Desarrollo de sistemas instrumentales para el diagnóstico nutricional de plantas y suelos en campo
dc.contributor.advisor | Pérez Naranjo, Juan Carlos | |
dc.contributor.author | Ospino Villalba, Karen Stefanie | |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000558087 | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=IeXlYRoAAAAJ&hl=es | spa |
dc.contributor.orcid | 0000-0002-8728-141X | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Karen-Ospino | spa |
dc.contributor.researchgroup | Sistemas Simbioticos | spa |
dc.date.accessioned | 2024-10-24T22:35:59Z | |
dc.date.available | 2024-10-24T22:35:59Z | |
dc.date.issued | 2024-08-23 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | The growing global demand for food requires improved agricultural productivity and the efficient use of fertilizers, which excessively applied may possess environmental concerns. To stimulate the local development of systems to support the rational use of fertilizers, this research presents two preliminary open-source instrumental developments for crops nutritional diagnosis. The first is a 3D printing prototype coupled to a smartphone's ambient light sensor, which was evaluated to estimate the chlorophyll content in oil palm leaves (Elaeis guineensis Jacq), potato (Solanum tuberosum; L.), coffee (Coffea arabica L.), cocoa (Theobroma cacao L.), and kikuyu grass (Pennisetum clandestinum Hochst. ex Chiov.). This device presented a performance comparable to chlorophyll measurements taken with a SPAD 502™ meter or a spectrophotometer, used here as comparison gold standards. A system for analyzing nutrients based on multispectral images of leaf samples is also presented. Statistical models for leaf nutrient estimation based on light bands reflection by dried samples of cocoa (Theobroma cacao L.), rubber (Hevea brasiliensis), chrysanthemum (Dendranthema grandiflorum) and banana (Musa paradisiaca L.) indicated a reasonable estimate of 11 nutrients, with a coefficient of determination greater than 0.84 for nitrogen, phosphorous and potassium, along with a lower performance to estimate other nutrients. Not without the drawbacks tied to incipient yet open prototyping, these results are expected to stimulate the local development of technologies for less developed regions, which support the efficient use of fertilizers and agricultural productivity. Increased access to these open-source technologies would promote digital agriculture and local instrument development. | eng |
dc.description.abstract | La demanda creciente global de alimentos requiere mejorar la productividad agrícola y el uso eficiente de fertilizantes, los cuales, cuando son aplicados en exceso, impactan negativamente el medio ambiente. Para estimular el desarrollo local de sistemas que apoyen el uso racional de fertilizantes, esta investigación presenta dos desarrollos instrumentales preliminares de código abierto para el diagnóstico nutricional de cultivos. El primero es un prototipo de impresión 3D acoplado al sensor de luz ambiental de un teléfono inteligente, que se evaluó para estimar el contenido de clorofila en hojas de palma de aceite (Elaeis guineensis Jacq), papa (Solanum tuberosum; L.), café (Coffea arabica L.), cacao (Theobroma cacao L.) y pasto kikuyo (Pennisetum clandestinum Hochst. ex Chiov.). Este dispositivo presentó un desempeño comparable al de mediciones de clorofila con un medidor SPAD 502™ o con un espectrofotómetro, usados como estándar de comparación. También se presenta un sistema para analizar nutrientes basado en imágenes multiespectrales de muestras foliares. Modelos estadísticos basados en reflexión de bandas de luz por muestras secas de cacao (Theobroma cacao L.), caucho (Hevea brasiliensis), crisantemo (Dendranthema grandiflorum) y banano (Musa paradisiaca L.) indicaron una estimación razonable de 11 nutrientes, con coeficiente de determinación superior a 0,84 para nitrógeno, fósforo y potasio, y con un desempeño inferior para estimar otros nutrientes. Aún con limitaciones asociadas a prototipos incipientes pero abiertos, con estos resultados se espera estimular el desarrollo local de tecnologías para la agricultura digital en regiones menos desarrolladas, que apoyen el uso eficiente de fertilizantes y la productividad agrícola. (Texto tomado de la fuente) | |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias Agrarias | spa |
dc.description.researcharea | Desarrollo y Adaptación de Instrumentación para la Investigación | spa |
dc.format.extent | xiv, 113 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87051 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias Agrarias - Doctorado en Ciencias Agrarias | spa |
dc.relation.references | Adalibieke, W., Cui, X., Cai, H., You, L., & Zhou, F. , 2023. Global crop-specific nitrogen fertilization dataset in 1961–2020. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02526-z | spa |
dc.relation.references | Abdel-Rahman, E.M., Ahmed, F.B., van den Berg, M., 2010. Estimation of sugarcane leaf nitrogen concentration using in situ spectroscopy. International Journal of Applied Earth Observation and Geoinformation 12. https://doi.org/10.1016/j.jag.2009.11.003 | spa |
dc.relation.references | Abdel-Rahman, E.M., Mutanga, O., Odindi, J., Adam, E., Odindo, A., Ismail, R., 2017. Estimating Swiss chard foliar macro- and micronutrient concentrations under different irrigation water sources using ground-based hyperspectral data and four partial least squares (PLS)-based (PLS1, PLS2, SPLS1 and SPLS2) regression algorithms. Computers and Electronics in Agriculture 132, 21–33. https://doi.org/10.1016/j.compag.2016.11.008 | spa |
dc.relation.references | Abdi, H., 2003. Partial Least Square Regression PLS-Regression. Encyclopedia of Measurement and Statistics 6, 792–795. | spa |
dc.relation.references | Abramoff, M.D., Magalhaes, P.J., Ram, S.J., 2004. Image Processing with ImageJ. Biophotonics International 11, 36–42. | spa |
dc.relation.references | Adhikari, R., Li, C., Kalbaugh, K., Nemali, K., 2020. A low-cost smartphone controlled sensor based on image analysis for estimating whole-plant tissue nitrogen (N) content in floriculture crops. Computers and Electronics in Agriculture 169. https://doi.org/10.1016/j.compag.2019.105173 | spa |
dc.relation.references | Adhiwibawa, M. A. S., Tantono, C., Prilianti, K. R., Prihastyanti, M. N. P., Limantara, L., & Brotosudarmo, T. H. P., 2013. Rapid nitrogen determination of soybean leaves using mobile application. Proceedings - 2013 International Conference on Information Technology and Electrical Engineering: “Intelligent and Green Technologies for Sustainable Development”, ICITEE 2013, 193–196. https://doi.org/10.1109/ICITEED.2013.6676237 | spa |
dc.relation.references | Agrahari, R. K., Kobayashi, Y., Tanaka, T. S. T., Panda, S. K., & Koyama, H., 2021. Smart fertilizer management: the progress of imaging technologies and possible implementation of plant biomarkers in agriculture. In Soil Science and Plant Nutrition (Vol. 67, Issue 3, pp. 248–258). Taylor and Francis Ltd. https://doi.org/10.1080/00380768.2021.1897479 | spa |
dc.relation.references | Ali, A. M., Abouelghar, M., Belal, A. A., Saleh, N., Yones, M., Selim, A. I., Amin, M. E. S., Elwesemy, A., Kucher, D. E., Maginan, S., & Savin, I., 2022. Crop yield prediction using multi sensors remote sensing (Review Article). In Egyptian Journal of Remote Sensing and Space Science (Vol. 25, Issue 3, pp. 711–716). Elsevier B.V. https://doi.org/10.1016/j.ejrs.2022.04.006 | spa |
dc.relation.references | Ali, M. M., Al-Ani, A., Eamus, D., & Tan, D. K. Y., 2017. Leaf nitrogen determination using non-destructive techniques–A review. Journal of Plant Nutrition, 40(7), 928–953. https://doi.org/10.1080/01904167.2016.1143954 | spa |
dc.relation.references | Amigo, J. M., 2020. Hyperspectral and multispectral imaging: setting the scene. In Data Handling in Science and Technology (Vol. 32, pp. 3–16). Elsevier Ltd. https://doi.org/10.1016/B978-0-444-63977-6.00001-8 | spa |
dc.relation.references | Amigo, J.M., Grassi, S., 2020. Configuration of hyperspectral and multispectral imaging systems, in: Data Handling in Science and Technology. Elsevier Ltd, pp. 17–34. https://doi.org/10.1016/B978-0-444-63977-6.00002-X | spa |
dc.relation.references | ams OSRAM. (2016, February). TMD2772/ TMD2772WA Digital ALS and Proximity Module. TMD2772/TMD2772WA Datasheet. | spa |
dc.relation.references | Aquino, A., Noguera, M., Millan, B., Mejías, A., Ponce, J.M., Andújar, J.M., 2022. A preliminary evaluation of a low-cost multispectral sensor for non-destructive evaluation of olive fruits’ fat content, in: XLIII Jornadas de Automática: Libro de Actas: 7, 8 y 9 de Septiembre de 2022, Logroño (La Rioja). Servizo de Publicacións da UDC, pp. 475–478. https://doi.org/10.17979/spudc.9788497498418.0475 | spa |
dc.relation.references | Arévalo-Gardini, E., Arévalo-Hernández, C.O., Baligar, V.C., He, Z.L., 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Science of the Total Environment 605–606, 792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122 | spa |
dc.relation.references | Aronoff, S., 1950. The absorption spectra of chlorophyll and related compounds. Chemical Reviews, 47(2), 175–195. https://doi.org/10.1021/cr60147a001 | spa |
dc.relation.references | Ascencio, J., & Lazo, J., 2009. Respuestas de escape a la sombra en Rottboellia exaltata y Leptochloa filiformis (Gramineae-Poaceae). Revista de La Facultad de Agronomía, 26, 490–507. | spa |
dc.relation.references | Ates, F., y Kaya, O., 2021. The relationship between iron and nitrogen concentrations based on kjeldahl method and spad-502 readings in grapevine (Vitis vinifera L. cv. ‘Sultana Seedless’). Erwerbs-Obstbau, 63, 53–59. https://doi.org/10.1007/s10341-021-00580-8 | spa |
dc.relation.references | Ayardulabi, R., Khamespanah, E., Abbasinia, S., & Ehtesabi, H., 2021. Point-of-care applications of smartphone-based microscopy. In Sensors and Actuators, A: Physical (Vol. 331). Elsevier B.V. https://doi.org/10.1016/j.sna.2021.113048 | spa |
dc.relation.references | Barman, U., & Choudhury, R. D., 2020. Smartphone image based digital chlorophyll meter to estimate the value of citrus leaves chlorophyll using Linear Regression, LMBP-ANN and SCGBP-ANN. Journal of King Saud University - Computer and Information Sciences, 34, 2938–2950. https://doi.org/10.1016/j.jksuci.2020.01.005 | spa |
dc.relation.references | Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S., & Davison, A. W., 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 32(2), 85–100. https://doi.org/10.1016/0098-8472(92)90034-Y | spa |
dc.relation.references | Başayiğit, L., Dedeoğlu, M., Akgül, H., 2015. The prediction of iron contents in orchards using VNIR spectroscopy. Turkish Journal of Agriculture and Forestry 39, 123–134. https://doi.org/10.3906/tar-1406-33 | spa |
dc.relation.references | Bhatla, S. C., & Lal, M. A., 2018. Plant Physiology, Development and Metabolism. In Plant Physiology, Development and Metabolism. Springer Singapore. https://doi.org/10.1007/978-981-13-2023-1 | spa |
dc.relation.references | Binkley, D., Stape, J. L., & Ryan, M. G., 2004. Thinking about efficiency of resource use in forests. Forest Ecology and Management, 193(1–2), 5–16. https://doi.org/10.1016/j.foreco.2004.01.019 | spa |
dc.relation.references | Bleasdale, A.J., Blackburn, G.A., Whyatt, J.D., 2022. Feasibility of detecting apple scab infections using low-cost sensors and interpreting radiation interactions with scab lesions. International Journal of Remote Sensing 43, 4984–5005. https://doi.org/10.1080/01431161.2022.2122895 | spa |
dc.relation.references | Bradstreet, R.B., 1954. Kjeldahl Method for Organic Nitrogen. Analytical Chemistry 26, 185–187. https://doi.org/10.1021/ac60085a028 | spa |
dc.relation.references | Broadley, M., Brown, P., Cakmak, I., Rengel, Z., Zhao, F., 2011. Function of nutrients: Micronutrients, in: Marschner’s mineral nutrition of higher plants: Third Edition. Elsevier Inc., pp. 191–248. https://doi.org/10.1016/B978-0-12-384905-2.00007-8 | spa |
dc.relation.references | Brown, L. A., Williams, O., & Dash, J., 2022. Calibration and characterisation of four chlorophyll meters and transmittance spectroscopy for non-destructive estimation of forest leaf chlorophyll concentration. Agricultural and Forest Meteorology, 323. https://doi.org/10.1016/j.agrformet.2022.109059 | spa |
dc.relation.references | Camburn, B., Viswanathan, V., Linsey, J., Anderson, D., Jensen, D., Crawford, R., Otto, K., & Wood, K., 2017. Design prototyping methods: State of the art in strategies, techniques, and guidelines. Design Science, 3. https://doi.org/10.1017/dsj.2017.10 | spa |
dc.relation.references | Cao, Q., Cui, Z., Chen, X., Khosla, R., Dao, T. H., & Miao, Y., 2012. Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precision Agriculture, 13(1), 45–61. https://doi.org/10.1007/s11119-011-9244-3 | spa |
dc.relation.references | Carmona Rojas, L.M., Gutiérrez Rodríguez, E.A., Henao Ramirez, A.M., Urrea Trujillo, A.I., 2022. Nutrition in cacao (Theobroma cacao L.) crops: What determining factors should be considered? Revista de la Facultad de Agronomía 121, 101. https://doi.org/10.24215/16699513e101 | spa |
dc.relation.references | Carter, G. A., & Knapp, A. K., 2001. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll Concentration. American Journal of Botany, 88(4), 677. https://doi.org/10.2307/2657068 | spa |
dc.relation.references | Cerovic, Z. G., Ghozlen, N. Ben, Milhade, C., Obert, M., Debuisson, S., & Le Moigne, M., 2015. Nondestructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) Based on Dualex Leaf-Clip Measurements in the Field. Journal of Agricultural and Food Chemistry, 63(14), 3669–3680. https://doi.org/10.1021/acs.jafc.5b00304 | spa |
dc.relation.references | Cerovic, Z. G., Masdoumier, G., Ghozlen, N. Ben, & Latouche, G., 2012. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum, 146(3), 251–260. https://doi.org/10.1111/j.1399-3054.2012.01639.x | spa |
dc.relation.references | Chacón, E., 2012. Obtención de la norma de diagnóstico y recomendación integral (DRIS) para el cultivo de caucho (Hevea brasiliensis) en la Altillanura Colombiana. (Doctoral dissertation, Universidad Nacional de Colombia). | spa |
dc.relation.references | Chazaux, M., Schiphorst, C., Lazzari, G., & Caffarri, S., 2022. Precise estimation of chlorophyll a, b and carotenoid content by deconvolution of the absorption spectrum and new simultaneous equations for Chl determination. Plant Journal, 109(6), 1630–1648. https://doi.org/10.1111/tpj.15643 | spa |
dc.relation.references | Choleva, T., Matiaki, C., & Giokas, D. L., 2023. UV photometric assays on paper-based analytical devices by contact printing photography through transparent cellophane. Sensors and Actuators B: Chemical, 386. https://doi.org/10.1016/j.snb.2023.133729 | spa |
dc.relation.references | Chungcharoen, T., Donis-Gonzalez, I., Phetpan, K., Udompetaikul, V., Sirisomboon, P., Suwalak, R., 2022. Machine learning-based prediction of nutritional status in oil palm leaves using proximal multispectral images. Computers and Electronics in Agriculture 198. https://doi.org/10.1016/j.compag.2022.107019 | spa |
dc.relation.references | Confalonieri, R., Paleari, L., Movedi, E., Pagani, V., Orlando, F., Foi, M., Barbieri, M., Pesenti, M., Cairati, O., La Sala, M. S., Besana, R., Minoli, S., Bellocchio, E., Croci, S., Mocchi, S., Lampugnani, F., Lubatti, A., Quarteroni, A., De Min, D., … Acutis, M., 2015. Improving in vivo plant nitrogen content estimates from digital images: Trueness and precision of a new approach as compared to other methods and commercial devices. Biosystems Engineering, 135, 21–30. https://doi.org/http://doi.org/10.1016/j.biosystemseng.2015.04.013 | spa |
dc.relation.references | Coupland, P., Batchelor, M., Convine, N., Davies, K., Farrington, K., Howes, L., Kirk, A., Cockrill, J., Orchard, J., Warncke, L., & Wilson, E., 2015. Quantification of plant chlorophyll content using Google Glass. Lab on a Chip, (15)7, 1708–1716. https://doi.org/10.1039/c3lc50564b.Please | spa |
dc.relation.references | Cui, F., Kim, Minkyung, Park, C., Kim, D., Mo, K., Kim, Moonil, 2021. Application of principal component analysis (PCA) to the assessment of parameter correlations in the partial-nitrification process using aerobic granular sludge. Journal of Environmental Management 288. https://doi.org/10.1016/j.jenvman.2021.112408 | spa |
dc.relation.references | Curran, P. J. ,1989. Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3), 271–278. https://doi.org/https://doi.org/10.1016/0034-4257(89)90069-2 | spa |
dc.relation.references | Damasceno, A.S. da S., Boechat, C.L., Souza, H.A. de, Capristo-Silva, G.F., Mendes, W. de S., Teodoro, P.E., Morais, P.G.C., Oliveira, R.I. de, Della-Silva, J.L., Souza, I.A.M. de, Silva Junior, C.A. da, 2023. Nutritional monitoring of boron in Eucalyptus spp. in the Brazilian cerrado by multispectral bands of the MSI sensor (Sentinel-2). Remote Sensing Applications: Society and Environment 29. https://doi.org/10.1016/j.rsase.2022.100913 | spa |
dc.relation.references | Das, P., Pegu, R., Bhattacharya, S. S., & Nath, P., 2023. Fluorescence-Based Accurate Estimation of Chlorophyll in Tea Leaves Using Smartphone. IEEE Sensors Journal, 23(13), 14864–14871. https://doi.org/10.1109/JSEN.2023.3275879 | spa |
dc.relation.references | Davis, P. A., Caylor, S., Whippo, C. W., & Hangarter, R. P., 2011. Changes in leaf optical properties associated with light-dependent chloroplast movements. Plant, Cell and Environment, 34(12), 2047–2059. https://doi.org/10.1111/j.1365-3040.2011.02402.x | spa |
dc.relation.references | Dawson, C. J., & Hilton, J., 2011. Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36, Supple, S14–S22. https://doi.org/http://doi.org/10.1016/j.foodpol.2010.11.012 | spa |
dc.relation.references | De Oca, A. M., Flores, G., 2021. The AgriQ: A low-cost unmanned aerial system for precision agriculture. Expert Systems with Applications 182. https://doi.org/10.1016/j.eswa.2021.115163 | spa |
dc.relation.references | De Souza, H. A., Vieira, P. F. de M. J., Rozane, D. E., Sagrilo, E., Leite, L. F. C., & Ferreira, A. C. M., 2020. Critical levels and sufficiency ranges for leaf nutrient diagnosis by two methods in soybean grown in the northeast of brazil. Revista Brasileira de Ciencia Do Solo, 44, 1–14. https://doi.org/10.36783/18069657rbcs20190125 | spa |
dc.relation.references | Diago, M. P., Rey-Carames, C., Le Moigne, M., Fadaili, E. M., Tardaguila, J., & Cerovic, Z. G., 2016. Calibration of non-invasive fluorescence-based sensors for the manual and on-the-go assessment of grapevine vegetative status in the field. Australian Journal of Grape and Wine Research, 22(3), 438–449. https://doi.org/10.1111/ajgw.12228 | spa |
dc.relation.references | Dong, T., Shang, J., Chen, J. M., Liu, J., Qian, B., Ma, B., Morrison, M. J., Zhang, C., Liu, Y., Shi, Y., Pan, H., & Zhou, G., 2019. Assessment of portable chlorophyll meters for measuring crop leaf chlorophyll concentration. Remote Sensing, 11(22). https://doi.org/10.3390/rs11222706 | spa |
dc.relation.references | Donnelly, A., Yu, R., Rehberg, C., Meyer, G., & Young, E. B., 2020. Leaf chlorophyll estimates of temperate deciduous shrubs during autumn senescence using a SPAD-502 meter and calibration with extracted chlorophyll. Annals of Forest Science, 77(2). https://doi.org/10.1007/s13595-020-00940-6 | spa |
dc.relation.references | Draper, N. R., & Smith, H., 1998. Applied regression analysis (Vic. Barnett, R. A. Bradley, N. A. C. Cressie, N. I. Fisher, I. M. Johnstone, J. B. Kadane, D. G. Kendall, D. W. Scott, B. W. Silverman, A. F. M. Smith, J. L. Teugels, G. S. Watson, & J. S. Hunter, Eds.; 3rd ed., Vol. 326). John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118625590 | spa |
dc.relation.references | Erisman, J. W., Bleeker, A., Galloway, J., & Sutton, M. S., 2007. Reduced nitrogen in ecology and the environment. Environmental Pollution, 150(1), 140–149. https://doi.org/https://doi.org/10.1016/j.envpol.2007.06.033 | spa |
dc.relation.references | Erisman, J. W., Sutton, M. a, Galloway, J., Klimont, Z., & Winiwarter, W., 2008. How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10), 636–639. https://doi.org/10.1038/ngeo325 | spa |
dc.relation.references | Fourty, T., Baret, F., Jacquemoud, S., Schmuck, G., & Verdebout, J. ,1996. Leaf optical properties with explicit description of its biochemical composition: direct and inverse problems. Remote sensing of Environment, 56(2), 104-117. | spa |
dc.relation.references | Foy, C. D., Chaney, R. L., & White, M. C., 1978. The physiology of metal toxicity in plants. Annual Review of Plant Physiology, 29(1), 511–566. https://doi.org/10.1146/annurev.pp.29.060178.002455 | spa |
dc.relation.references | Gaines, T.P., Mitchell, G.A., 1979. Boron determination in plant tissue by the azomethine h method. Communications in Soil Science and Plant Analysis 10, 1099–1108. https://doi.org/10.1080/00103627909366965 | spa |
dc.relation.references | Gaviria-Palacio, D., Guáqueta-Restrepo, J. J., Pineda-Tobón, D. M., & Pérez, J. C., 2017. Fast estimation of chlorophyll content on plant leaves using the light sensor of a smartphone. Dyna, 84(203), 233–239. https://doi.org/10.15446/dyna.v84n203.64316 | spa |
dc.relation.references | Geballa-Koukoula, A., Ross, G. M. S., Bosman, A. J., Zhao, Y., Zhou, H., Nielen, M. W. F., Rafferty, K., Elliott, C. T., & Salentijn, G. I., 2023. Best practices and current implementation of emerging smartphone-based (bio)sensors - Part 2: Development, validation, and social impact. In TrAC - Trends in Analytical Chemistry (Vol. 161). Elsevier B.V. https://doi.org/10.1016/j.trac.2023.116986 | spa |
dc.relation.references | Ghasemi, M., Arzani, K., Yadollahi, A., Ghasemi, S., & Sarikhani Khorrami, S., 2011. Estimate of leaf chlorophyll and nitrogen content in asian pear (Pyrus serotina Rehd.) by CCM-200. Notulae Scientia Biologicae, 3(1), 91–94. www.notulaebiologicae.ro | spa |
dc.relation.references | Hassanijalilian, O., Igathinathane, C., Doetkott, C., Bajwa, S., Nowatzki, J., & Haji Esmaeili, S. A., 2020. Chlorophyll estimation in soybean leaves infield with smartphone digital imaging and machine learning. Computers and Electronics in Agriculture, 174(April), 105433. https://doi.org/10.1016/j.compag.2020.105433 | spa |
dc.relation.references | Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Møller, I.S., White, P., 2011. Functions of macronutrients, in: Marschner’s mineral nutrition of higher plants: Third Edition. Elsevier Inc., pp. 135–189. https://doi.org/10.1016/B978-0-12-384905-2.00006-6 | spa |
dc.relation.references | Heumann, C., Michael, S., Shalabh, 2016. Introduction to statistics and data analysis. Springer Nature, pp. XII-456. https://doi.org/10.1007/978-3-319-46162-5 | spa |
dc.relation.references | Hiscox, J. D., & Israelstam, G. F., 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332–1334. https://doi.org/10.1139/b79-163 | spa |
dc.relation.references | Jacquemoud, S., & Ustin, S., 2019. Leaf optical properties. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108686457 | spa |
dc.relation.references | Jacquemoud, Stéphane., & Ustin, S. L., 2008. Modeling leaf optical properties. Photobiological Sciences Online. 736 (737) http://photobiology.info/Jacq_Ustin.html (accessed August 7, 2023) | spa |
dc.relation.references | James, G., Witten, D., Hastie, T., & Tibshirani, R. 2017. An introduction to statistical learning: with applications in R. In G. Casella, S. Fienberg, & I. Olkin (Eds.), Springer Texts in Statistics (8th ed.). Springer Science+Business Media. https://www.stat.berkeley.edu/users/rabbee/s154/ISLR_First_Printing.pdf | spa |
dc.relation.references | Joseph, T. M., Kallingal, A., Suresh, A. M., Mahapatra, D. K., Hasanin, M. S., Haponiuk, J., & Thomas, S., 2023. 3D printing of polylactic acid: recent advances and opportunities. In International Journal of Advanced Manufacturing Technology (Vol. 125, Issues 3–4, pp. 1015–1035). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00170-022-10795-y | spa |
dc.relation.references | Kabata-Pendias, Alina., Pendias, Henryk., 2000. Trace elements in soils and plants. Third Edition. CRC Press. https://doi.org/10.1201/9781420039900 | spa |
dc.relation.references | Kamarianakis, Z., & Panagiotakis, S., 2023. Design and Implementation of a Low-Cost Chlorophyll Content Meter. Sensors, 23(5). https://doi.org/10.3390/s23052699 | spa |
dc.relation.references | Khanal, S., Fulton, J., Shearer, S., 2017. An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture 139, 22–32. https://doi.org/10.1016/j.compag.2017.05.001 | spa |
dc.relation.references | Kirkby, E., 2011. Introduction, definition and classification of nutrients, in: Marschner’s mineral nutrition of higher plants: Third Edition. Elsevier Inc., pp. 3–5. https://doi.org/10.1016/B978-0-12-384905-2.00001-7 | spa |
dc.relation.references | Kitić, G., Tagarakis, A., Cselyuszka, N., Panić, M., Birgermajer, S., Sakulski, D., Matović, J., 2019. A new low-cost portable multispectral optical device for precise plant status assessment. Computers and Electronics in Agriculture 162, 300–308. https://doi.org/10.1016/j.compag.2019.04.021 | spa |
dc.relation.references | Knapp, A. K., & Carter, G. A., 1998. Variability in leaf optical properties among 26 species from a broad range of habitats. American Journal of Botany, 85(7), 940–946. https://doi.org/10.2307/2446360 | spa |
dc.relation.references | Knipling, E.B., 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment 1, 155–159. | spa |
dc.relation.references | Lambers, H., Chapin, F. S., & Pons, T. L., 2008. Plant physiological ecology: Second edition. In Plant Physiological Ecology: Second Edition. Springer New York. https://doi.org/10.1007/978-0-387-78341-3 | spa |
dc.relation.references | Lemaire, G., Jeuffroy, M. H., & Gastal, F., 2008. Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614–624. https://doi.org/10.1016/j.eja.2008.01.005 | spa |
dc.relation.references | Li, D., Li, C., Yao, Y., Li, M., Liu, L., 2020. Modern imaging techniques in plant nutrition analysis: A review. Computers and Electronics in Agriculture 174, 105459 https://doi.org/10.1016/j.compag.2020.105459 | spa |
dc.relation.references | Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J., Wang, Q., Zhang, X., & Wu, X., 2018. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6 (6). https://doi.org/10.3389/fevo.2018.00064 | spa |
dc.relation.references | Lichtenthaler, H. K., 1987. [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology. Academic Press, 148, 350–382. | spa |
dc.relation.references | Liu, C., Liu, W., Chen, W., Yang, J., & Zheng, L., 2015. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Food Chemistry, 173, 482–488. https://doi.org/10.1016/j.foodchem.2014.10.052 | spa |
dc.relation.references | Liu, W., Deng, H., Shi, Y., Liu, C., Zheng, L., 2022. Application of multispectral imaging combined with machine learning methods for rapid and non-destructive detection of zearalenone (ZEN) in maize. Measurement (Lond) 203. https://doi.org/10.1016/j.measurement.2022.111944 | spa |
dc.relation.references | Liu, Y., Zhao, X., Liu, W., Feng, B., Lv, W., Zhang, Z., Yang, X., & Dong, Q., 2024. Plant biomass partitioning in alpine meadows under different herbivores as influenced by soil bulk density and available nutrients. Catena, 240. https://doi.org/10.1016/j.catena.2024.108017 | spa |
dc.relation.references | Mahajan, M., & Pal, P. K., 2016. Growing conditions influence non-destructive estimation of chlorophyll in leaves of Valeriana jatamansi. Journal of Applied Research on Medicinal and Aromatic Plants, 3(3), 131–135. https://doi.org/10.1016/j.jarmap.2016.05.005 | spa |
dc.relation.references | Malmir, M., Tahmasbian, I., Xu, Z., Farrar, M.B., Bai, S.H., 2020. Prediction of macronutrients in plant leaves using chemometric analysis and wavelength selection. J Soils Sediments 20, 249–259. https://doi.org/10.1007/s11368-019-02418-z | spa |
dc.relation.references | Markwell, J., Osterman, J. C., & Mitchell, J. L., 1995. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46(3), 467–472. https://doi.org/10.1007/BF00032301 | spa |
dc.relation.references | Martínez, D., & Guiamet, J., 2004. Distortion of the SPAD 502 chlorophyll meter readings by changes in irradiance and leaf water status. Italian Journal of Agronomy, 24(3), 41–46. https://doi.org/10.1051/agro | spa |
dc.relation.references | Martins, G.D., Sousa Santos, L.C., dos Santos Carmo, G.J., da Silva Neto, O.F., Castoldi, R., Machado, A.I.M.R., de Oliveira Charlo, H.C., 2023. Multispectral images for estimating morphophysiological and nutritional parameters in cabbage seedlings. Smart Agricultural Technology 4. https://doi.org/10.1016/j.atech.2023.100211 | spa |
dc.relation.references | Martins, G.D., da Silva Neto, O.F., Carmo, G.J.D.S., Castoldi, R., Santos, L.C.S., Charlo, H.C. de O., 2021. Estimation of biometric, physiological, and nutritional variables in lettuce seedlings using multispectral images1. Revista Brasileira de Engenharia Agricola e Ambiental 25, 689–695. https://doi.org/10.1590/1807-1929/agriambi.v25n10p689-695 | spa |
dc.relation.references | Melo-Velasco, Jenny., 2023. Digital agriculture’ implications for small farmers: evidence from Colombia [University of Missouri-Columbia]. https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/96993/MeloVelascoJennyResearch.pdf?sequence=1&isAllowed=y | spa |
dc.relation.references | Mengel, Konrad., & Kirkby, E. A., 2001. Principles of plant nutrition. In Harald. Kosegarten & Thomas. Appel (Eds.), Kluwer Academic Publisher (5th ed., Vol. 1). springer science & Business Media. | spa |
dc.relation.references | Moharana, S., & Dutta, S., 2016. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 122, 17–29. https://doi.org/10.1016/j.isprsjprs.2016.09.002 | spa |
dc.relation.references | Mokhatar, S.J., Daud, N.W., Ishak, C.F., 2012. Response of (RRIM 2001) Planted on an Oxisol to Different Rates of Fertilizer Application. Malaysian journal of soil science 16, 57-69 | spa |
dc.relation.references | Msengwa, A. S., 2021. Geostatistics for environmental scientists. Journal of the Geographical Association of Tanzania, 41(1). | spa |
dc.relation.references | Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5 | spa |
dc.relation.references | Nauš, J., Prokopová, J., Řebíček, J., & Špundová, M., 2010. SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement. Photosynthesis Research, 105(3), 265–271. https://doi.org/10.1007/s11120-010-9587-z | spa |
dc.relation.references | Nguyen, H.D.D., Pan, V., Pham, C., Valdez, R., Doan, K., Nansen, C., 2020. Night-based hyperspectral imaging to study association of horticultural crop leaf reflectance and nutrient status. Computers and Electronics in Agriculture 173. https://doi.org/10.1016/j.compag.2020.105458 | spa |
dc.relation.references | Noguera, M., Aquino, A., Ponce, J.M., Cordeiro, A., Silvestre, J., Calderón, R., Marcelo, M. da E., Pedro Jordão, Andújar, J.M., 2021. Nutritional status assessment of olive crops by means of the analysis and modelling of multispectral images taken with UAVs. Biosystems Engineering 211, 1–18. https://doi.org/10.1016/j.biosystemseng.2021.08.035 | spa |
dc.relation.references | Osorio, N.W., 2012. Niveles adecuados de fertilidad del suelo y análisis foliares para crisantemo. Boletín del manejo integral del suelo y la nutrición vegetal. 1: 1-4. Disponible en: https://www.bioedafologia.com/bolet%C3%ADn-lab-de-suelos/niveles-adecuados-para-crisantemo | spa |
dc.relation.references | Padilla, F. M., Gallardo, M., Peña-Fleitas, M. T., De Souza, R., & Thompson, R. B., 2018. Proximal optical sensors for nitrogen management of vegetable crops: A review. In Sensors (Switzerland) (Vol. 18, Issue 7). MDPI AG. https://doi.org/10.3390/s18072083 | spa |
dc.relation.references | Paleari, L., Movedi, E., Vesely, F. M., Invernizzi, M., Piva, D., Zibordi, G., & Confalonieri, R., 2022. Estimating plant nitrogen content in tomato using a smartphone. Field Crops Research, 284. https://doi.org/10.1016/j.fcr.2022.108564 | spa |
dc.relation.references | Pan, W.J., Wang, X., Deng, Y.R., Li, J.H., Chen, W., Chiang, J.Y., Yang, J.B., Zheng, L., 2015. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging. Scientific Reports 5. https://doi.org/10.1038/srep11108 | spa |
dc.relation.references | Parry, C., Blonquist, J. M., & Bugbee, B., 2014. In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant Cell and Environment, 37(11), 2508–2520. https://doi.org/10.1111/pce.12324 | spa |
dc.relation.references | Pavlovic, D., Nikolic, B., Djurovic, S., Waisi, H., Andjelkovic, A., & Marisavljevic, D., 2014. Chlorophyll as a measure of plant health: Agroecological aspects. Pestic. Phytomed., 29(1), 21–34. https://doi.org/10.2298/pif1401021p | spa |
dc.relation.references | Pearson, D., 1986. Técnicas de laboratorio para el análisis de alimentos. Acribia, Zaragoza. | spa |
dc.relation.references | Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S., & Cassman, K. G., 2004. Rice yields decline with higher night temperature from global warming. www.pnas.orgcgidoi10.1073pnas.0403720101 | spa |
dc.relation.references | Pietrzykowska, M., 2015. The roles of Lhcb1 and Lhcb2 in regulation of photosynthetic light harvesting. | spa |
dc.relation.references | Pineda, D., Pérez, J., Gaviria, D., Ospino-Villalba, K., Camargo, O., 2022. MEDUSA: An open-source and webcam based multispectral imaging system. HardwareX 11, e00282. https://doi.org/10.1016/J.OHX.2022.E00282 | spa |
dc.relation.references | Pontius, J., Schaberg, P., & Hanavan, R., 2020. Remote sensing for early, detailed, and accurate detection of forest disturbance and decline for protection of biodiversity. In J. Cavender-Bares, J. A. Gamon, & P. A. Townsend (Eds.), Remote Sensing of Plant Biodiversity (pp. 121–154). Springer International Publishing. https://doi.org/10.1007/978-3-030-33157-3_6 | spa |
dc.relation.references | Puentes-Páramo, Y.J., Menjivar-Flores, J.C., Aranzazu-Hernández, F., 2016. Concentración de nutrientes en hojas, una herramienta para el diagnóstico nutricional en cacao. Agronomía Mesoamericana 27, 329. https://doi.org/10.15517/am.v27i2.19728 | spa |
dc.relation.references | Ramalho, L.F., Campos, R., 2020. Estimation of leaf nutrient concentration from hyperspectral reflectance in Eucalyptus using partial least squares regression. Scientia Agricola 77. https://doi.org/10.1590/1678-992x-2018-0409 | spa |
dc.relation.references | Rayment, G. E., 1993. Soil analysis: a review. Australian Journal of Experimental Agriculture, 33(8), 1015–1028. https://doi.org/10.1071/EA9931015 | spa |
dc.relation.references | Richardson, A. D., Duigan, S. P., & Berlyn, G. P., 2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153(1), 185–194. https://doi.org/10.1046/j.0028-646X.2001.00289.x | spa |
dc.relation.references | Ritchie, H., Roser, M., Rosado, P., 2022. Fertilizers. https://ourworldindata.org/fertilizers. | spa |
dc.relation.references | Saidi, F., Khetari, S., Yahia, I.S., Zahran, H.Y., Hidouri, T., Ameur, N., 2022. The use of principal component analysis (PCA) and partial least square (PLS) for designing new hard inverse perovskites materials. Computational Condensed Matter 31, e00667. https://doi.org/https://doi.org/10.1016/j.cocom.2022.e00667 | spa |
dc.relation.references | Schepers, J. S., Francis, D. D., Vigil, M., & Below, F. E., 1992. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communications in Soil Science and Plant Analysis, 23(17–20), 2173–2187. https://doi.org/10.1080/00103629209368733 | spa |
dc.relation.references | Seong, W. M., Park, K. Y., Lee, M. H., Moon, S., Oh, K., Park, H., Lee, S., & Kang, K., 2018. Abnormal self-discharge in lithium-ion batteries. Energy and Environmental Science, 11(4), 970–978. https://doi.org/10.1039/c8ee00186c | spa |
dc.relation.references | Shen, F., Deng, H., Yu, L., Cai, F., 2022. Open-source mobile multispectral imaging system and its applications in biological sample sensing. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 280. https://doi.org/10.1016/j.saa.2022.121504 | spa |
dc.relation.references | Sherafati, A., Mollazade, K., Koushesh Saba, M., & Vesali, F., 2022. TomatoScan: An Android-based application for quality evaluation and ripening determination of tomato fruit. Computers and Electronics in Agriculture, 200. https://doi.org/10.1016/j.compag.2022.107214 | spa |
dc.relation.references | Shibata, H., Galloway, J. N., Leach, A. M., Cattaneo, L. R., Cattell Noll, L., Erisman, J. W., Gu, B., Liang, X., Hayashi, K., Ma, L., Dalgaard, T., Graversgaard, M., Chen, D., Nansai, K., Shindo, J., Matsubae, K., Oita, A., Su, M.-C., Mishima, S.-I., & Bleeker, A., 2017. Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment. Ambio, 46(2), 129–142. https://doi.org/10.1007/s13280-016-0815-4 | spa |
dc.relation.references | Siegel, A.F., 2016. Multiple regression, in: Practical business statistics. Elsevier, pp. 355–418. https://doi.org/10.1016/B978-0-12-804250-2.00012-2 | spa |
dc.relation.references | Southerland, J. H., Evans, R., & Erisman, J. W., 2003. Summary of regulatory/policy/economic issues related to nitrogen. Environment International, 29(2–3), 327–328. https://doi.org/10.1016/S0160-4120(02)00163-0 | spa |
dc.relation.references | Stein, B.R., Thomas, V.A., Lorentz, L.J., Strahm, B.D., 2014. Predicting macronutrient concentrations from loblolly pine leaf reflectance across local and regional scales. GIScience & Remote Sensing 51, 269–287. https://doi.org/10.1080/15481603.2014.912875 | spa |
dc.relation.references | Sui, R., Wilkerson, J. B., Hart, W. E., Wilhelm, L. R., Howard, D. D., Wilkerson, J. B., Member, A., & Hart, W. E., 2005. Multispectral sensor for detection of nitrogen status in cotton. American Society of Agricultural Engineers, 21(2), 167–172. https://sci-hub.se/10.13031/2013.18148 | spa |
dc.relation.references | Suzuki, Y., & Shioi, Y., 1999. Detection of chlorophyll breakdown products in the senescent leaves of higher plants. In Plant Cell Physiol (Vol. 40, Issue 9). https://academic.oup.com/pcp/article/40/9/909/1940130 | spa |
dc.relation.references | Tabatabai, M.A., Bremner, J.M., 1970. A simple turbidimetric method of determining total sulfur in plant materials. Journal Paper of the Iowa Agriculture and Home Economics Experiment Station J-6562, 805–806. https://doi.org/10.2134/agronj1970.00021962006200060038x | spa |
dc.relation.references | Tholen, D., Boom, C., Noguchi, K., Ueda, S., Katase, T., & Terashima, I., 2008. The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant, Cell and Environment, 31(11), 1688–1700. https://doi.org/10.1111/j.1365-3040.2008.01875.x | spa |
dc.relation.references | Tobiszewski, M., & Vakh, C., 2023. Analytical applications of smartphones for agricultural soil analysis. Analytical and Bioanalytical Chemistry, 415(18), 3703–3715. https://doi.org/10.1007/s00216-023-04558-1 | spa |
dc.relation.references | Tremblay, N., Fallon, E., & Ziadi, N., 2011. Sensing of crop nitrogen status: opportunities, tools, limitations, and supporting information requirements. HortTechnology, 21(3), 274–281. | spa |
dc.relation.references | Uddling, J., Gelang-Alfredsson, J., Piikki, K., & Pleijel, H., 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 91(1), 37–46. https://doi.org/10.1007/s11120-006-9077-5 | spa |
dc.relation.references | Uyanık, G.K., Güler, N., 2013. A study on multiple linear regression analysis. Procedia-Social and Behavioral Sciences 106, 234–240. https://doi.org/10.1016/j.sbspro.2013.12.027 | spa |
dc.relation.references | Van Den Berg, A. K., & Perkins, T. D., 2004. Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. Forest Ecology and Management, 200(1–3), 113–117. https://doi.org/10.1016/j.foreco.2004.06.005 | spa |
dc.relation.references | van Maarschalkerweerd, M., 2014. New ways to determine plant nutrient deficiencies using fast spectroscopy: PhD Thesis. Faculty of Science, University of Copenhagen. | spa |
dc.relation.references | van Maarschalkerweerd, M., & Husted, S., 2015. Recent developments in fast spectroscopy for plant mineral analysis. Frontiers in Plant Science, 1–14. https://doi.org/10.3389/fpls.2015.00169 | spa |
dc.relation.references | Walter-Shea, E. A., & Norman, J. M., 1991. Leaf optical properties. In R. B. Myneni & J. Ross (Eds.), Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology (pp. 229–251). Springer. https://doi.org/10.1007/978-3-642-75389-3_8 | spa |
dc.relation.references | Wang, J., Wang, T., Shi, T., Wu, G., Skidmore, A.K., 2015. A wavelet-based area parameter for indirectly estimating copper concentration in Carex leaves from canopy reflectance. Remote Sensing 7, 15340–15360. https://doi.org/10.3390/rs71115340 | spa |
dc.relation.references | Wang, L., Jin, J., Song, Z., Wang, J., Zhang, L., Rehman, T.U., Ma, D., Carpenter, N.R., Tuinstra, M.R., 2020. LeafSpec: An accurate and portable hyperspectral corn leaf imager. Computers and Electronics in Agriculture 169. https://doi.org/10.1016/j.compag.2019.105209 | spa |
dc.relation.references | Wang, Y.J., Jin, G., Li, L.Q., Liu, Y., Kianpoor Kalkhajeh, Y., Ning, J.M., Zhang, Z.Z., 2020. NIR hyperspectral imaging coupled with chemometrics for nondestructive assessment of phosphorus and potassium contents in tea leaves. Infrared Physics & Technology 108. https://doi.org/10.1016/j.infrared.2020.103365 | spa |
dc.relation.references | Weiss, M., Jacob, F., Duveiller, G., 2020. Remote sensing for agricultural applications: A meta-review. Remote sensing of environment 236. https://doi.org/10.1016/j.rse.2019.111402 | spa |
dc.relation.references | Wiwart, M., Fordoński, G., Zuk-Gołaszewska, K., Suchowilska, E., 2009. Early diagnostics of macronutrient deficiencies in three legume species by color image analysis. Computers and Electronics in Agriculture 65, 125–132. https://doi.org/10.1016/j.compag.2008.08.003 | spa |
dc.relation.references | Wold, S., Sjostrom, M., Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58, 109–130. | spa |
dc.relation.references | World Bank., 2024. Mobile cellular subscriptions (per 100 people). https://data.worldbank.org/indicator/IT.CEL.SETS (accessed 1.20.24). | spa |
dc.relation.references | Xiong, C., Liu, C., Pan, W., Ma, F., Xiong, C., Qi, L., Chen, F., Lu, X., Yang, J., & Zheng, L., 2015. Non-destructive determination of total polyphenols content and classification of storage periods of Iron Buddha tea using multispectral imaging system. Food Chemistry, 176, 130–136. https://doi.org/10.1016/j.foodchem.2014.12.057 | spa |
dc.relation.references | Xiong, D., Chen, J., Yu, T., Gao, W., Ling, X., Li, Y., Peng, S., & Huang, J., 2015. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Scientific Reports, 5, 1–12. | spa |
dc.relation.references | Xiong, Y., Ohashi, S., Nakano, K., Jiang, W., Takizawa, K., Iijima, K., Maniwara, P., 2021. Application of the radial basis function neural networks to improve the nondestructive Vis/NIR spectrophotometric analysis of potassium in fresh lettuces. Journal of Food Engineering 298. https://doi.org/10.1016/j.jfoodeng.2020.110417 | spa |
dc.relation.references | Yang, B., Ma, J., Yao, X., Cao, W., Zhu, Y., 2021. Estimation of leaf nitrogen content in wheat based on fusion of spectral features and deep features from near infrared hyperspectral imagery. Sensors (Switzerland) 21, 1–15. https://doi.org/10.3390/s21020613 | spa |
dc.relation.references | Ye, X., Abe, S., Zhang, S., & Yoshimura, H., 2020. Rapid and non-destructive assessment of nutritional status in apple trees using a new smartphone-based wireless crop scanner system. Computers and Electronics in Agriculture, 173. https://doi.org/10.1016/j.compag.2020.105417 | spa |
dc.relation.references | Yu, K.Q., Zhao, Y.R., Li, X.L., Shao, Y.N., Liu, F., He, Y., 2014. Hyperspectral imaging for mapping of total nitrogen spatial distribution in pepper plant. PLoS One 9. https://doi.org/10.1371/journal.pone.0116205 | spa |
dc.relation.references | Zahir, S. A. D. M., Jamlos, M. F., Omar, A. F., Jamlos, M. A., Mamat, R., Muncan, J., & Tsenkova, R., 2023. Review – Plant nutritional status analysis employing the visible and near-infrared spectroscopy spectral sensor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 304(123273). https://doi.org/https://doi.org/10.1016/j.saa.2023.123273 | spa |
dc.relation.references | Zhang, X., Liu, F., He, Y., Gong, X., 2013. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosystems engineering 115, 56–65. https://doi.org/10.1016/j.biosystemseng.2013.02.007 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.subject.agrovoc | Imagen multiespectral | spa |
dc.subject.agrovoc | Multispectral imagery | eng |
dc.subject.agrovoc | Agricultura digital | spa |
dc.subject.agrovoc | Digital agriculture | eng |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | spa |
dc.subject.ddc | 580 - Plantas | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación | spa |
dc.subject.proposal | Análisis de plantas | spa |
dc.subject.proposal | imágenes multiespectrales | spa |
dc.subject.proposal | hardware abierto | spa |
dc.subject.proposal | agricultura digital | spa |
dc.subject.proposal | sensores de teléfonos inteligentes | spa |
dc.subject.proposal | impresión 3D en agricultura | spa |
dc.subject.proposal | monitoreo de cultivos | spa |
dc.subject.proposal | Plant analysis | eng |
dc.subject.proposal | multispectral imaging | eng |
dc.subject.proposal | open hardware | eng |
dc.subject.proposal | digital farming | eng |
dc.subject.proposal | Smartphone sensors | eng |
dc.subject.proposal | 3D printing in agriculture | eng |
dc.subject.proposal | Crop sensingo | eng |
dc.subject.unam | Plantas -- Análisis | spa |
dc.subject.unam | Plants -- Analysis | eng |
dc.title | Desarrollo de sistemas instrumentales para el diagnóstico nutricional de plantas y suelos en campo | spa |
dc.title.translated | Development of instrumental systems for the nutritional diagnosis of plants and soils in the field | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_dc82b40f9837b551 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Consolidación de capacidades de ciencia, tecnología e innovación en el sector agropecuario del departamento del Cesar | spa |
oaire.fundername | Gobernación del Cesar | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1065582177.2024.pdf
- Tamaño:
- 1.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de doctorado en Ciencias Agrarias
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: