2017. Fast estimation of chlorophyll content on plant leaves using the light sensor of a smartphone. Dyna, 84(203), 233–239. https://doi.org/10.15446/dyna.v84n203.64316spa
dc.relation.referencesGeballa-Koukoula, A., Ross, G. M. S., Bosman, A. J., Zhao, Y., Zhou, H., Nielen, M. W. F., Rafferty, K., Elliott, C. T., & Salentijn, G. I., 2023. Best practices and current implementation of emerging smartphone-based (bio)sensors - Part 2: Development, validation, and social impact. In TrAC - Trends in Analytical Chemistry (Vol. 161). Elsevier B.V. https://doi.org/10.1016/j.trac.2023.116986spa
dc.relation.referencesGhasemi, M., Arzani, K., Yadollahi, A., Ghasemi, S., & Sarikhani Khorrami, S., 2011. Estimate of leaf chlorophyll and nitrogen content in asian pear (Pyrus serotina Rehd.) by CCM-200. Notulae Scientia Biologicae, 3(1), 91–94. www.notulaebiologicae.rospa
dc.relation.referencesHassanijalilian, O., Igathinathane, C., Doetkott, C., Bajwa, S., Nowatzki, J., & Haji Esmaeili, S. A., 2020. Chlorophyll estimation in soybean leaves infield with smartphone digital imaging and machine learning. Computers and Electronics in Agriculture, 174(April), 105433. https://doi.org/10.1016/j.compag.2020.105433spa
dc.relation.referencesHawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Møller, I.S., White, P., 2011. Functions of macronutrients, in: Marschner’s mineral nutrition of higher plants: Third Edition. Elsevier Inc., pp. 135–189. https://doi.org/10.1016/B978-0-12-384905-2.00006-6spa
dc.relation.referencesHeumann, C., Michael, S., Shalabh, 2016. Introduction to statistics and data analysis. Springer Nature, pp. XII-456. https://doi.org/10.1007/978-3-319-46162-5spa
dc.relation.referencesHiscox, J. D., & Israelstam, G. F., 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334. https://doi.org/10.1139/b79-163spa
dc.relation.referencesJacquemoud, S., & Ustin, S., 2019. Leaf optical properties. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108686457spa
dc.relation.referencesJacquemoud, Stéphane., & Ustin, S. L., 2008. Modeling leaf optical properties. Photobiological Sciences Online. 736 (737) http://photobiology.info/Jacq_Ustin.html (accessed August 7, 2023)spa
dc.relation.referencesJames, G., Witten, D., Hastie, T., & Tibshirani, R. 2017. An introduction to statistical learning: with applications in R. In G. Casella, S. Fienberg, & I. Olkin (Eds.), Springer Texts in Statistics (8th ed.). Springer Science+Business Media. https://www.stat.berkeley.edu/users/rabbee/s154/ISLR_First_Printing.pdfspa
dc.relation.referencesJoseph, T. M., Kallingal, A., Suresh, A. M., Mahapatra, D. K., Hasanin, M. S., Haponiuk, J., & Thomas, S., 2023. 3D printing of polylactic acid: recent advances and opportunities. In International Journal of Advanced Manufacturing Technology (Vol. 125, Issues 3–4, pp. 1015–1035). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00170-022-10795-yspa
dc.relation.referencesKabata-Pendias, Alina., Pendias, Henryk., 2000. Trace elements in soils and plants. Third Edition. CRC Press. https://doi.org/10.1201/9781420039900spa
dc.relation.referencesKamarianakis, Z., & Panagiotakis, S., 2023. Design and Implementation of a Low-Cost Chlorophyll Content Meter. Sensors, 23(5). https://doi.org/10.3390/s23052699spa
dc.relation.referencesKhanal, S., Fulton, J., Shearer, S., 2017. An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture 139, 22–32. https://doi.org/10.1016/j.compag.2017.05.001spa
dc.relation.referencesKirkby, E., 2011. Introduction, definition and classification of nutrients, in: Marschner’s mineral nutrition of higher plants: Third Edition. Elsevier Inc., pp. 3–5. https://doi.org/10.1016/B978-0-12-384905-2.00001-7spa
dc.relation.referencesKitić, G., Tagarakis, A., Cselyuszka, N., Panić, M., Birgermajer, S., Sakulski, D., Matović, J., 2019. A new low-cost portable multispectral optical device for precise plant status assessment. Computers and Electronics in Agriculture 162, 300–308. https://doi.org/10.1016/j.compag.2019.04.021spa
dc.relation.referencesKnapp, A. K., & Carter, G. A., 1998. Variability in leaf optical properties among 26 species from a broad range of habitats. American Journal of Botany, 85(7), 940–946. https://doi.org/10.2307/2446360spa
dc.relation.referencesKnipling, E.B., 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment 1, 155–159.spa
dc.relation.referencesLambers, H., Chapin, F. S., & Pons, T. L., 2008. Plant physiological ecology: Second edition. In Plant Physiological Ecology: Second Edition. Springer New York. https://doi.org/10.1007/978-0-387-78341-3spa
dc.relation.referencesLemaire, G., Jeuffroy, M. H., & Gastal, F., 2008. Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614–624. https://doi.org/10.1016/j.eja.2008.01.005spa
dc.relation.referencesLi, D., Li, C., Yao, Y., Li, M., Liu, L., 2020. Modern imaging techniques in plant nutrition analysis: A review. Computers and Electronics in Agriculture 174, 105459 https://doi.org/10.1016/j.compag.2020.105459spa
dc.relation.referencesLi, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., & Wu, X., 2018. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6 (6). https://doi.org/10.3389/fevo.2018.00064spa
dc.relation.referencesLichtenthaler, H. K., 1987. [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. Academic Press, 148, 350–382.spa
dc.relation.referencesLiu, C., Liu, W., Chen, W., Yang, J., & Zheng, L., 2015. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Food Chemistry, 173, 482–488. https://doi.org/10.1016/j.foodchem.2014.10.052spa
dc.relation.referencesLiu, W., Deng, H., Shi, Y., Liu, C., Zheng, L., 2022. Application of multispectral imaging combined with machine learning methods for rapid and non-destructive detection of zearalenone (ZEN) in maize. Measurement (Lond) 203. https://doi.org/10.1016/j.measurement.2022.111944spa
dc.relation.referencesLiu, Y., Zhao, X., Liu, W., Feng, B., Lv, W., Zhang, Z., Yang, X., & Dong, Q., 2024. Plant biomass partitioning in alpine meadows under different herbivores as influenced by soil bulk density and available nutrients. Catena, 240. https://doi.org/10.1016/j.catena.2024.108017spa
dc.relation.referencesMahajan, M., & Pal, P. K., 2016. Growing conditions influence non-destructive estimation of chlorophyll in leaves of Valeriana jatamansi. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3), 131–135. https://doi.org/10.1016/j.jarmap.2016.05.005spa
dc.relation.referencesMalmir, M., Tahmasbian, I., Xu, Z., Farrar, M.B., Bai, S.H., 2020. Prediction of macronutrients in plant leaves using chemometric analysis and wavelength selection. J Soils Sediments 20, 249–259. https://doi.org/10.1007/s11368-019-02418-zspa
dc.relation.referencesMarkwell, J., Osterman, J. C., & Mitchell, J. L., 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46(3), 467–472. https://doi.org/10.1007/BF00032301spa
dc.relation.referencesMartínez, D., & Guiamet, J., 2004. Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status. Italian Journal of Agronomy, 24(3), 41–46. https://doi.org/10.1051/agrospa
dc.relation.referencesMartins, G.D., Sousa Santos, L.C., dos Santos Carmo, G.J., da Silva Neto, O.F., Castoldi, R., Machado, A.I.M.R., de Oliveira Charlo, H.C., 2023. Multispectral images for estimating morphophysiological and nutritional parameters in cabbage seedlings. Smart Agricultural Technology 4. https://doi.org/10.1016/j.atech.2023.100211spa
dc.relation.referencesMartins, G.D., da Silva Neto, O.F., Carmo, G.J.D.S., Castoldi, R., Santos, L.C.S., Charlo, H.C. de O., 2021. Estimation of biometric, physiological, and nutritional variables in lettuce seedlings using multispectral images1. Revista Brasileira de Engenharia Agricola e Ambiental 25, 689–695. https://doi.org/10.1590/1807-1929/agriambi.v25n10p689-695spa
dc.relation.referencesMelo-Velasco, Jenny., 2023. Digital agriculture’ implications for small farmers: evidence from Colombia [University of Missouri-Columbia]. https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/96993/MeloVelascoJennyResearch.pdf?sequence=1&isAllowed=yspa
dc.relation.referencesMengel, Konrad., & Kirkby, E. A., 2001. Principles of plant nutrition. In Harald. Kosegarten & Thomas. Appel (Eds.), Kluwer Academic Publisher (5th ed., Vol. 1). springer science & Business Media.spa
dc.relation.referencesMoharana, S., & Dutta, S., 2016. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 122, 17–29. https://doi.org/10.1016/j.isprsjprs.2016.09.002spa
dc.relation.referencesMokhatar, S.J., Daud, N.W., Ishak, C.F., 2012. Response of (RRIM 2001) Planted on an Oxisol to Different Rates of Fertilizer Application. Malaysian journal of soil science 16, 57-69spa
dc.relation.referencesMsengwa, A. S., 2021. Geostatistics for environmental scientists. Journal of the Geographical Association of Tanzania, 41(1).spa
dc.relation.referencesMurphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5spa
dc.relation.referencesNauš, J., Prokopová, J., Řebíček, J., & Špundová, M., 2010. SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement. Photosynthesis Research, 105(3), 265–271. https://doi.org/10.1007/s11120-010-9587-zspa
dc.relation.referencesNguyen, H.D.D., Pan, V., Pham, C., Valdez, R., Doan, K., Nansen, C., 2020. Night-based hyperspectral imaging to study association of horticultural crop leaf reflectance and nutrient status. Computers and Electronics in Agriculture 173. https://doi.org/10.1016/j.compag.2020.105458spa
dc.relation.referencesNoguera, M., Aquino, A., Ponce, J.M., Cordeiro, A., Silvestre, J., Calderón, R., Marcelo, M. da E., Pedro Jordão, Andújar, J.M., 2021. Nutritional status assessment of olive crops by means of the analysis and modelling of multispectral images taken with UAVs. Biosystems Engineering 211, 1–18. https://doi.org/10.1016/j.biosystemseng.2021.08.035spa
dc.relation.referencesOsorio, N.W., 2012. Niveles adecuados de fertilidad del suelo y análisis foliares para crisantemo. Boletín del manejo integral del suelo y la nutrición vegetal. 1: 1-4. Disponible en: https://www.bioedafologia.com/bolet%C3%ADn-lab-de-suelos/niveles-adecuados-para-crisantemospa
dc.relation.referencesPadilla, F. M., Gallardo, M., Peña-Fleitas, M. T., De Souza, R., & Thompson, R. B., 2018. Proximal optical sensors for nitrogen management of vegetable crops: A review. In Sensors (Switzerland) (Vol. 18, Issue 7). MDPI AG. https://doi.org/10.3390/s18072083spa
dc.relation.referencesPaleari, L., Movedi, E., Vesely, F. M., Invernizzi, M., Piva, D., Zibordi, G., & Confalonieri, R., 2022. Estimating plant nitrogen content in tomato using a smartphone. Field Crops Research, 284. https://doi.org/10.1016/j.fcr.2022.108564spa
dc.relation.referencesPan, W.J., Wang, X., Deng, Y.R., Li, J.H., Chen, W., Chiang, J.Y., Yang, J.B., Zheng, L., 2015. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging. Scientific Reports 5. https://doi.org/10.1038/srep11108spa
dc.relation.referencesParry, C., Blonquist, J. M., & Bugbee, B., 2014. In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant Cell and Environment, 37(11), 2508–2520. https://doi.org/10.1111/pce.12324spa
dc.relation.referencesPavlovic, D., Nikolic, B., Djurovic, S., Waisi, H., Andjelkovic, A., & Marisavljevic, D., 2014. Chlorophyll as a measure of plant health: Agroecological aspects. Pestic. Phytomed., 29(1), 21–34. https://doi.org/10.2298/pif1401021pspa
dc.relation.referencesPearson, D., 1986. Técnicas de laboratorio para el análisis de alimentos. Acribia, Zaragoza.spa
dc.relation.referencesPeng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S., & Cassman, K. G., 2004. Rice yields decline with higher night temperature from global warming. www.pnas.orgcgidoi10.1073pnas.0403720101spa
dc.relation.referencesPietrzykowska, M., 2015. The roles of Lhcb1 and Lhcb2 in regulation of photosynthetic light harvesting.spa
dc.relation.referencesPineda, D., Pérez, J., Gaviria, D., Ospino-Villalba, K., Camargo, O., 2022. MEDUSA: An open-source and webcam based multispectral imaging system. HardwareX 11, e00282. https://doi.org/10.1016/J.OHX.2022.E00282spa
dc.relation.referencesPontius, J., Schaberg, P., & Hanavan, R., 2020. Remote sensing for early, detailed, and accurate detection of forest disturbance and decline for protection of biodiversity. In J. Cavender-Bares, J. A. Gamon, & P. A. Townsend (Eds.), Remote Sensing of Plant Biodiversity (pp. 121–154). Springer International Publishing. https://doi.org/10.1007/978-3-030-33157-3_6spa
dc.relation.referencesPuentes-Páramo, Y.J., Menjivar-Flores, J.C., Aranzazu-Hernández, F., 2016. Concentración de nutrientes en hojas, una herramienta para el diagnóstico nutricional en cacao. Agronomía Mesoamericana 27, 329. https://doi.org/10.15517/am.v27i2.19728spa
dc.relation.referencesRamalho, L.F., Campos, R., 2020. Estimation of leaf nutrient concentration from hyperspectral reflectance in Eucalyptus using partial least squares regression. Scientia Agricola 77. https://doi.org/10.1590/1678-992x-2018-0409spa
dc.relation.referencesRayment, G. E., 1993. Soil analysis: a review. Australian Journal of Experimental Agriculture, 33(8), 1015–1028. https://doi.org/10.1071/EA9931015spa
dc.relation.referencesRichardson, A. D., Duigan, S. P., & Berlyn, G. P., 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153(1), 185–194. https://doi.org/10.1046/j.0028-646X.2001.00289.xspa
dc.relation.referencesRitchie, H., Roser, M., Rosado, P., 2022. Fertilizers. https://ourworldindata.org/fertilizers.spa
dc.relation.referencesSaidi, F., Khetari, S., Yahia, I.S., Zahran, H.Y., Hidouri, T., Ameur, N., 2022. The use of principal component analysis (PCA) and partial least square (PLS) for designing new hard inverse perovskites materials. Computational Condensed Matter 31, e00667. https://doi.org/https://doi.org/10.1016/j.cocom.2022.e00667spa
dc.relation.referencesSchepers, J. S., Francis, D. D., Vigil, M., & Below, F. E., 1992. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communications in Soil Science and Plant Analysis, 23(17–20), 2173–2187. https://doi.org/10.1080/00103629209368733spa
dc.relation.referencesSeong, W. M., Park, K. Y., Lee, M. H., Moon, S., Oh, K., Park, H., Lee, S., & Kang, K., 2018. Abnormal self-discharge in lithium-ion batteries. Energy and Environmental Science, 11(4), 970–978. https://doi.org/10.1039/c8ee00186cspa
dc.relation.referencesShen, F., Deng, H., Yu, L., Cai, F., 2022. Open-source mobile multispectral imaging system and its applications in biological sample sensing. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 280. https://doi.org/10.1016/j.saa.2022.121504spa
dc.relation.referencesSherafati, A., Mollazade, K., Koushesh Saba, M., & Vesali, F., 2022. TomatoScan: An Android-based application for quality evaluation and ripening determination of tomato fruit. Computers and Electronics in Agriculture, 200. https://doi.org/10.1016/j.compag.2022.107214spa
dc.relation.referencesShibata, H., Galloway, J. N., Leach, A. M., Cattaneo, L. R., Cattell Noll, L., Erisman, J. W., Gu, B., Liang, X., Hayashi, K., Ma, L., Dalgaard, T., Graversgaard, M., Chen, D., Nansai, K., Shindo, J., Matsubae, K., Oita, A., Su, M.-C., Mishima, S.-I., & Bleeker, A., 2017. Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio, 46(2), 129–142. https://doi.org/10.1007/s13280-016-0815-4spa
dc.relation.referencesSiegel, A.F., 2016. Multiple regression, in: Practical business statistics. Elsevier, pp. 355–418. https://doi.org/10.1016/B978-0-12-804250-2.00012-2spa
dc.relation.referencesSoutherland, J. H., Evans, R., & Erisman, J. W., 2003. Summary of regulatory/policy/economic issues related to nitrogen. Environment International, 29(2–3), 327–328. https://doi.org/10.1016/S0160-4120(02)00163-0spa
dc.relation.referencesStein, B.R., Thomas, V.A., Lorentz, L.J., Strahm, B.D., 2014. Predicting macronutrient concentrations from loblolly pine leaf reflectance across local and regional scales. GIScience & Remote Sensing 51, 269–287. https://doi.org/10.1080/15481603.2014.912875spa
dc.relation.referencesSui, R., Wilkerson, J. B., Hart, W. E., Wilhelm, L. R., Howard, D. D., Wilkerson, J. B., Member, A., & Hart, W. E., 2005. Multispectral sensor for detection of nitrogen status in cotton. American Society of Agricultural Engineers, 21(2), 167–172. https://sci-hub.se/10.13031/2013.18148spa
dc.relation.referencesSuzuki, Y., & Shioi, Y., 1999. Detection of chlorophyll breakdown products in the senescent leaves of higher plants. In Plant Cell Physiol (Vol. 40, Issue 9). https://academic.oup.com/pcp/article/40/9/909/1940130spa
dc.relation.referencesTabatabai, M.A., Bremner, J.M., 1970. A simple turbidimetric method of determining total sulfur in plant materials. Journal Paper of the Iowa Agriculture and Home Economics Experiment Station J-6562, 805–806. https://doi.org/10.2134/agronj1970.00021962006200060038xspa
dc.relation.referencesTholen, D., Boom, C., Noguchi, K., Ueda, S., Katase, T., & Terashima, I., 2008. The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant, Cell and Environment, 31(11), 1688–1700. https://doi.org/10.1111/j.1365-3040.2008.01875.xspa
dc.relation.referencesTobiszewski, M., & Vakh, C., 2023. Analytical applications of smartphones for agricultural soil analysis. Analytical and Bioanalytical Chemistry, 415(18), 3703–3715. https://doi.org/10.1007/s00216-023-04558-1spa
dc.relation.referencesTremblay, N., Fallon, E., & Ziadi, N., 2011. Sensing of crop nitrogen status: opportunities, tools, limitations, and supporting information requirements. HortTechnology, 21(3), 274–281.spa
dc.relation.referencesUddling, J., Gelang-Alfredsson, J., Piikki, K., & Pleijel, H., 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 91(1), 37–46. https://doi.org/10.1007/s11120-006-9077-5spa
dc.relation.referencesUyanık, G.K., Güler, N., 2013. A study on multiple linear regression analysis. Procedia-Social and Behavioral Sciences 106, 234–240. https://doi.org/10.1016/j.sbspro.2013.12.027spa
dc.relation.referencesVan Den Berg, A. K., & Perkins, T. D., 2004. Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. Forest Ecology and Management, 200(1–3), 113–117. https://doi.org/10.1016/j.foreco.2004.06.005spa
dc.relation.referencesvan Maarschalkerweerd, M., 2014. New ways to determine plant nutrient deficiencies using fast spectroscopy: PhD Thesis. Faculty of Science, University of Copenhagen.spa
dc.relation.referencesvan Maarschalkerweerd, M., & Husted, S., 2015. Recent developments in fast spectroscopy for plant mineral analysis. Frontiers in Plant Science, 1–14. https://doi.org/10.3389/fpls.2015.00169spa
dc.relation.referencesWalter-Shea, E. A., & Norman, J. M., 1991. Leaf optical properties. In R. B. Myneni & J. Ross (Eds.), Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology (pp. 229–251). Springer. https://doi.org/10.1007/978-3-642-75389-3_8spa
dc.relation.referencesWang, J., Wang, T., Shi, T., Wu, G., Skidmore, A.K., 2015. A wavelet-based area parameter for indirectly estimating copper concentration in Carex leaves from canopy reflectance. Remote Sensing 7, 15340–15360. https://doi.org/10.3390/rs71115340spa
dc.relation.referencesWang, L., Jin, J., Song, Z., Wang, J., Zhang, L., Rehman, T.U., Ma, D., Carpenter, N.R., Tuinstra, M.R., 2020. LeafSpec: An accurate and portable hyperspectral corn leaf imager. Computers and Electronics in Agriculture 169. https://doi.org/10.1016/j.compag.2019.105209spa
dc.relation.referencesWang, Y.J., Jin, G., Li, L.Q., Liu, Y., Kianpoor Kalkhajeh, Y., Ning, J.M., Zhang, Z.Z., 2020. NIR hyperspectral imaging coupled with chemometrics for nondestructive assessment of phosphorus and potassium contents in tea leaves. Infrared Physics & Technology 108. https://doi.org/10.1016/j.infrared.2020.103365spa
dc.relation.referencesWeiss, M., Jacob, F., Duveiller, G., 2020. Remote sensing for agricultural applications: A meta-review. Remote sensing of environment 236. https://doi.org/10.1016/j.rse.2019.111402spa
dc.relation.referencesWiwart, M., Fordoński, G., Zuk-Gołaszewska, K., Suchowilska, E., 2009. Early diagnostics of macronutrient deficiencies in three legume species by color image analysis. Computers and Electronics in Agriculture 65, 125–132. https://doi.org/10.1016/j.compag.2008.08.003spa
dc.relation.referencesWold, S., Sjostrom, M., Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58, 109–130.spa
dc.relation.referencesWorld Bank., 2024. Mobile cellular subscriptions (per 100 people). https://data.worldbank.org/indicator/IT.CEL.SETS (accessed 1.20.24).spa
dc.relation.referencesXiong, C., Liu, C., Pan, W., Ma, F., Xiong, C., Qi, L., Chen, F., Lu, X., Yang, J., & Zheng, L., 2015. Non-destructive determination of total polyphenols content and classification of storage periods of Iron Buddha tea using multispectral imaging system. Food Chemistry, 176, 130–136. https://doi.org/10.1016/j.foodchem.2014.12.057spa
dc.relation.referencesXiong, D., Chen, J., Yu, T., Gao, W., Ling, X., Li, Y., Peng, S., & Huang, J., 2015. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Scientific Reports, 5, 1–12.spa
dc.relation.referencesXiong, Y., Ohashi, S., Nakano, K., Jiang, W., Takizawa, K., Iijima, K., Maniwara, P., 2021. Application of the radial basis function neural networks to improve the nondestructive Vis/NIR spectrophotometric analysis of potassium in fresh lettuces. Journal of Food Engineering 298. https://doi.org/10.1016/j.jfoodeng.2020.110417spa
dc.relation.referencesYang, B., Ma, J., Yao, X., Cao, W., Zhu, Y., 2021. Estimation of leaf nitrogen content in wheat based on fusion of spectral features and deep features from near infrared hyperspectral imagery. Sensors (Switzerland) 21, 1–15. https://doi.org/10.3390/s21020613spa
dc.relation.referencesYe, X., Abe, S., Zhang, S., & Yoshimura, H., 2020. Rapid and non-destructive assessment of nutritional status in apple trees using a new smartphone-based wireless crop scanner system. Computers and Electronics in Agriculture, 173. https://doi.org/10.1016/j.compag.2020.105417spa
dc.relation.referencesYu, K.Q., Zhao, Y.R., Li, X.L., Shao, Y.N., Liu, F., He, Y., 2014. Hyperspectral imaging for mapping of total nitrogen spatial distribution in pepper plant. PLoS One 9. https://doi.org/10.1371/journal.pone.0116205spa
dc.relation.referencesZahir, S. A. D. M., Jamlos, M. F., Omar, A. F., Jamlos, M. A., Mamat, R., Muncan, J., & Tsenkova, R., 2023. Review – Plant nutritional status analysis employing the visible and near-infrared spectroscopy spectral sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 304(123273). https://doi.org/https://doi.org/10.1016/j.saa.2023.123273spa
dc.relation.referencesZhang, X., Liu, F., He, Y., Gong, X., 2013. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosystems engineering 115, 56–65. https://doi.org/10.1016/j.biosystemseng.2013.02.007spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.agrovocImagen multiespectralspa
dc.subject.agrovocMultispectral imageryeng
dc.subject.agrovocAgricultura digitalspa
dc.subject.agrovocDigital agricultureeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.ddc580 - Plantasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalAnálisis de plantasspa
dc.subject.proposalimágenes multiespectralesspa
dc.subject.proposalhardware abiertospa
dc.subject.proposalagricultura digitalspa
dc.subject.proposalsensores de teléfonos inteligentesspa
dc.subject.proposalimpresión 3D en agriculturaspa
dc.subject.proposalmonitoreo de cultivosspa
dc.subject.proposalPlant analysiseng
dc.subject.proposalmultispectral imagingeng
dc.subject.proposalopen hardwareeng
dc.subject.proposaldigital farmingeng
dc.subject.proposalSmartphone sensorseng
dc.subject.proposal3D printing in agricultureeng
dc.subject.proposalCrop sensingoeng
dc.subject.unamPlantas -- Análisisspa
dc.subject.unamPlants -- Analysiseng
dc.titleDesarrollo de sistemas instrumentales para el diagnóstico nutricional de plantas y suelos en campospa
dc.title.translatedDevelopment of instrumental systems for the nutritional diagnosis of plants and soils in the fieldeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_dc82b40f9837b551spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConsolidación de capacidades de ciencia, tecnología e innovación en el sector agropecuario del departamento del Cesarspa
oaire.fundernameGobernación del Cesarspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1065582177.2024.pdf
Tamaño:
1.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: