Detección de emulación de usuario primario con localización dinámica en la red de radio cognitiva móvil mediante diseño cross-layer

dc.contributor.advisorPáez Parra, Ingrid Patriciaspa
dc.contributor.authorCadena Muñoz, Ernestospa
dc.contributor.researchgroupTLÖN - Grupo de Investigación en Redes de Telecomunicaciones Dinámicas y Lenguajes de Programación Distribuidosspa
dc.date.accessioned2021-02-12T21:58:26Zspa
dc.date.available2021-02-12T21:58:26Zspa
dc.date.issued2020spa
dc.description.abstractIn the design of Cognitive Radio Mobile Networks, the detection of attacks such as primary user emulation is essential as it avoids secondary users interfering with primary users of the cellular mobile network. In addition, it allows a primary user to be distinguished from a primary user emulator attacker, considering that the mobile cognitive radio user makes use of dynamic spectrum allocation and performs variable frequency hopping over time, which makes it vulnerable to attack. The research problem consists in establishing a model that allows obtaining information from different layers of the network to detect the primary user emulation attack in Cognitive Radio Mobile Networks where the attacking user has a dynamic location, whose received power is variable with the change of position and its objectives can be to transmit in the primary frequency or generate noise to prevent transmission from other users. On the other hand, detection systems have been developed for attackers with a static location whose power and position are fixed, and for the mobile cellular network users are in motion. In this research work, the cross-layer design is used to detect the primary user emulation attack with a static and dynamic location in Cognitive Radio Mobile Networks, through the study of the characteristics of the signal and its behavior over time and frequency. The model design integrates techniques such as energy detection, entropy, trilateration for location, and application-level information in the sensors to differentiate the attacker from a primary user. A real-case test of the model is performed on software-defined radio devices, allowing a comparison between theory, simulation, and practical results. Results found in the real case test with software-defined radio equipment allowed proving the applicability of the detection model in Cognitive Radio Mobile Networks. The results show that by using the crosslayer design, a technique for PUE detection is generated for static and dynamic cases that allows an exchange of information between the layers combining the energy detection technique that has PUE detection results over 93%, the detection technique by location that allows detecting the user's movement, with 97% of effectiveness using RSSI and trilateration with the least squares technique, the entropy detection technique that improves results by 8dB for low SNR signals as it is less sensitive to noise and the application technique that using information from the application layer extracted from primary users, allows the short name and operator data to be compared with the PUE, achieving 100% of PUE detection. These techniques were implemented in SDR equipment, using GNURadio and OpenBTS as base software.spa
dc.description.abstractEn el diseño de Redes Móviles de Radio Cognitiva, la detección de ataques como la emulación de usuario primario es esencial, ya que permite que los usuarios secundarios no interfieran con los usuarios primarios de la red móvil celular. Además, permite que se pueda distinguir un usuario primario de una atacante emulador de usuario primario, considerando que el usuario de la radio cognitiva móvil hace uso de la asignación dinámica del espectro y realiza saltos de frecuencia variables a través del tiempo, que lo hacen vulnerable a un ataque. El problema de investigación consiste en establecer un modelo que permita obtener información de diferentes capas de la red para detectar el ataque de emulación de usuario primario en las Redes Móviles de Radio Cognitiva, donde el usuario atacante tiene una localización dinámica, cuya potencia recibida es variable con el cambio de posición y sus objetivos pueden ser transmitir en la frecuencia primaria o generar ruido para impedir la transmisión de los demás usuarios. Por otra parte, los sistemas de detección se han desarrollado para atacantes con localización estática cuya potencia y posición son fijas y para la red móvil celular los usuarios están en movimiento. En este trabajo de investigación, se utiliza el diseño cross-layer para detectar el ataque de emulación de usuario primario con localización estática y dinámica en Redes Móviles de Radio Cognitiva, a través del estudio de las características de la señal y su comportamiento en el tiempo y en la frecuencia. El diseño del modelo integra técnicas como la detección de energía, entropía, trilateración para la localización, e información del nivel de aplicación en los sensores utilizados para diferenciar el atacante de un usuario primario. Se realiza una prueba de caso real del modelo en dispositivos de radio definido por software, lo cual permite establecer una comparación entre la teoría, la simulación y los resultados prácticos. Los resultados encontrados en la prueba de caso real con los equipos de radio definida por software permiten comprobar la aplicabilidad del modelo de detección en las Redes Móviles de Radio Cognitiva. Los resultados muestran que utilizando el diseño crosslayer se genera una técnica de detección del PUE para los casos estático y dinámico que permite un intercambio de información entre las capas combinando la técnica de detección por energía que tiene resultados de detección de PUE sobre el 93%, la técnica de detección por localización que permite detectar el movimiento del usuario, con una 97% de efectividad utilizando el RSSI y la trilateración con la técnica de mínimos cuadrados, la técnica de detección de entropía que mejora los resultados en 8dB para señales de bajo SNR al ser menos sensible al ruido y la técnica de aplicación que utilizando información de la capa de aplicación extraída de los usuarios primarios, permite comparar con el PUE el nombre corto y los datos de operador, logrando una detección de PUE del 100%. Estas técnicas fueron implementadas en equipos SDR, utilizando como software base GNURadio y OpenBTS.spa
dc.description.additionalLínea de investigación: Computación Aplicada - Telecomunicaciones.spa
dc.description.degreelevelDoctoradospa
dc.description.sponsorshipColcienciasspa
dc.format.extent1 recurso en línea (214 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCadena Muñoz, E. (2020). Detección de emulación de usuario primario con localización dinámica en la red de radio cognitiva móvil mediante diseño cross-layer [Tesis de doctorado, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79233
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Sistemas y Computaciónspa
dc.relation.referencesE. C. Muñoz, H. J. E. Blanco, and J. A. F. Calderón, “Gestión del espectro radioeléctrico en Colombia,” Rev. Tecnura, vol. 19, no. 45, pp. 159–174, 2015.spa
dc.relation.referencesU. F. C. Commission and others, “Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations,” Gen. Docket, pp. 81–413, 1985.spa
dc.relation.referencesL. F. Pedraza, A. Molina, and I. Paez, “Spectrum occupancy statistics in Bogota-Colombia,” in 2013 IEEE Colombian Conference on Communications and Computing (COLCOM), May 2013, pp. 1–6, doi: 10.1109/ColComCon.2013.6564815.spa
dc.relation.referencesL. Pedraza, C. Hernandez, K. Galeano, E. Rodríguez, and I. Paez, “Ocupación espectral y modelo de radio cognitiva para Bogotá,” Bogotá Univ. Dist. Francisco José Caldas, 2016.spa
dc.relation.referencesJ. Mitola, “Software radios: Survey, critical evaluation and future directions,” IEEE Aerosp. Electron. Syst. Mag., vol. 8, no. 4, pp. 25–36, 1993.spa
dc.relation.referencesJ. Huang, S. Wang, X. Cheng, M. Liu, Z. Li, and B. Chen, “Mobility-assisted routing in intermittently connected mobile cognitive radio networks,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 11, pp. 2956–2968, 2013.spa
dc.relation.referencesG. Baldini, T. Sturman, A. R. Biswas, R. Leschhorn, G. Godor, and M. Street, “Security aspects in software defined radio and cognitive radio networks: A survey and a way ahead,” IEEE Commun. Surv. Tutor., vol. 14, no. 2, pp. 355–379, 2012.spa
dc.relation.referencesS. Rizvi, J. Mitchell, and N. Showan, “Analysis of security vulnerabilities and threat assessment in Cognitive Radio (CR) networks,” in Application of Information and Communication Technologies (AICT), 2014 IEEE 8th International Conference on, 2014, pp. 1–6.spa
dc.relation.referencesK. K. Chauhan and A. K. S. Sanger, “Survey of Security threats and attacks in cognitive radio networks,” in Electronics and Communication Systems (ICECS), 2014 International Conference on, 2014, pp. 1–5.spa
dc.relation.referencesM. Ghaznavi and A. Jamshidi, “Defence against Primary User Emulation Attack Using Statistical Properties of the Cognitive Radio Received Power,” IET Commun., 2017spa
dc.relation.referencesY. Nijsure, G. Kaddoum, G. Ghodoosipour, G. Cai, and L. Wang, “A novel spectrum sensing mechanism based on distribution discontinuity estimation within cognitive radio,” in Vehicular Technology Conference (VTC-Fall), 2016 IEEE 84th, 2016, pp. 1–5.spa
dc.relation.referencesM. Khasawneh and A. Agarwal, “A survey on security in Cognitive Radio networks,” in Computer Science and Information Technology (CSIT), 2014 6th International Conference on, 2014, pp. 64–70.spa
dc.relation.referencesS. Srinu, S. L. Sabat, and S. K. Udgata, “Spectrum Sensing using Frequency domain Entropy estimation and its FPGA implementation for Cognitive Radio,” Procedia Eng., vol. 30, pp. 289–296, 2012.spa
dc.relation.referencesV. Amrutha and K. Karthikeyan, “Spectrum sensing methodologies in cognitive radio networks: A survey,” in 2017 International Conference on Innovations in Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT), 2017, pp. 306–310.spa
dc.relation.referencesA. Mandal and S. Chatterjee, “A comprehensive Study on spectrum sensing and resource allocation for cognitive cellular network,” in 2017 Devices for Integrated Circuit (DevIC), 2017, pp. 100–102.spa
dc.relation.referencesN. Gao, X. Jing, H. Huang, and J. Mu, “Robust collaborative spectrum sensing using phy-layer fingerprints in mobile cognitive radio networks,” IEEE Commun. Lett., vol. 21, no. 5, pp. 1063–1066, 2017.spa
dc.relation.referencesX. Wang, M. Jia, Q. Guo, and X. Gu, “A soft decision rule for cooperative spectrum sensing in mobile cognitive radio networks,” in 2015 IEEE Globecom Workshops (GC Wkshps), 2015, pp. 1–5.spa
dc.relation.referencesF. Liu, H. Chen, L. Xie, and K. Wang, “Maximum-minimum eigenvalue detection-based method to mitigate the effect of the PUEA in cognitive radio networks,” in 2011 International Conference on Wireless Communications and Signal Processing (WCSP), 2011, pp. 1–5.spa
dc.relation.referencesK. Cao and H. Shao, “Compressive wideband spectrum sensing in crns under primary user emulation attack,” 2014.spa
dc.relation.referencesW. R. Ghanem, R. Essam, and M. Dessouky, “Proposed particle swarm optimization approaches for detection and localization of the primary user emulation attack in cognitive radio networks,” in 2018 35th National Radio Science Conference (NRSC), 2018, pp. 309–318.spa
dc.relation.referencesY. L. Zhang, Q. Y. Zhang, and T. Melodia, “A frequency-domain entropy-based detector for robust spectrum sensing in cognitive radio networks,” IEEE Commun. Lett., vol. 14, no. 6, pp. 533–535, 2010.spa
dc.relation.referencesE. Hossain, D. Niyato, and Z. Han, Dynamic spectrum access and management in cognitive radio networks. Cambridge university press, 2009.spa
dc.relation.referencesT. N. Le, W.-L. Chin, and W.-C. Kao, “Cross-layer design for primary user emulation attacks detection in mobile cognitive radio networks,” IEEE Commun. Lett., vol. 19, no. 5, pp. 799–802, 2015.spa
dc.relation.referencesY. Peng, F. Xiang, H. Long, and J. Peng, “The research of cross-layer architecture design and security for cognitive radio network,” in Information Engineering and Electronic Commerce, 2009. IEEC’09. International Symposium on, 2009, pp. 603–607.spa
dc.relation.referencesH. Wen, S. Li, X. Zhu, and L. Zhou, “A framework of the PHY-layer approach to defense against security threats in cognitive radio networks,” IEEE Netw., vol. 27, no. 3, pp. 34–39, 2013.spa
dc.relation.referencesR. K. Sharma and D. B. Rawat, “Advances on security threats and countermeasures for cognitive radio networks: A survey,” IEEE Commun. Surv. Tutor., vol. 17, no. 2, pp. 1023–1043, 2015.spa
dc.relation.referencesY. Li, C. Han, M. Wang, H. Chen, and L. Xie, “A primary user emulation attack detection scheme in cognitive radio network with mobile secondary user,” in 2016 2nd IEEE International Conference on Computer and Communications (ICCC), 2016, pp. 1076–1081.spa
dc.relation.referencesK. Yadav, S. D. Roy, and S. Kundu, “Enhanced Throughput Performance under Primary User Emulation Attack in Cognitive Radio Networks by Optimal Threshold Selection Approach,” in 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 2018, pp. 1–6.spa
dc.relation.referencesW. F. Fihri, H. El Ghazi, N. Kaabouch, and B. A. El Majd, “Bayesian decision model with trilateration for primary user emulation attack localization in cognitive radio networks,” in 2017 International Symposium on Networks, Computers and Communications (ISNCC), 2017, pp. 1–6.spa
dc.relation.referencesB. Naqvi, I. Rashid, F. Riaz, and B. Aslam, “Primary user emulation attack and their mitigation strategies: A survey,” in Information Assurance (NCIA), 2013 2nd National Conference on, 2013, pp. 95–100.spa
dc.relation.referencesT. C. Clancy and N. Goergen, “Security in cognitive radio networks: Threats and mitigation,” in Cognitive Radio Oriented Wireless Networks and Communications, 2008. CrownCom 2008. 3rd International Conference on, 2008, pp. 1–8.spa
dc.relation.referencesJ. Blesa Martínez, “Cognitive strategies for security in wireless sensor networks,” Telecomunicacion, 2015.spa
dc.relation.referencesA. G. Fragkiadakis, E. Z. Tragos, and I. G. Askoxylakis, “A survey on security threats and detection techniques in cognitive radio networks,” IEEE Commun. Surv. Tutor., vol. 15, no. 1, pp. 428–445, 2013.spa
dc.relation.referencesW. Yu, Q. Ni, M. Dong, A. Ul Quddus, and others, “Location Assisted Subcarrier and Power Allocation in Underlay Mobile Cognitive Radio Networks,” 2019.spa
dc.relation.referencesL. F. Pedraza, F. Forero, and I. P. Paez, “Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia,” Ing. Cienc., vol. 10, no. 19, pp. 127–143, 2014.spa
dc.relation.referencesI. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “A survey on spectrum management in cognitive radio networks,” 2008.spa
dc.relation.referencesI. Trubin, “Security Threats in Mobile Cognitive Radio Networks,” in 2018 IEEE East-West Design & Test Symposium (EWDTS), 2018, pp. 1–6.spa
dc.relation.referencesJ. Mitola, “Cognitive radio architecture evolution,” Proc. IEEE, vol. 97, no. 4, pp. 626–641, 2009.spa
dc.relation.referencesI. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput. Netw., vol. 50, no. 13, pp. 2127–2159, 2006.spa
dc.relation.referencesS. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, 2005.spa
dc.relation.referencesA. M. Wyglinski, M. Nekovee, and T. Hou, Cognitive radio communications and networks: principles and practice. Academic Press, 2009.spa
dc.relation.referencesR. Yu, Y. Zhang, Y. Liu, S. Gjessing, and M. Guizani, “Securing cognitive radio networks against primary user emulation attacks,” IEEE Netw., vol. 29, no. 4, pp. 68–74, 2015.spa
dc.relation.referencesP. K. Niranjane, V. M. Wadhai, S. H. Rajput, and J. B. Helonde, “Performance analysis of PUE attacker on Dynamic Spectrum access in cognitive radio,” in Pervasive Computing (ICPC), 2015 International Conference on, 2015, pp. 1–6.spa
dc.relation.referencesA. Attar, H. Tang, A. V. Vasilakos, F. R. Yu, and V. C. Leung, “A survey of security challenges in cognitive radio networks: Solutions and future research directions,” Proc. IEEE, vol. 100, no. 12, pp. 3172–3186, 2012.spa
dc.relation.referencesD. Hlavacek and J. M. Chang, “A layered approach to cognitive radio network security: A survey,” Comput. Netw., vol. 75, pp. 414–436, 2014.spa
dc.relation.referencesJ. H. A. Rentería and A. N. Cadavid, “Cognitive radio–State of the Art,” Sist. Telemática, vol. 9, no. 16, pp. 31–53, 2011.spa
dc.relation.referencesS. P. T. Force, “Spectrum policy task force report et docket no. 02-135,” US Fed. Commun. Comm., 2002.spa
dc.relation.referencesL. F. Pedraza Martinez and others, “Modelo de propagación para un entorno urbano que identifica las oportunidades espectrales para redes móviles de radio cognitiva,” Universidad Nacional de Colombia-Sede Bogotá.spa
dc.relation.referencesC. Hemández, L. Pedraza, I. Páez, and E. Rodriguez-Colina, “Análisis de la Movilidad Espectral en Redes de Radio Cognitiva,” Inf. Tecnológica, vol. 26, no. 6, pp. 169–186, 2015.spa
dc.relation.referencesA. Ahmed, L. M. Boulahia, and D. Gaiti, “Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification,” IEEE Commun. Surv. Tutor., vol. 16, no. 2, pp. 776–811, 2014.spa
dc.relation.referencesK. Li and J. Wang, “Optimal Joining Strategies in Cognitive Radio Networks Under Primary User Emulation Attacks,” IEEE Access, vol. 7, pp. 183812–183822, 2019.spa
dc.relation.referencesC. R. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. J. Shellhammer, and W. Caldwell, “IEEE 802.22: The first cognitive radio wireless regional area network standard,” IEEE Commun. Mag., vol. 47, no. 1, pp. 130–138, 2009.spa
dc.relation.referencesF. Jin, V. Varadharajan, and U. Tupakula, “Improved detection of primary user emulation attacks in cognitive radio networks,” in 2015 International Telecommunication Networks and Applications Conference (ITNAC), Nov. 2015, pp. 274–279, doi: 10.1109/ATNAC.2015.7366825.spa
dc.relation.referencesE. M. Yousef, H. Y. Soliman, and A. M. Ghuniem, “Sensing-Throughput tradeoff with primary user traffic and cooperative sensing in cognitive radio,” in 2017 2nd International Conference on Computer and Communication Systems (ICCCS), 2017, pp. 121–127.spa
dc.relation.referencesF. Bao, H. Chen, and L. Xie, “Analysis of primary user emulation attack with motional secondary users in cognitive radio networks,” in 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC), 2012, pp. 956–961.spa
dc.relation.referencesR. Chen, J.-M. Park, and J. H. Reed, “Defense against primary user emulation attacks in cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 26, no. 1, pp. 25–37, 2008.spa
dc.relation.referencesW. F. Fihri, Y. Arjoune, H. El Ghazi, N. Kaabouch, and B. A. El Majd, “A particle swarm optimization based algorithm for primary user emulation attack detection,” in 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), 2018, pp. 823–827.spa
dc.relation.referencesS. U. Rehman, K. W. Sowerby, and C. Coghill, “Radio-frequency fingerprinting for mitigating primary user emulation attack in low-end cognitive radios,” IET Commun., vol. 8, no. 8, pp. 1274–1284, 2014.spa
dc.relation.referencesZ. Luo, C. Lou, S. Chen, S. Zheng, and S. Li, “Specific primary user sensing for wireless security in IEEE 802.22 network,” in 2011 11th International Symposium on Communications & Information Technologies (ISCIT), 2011, pp. 18–22.spa
dc.relation.referencesG. P. Kumar and D. K. Reddy, “Frequency domain techniques for void spectrum detection in cognitive radio network for emulation attack prevention,” in 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2016, pp. 1–6.spa
dc.relation.referencesN. T. Nguyen, R. Zheng, and Z. Han, “On identifying primary user emulation attacks in cognitive radio systems using nonparametric bayesian classification,” IEEE Trans. Signal Process., vol. 60, no. 3, pp. 1432–1445, 2011.spa
dc.relation.referencesD. Pu, Y. Shi, A. V. Ilyashenko, and A. M. Wyglinski, “Detecting Primary User Emulation Attack in Cognitive Radio Networks,” in 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, Dec. 2011, pp. 1–5, doi: 10.1109/GLOCOM.2011.6134419.spa
dc.relation.referencesM. J. Saber and S. M. S. Sadough, “Multiband cooperative spectrum sensing for cognitive radio in the presence of malicious users,” IEEE Commun. Lett., vol. 20, no. 2, pp. 404–407, 2015.spa
dc.relation.referencesM. J. Saber and S. M. Sajad Sadough, “Optimisation of cooperative spectrum sensing for cognitive radio networks in the presence of smart primary user emulation attack,” Trans. Emerg. Telecommun. Technol., vol. 28, no. 1, p. e2885, 2017.spa
dc.relation.referencesM. Emami, H. Zarrabi, M. R. Jabbarpour, M. Sadat Taheri, and J. J. Jung, “A soft cooperative spectrum sensing in the presence of most destructive smart PUEA using energy detector,” Concurr. Comput. Pract. Exp., vol. 30, no. 15, p. e4524, 2018.spa
dc.relation.referencesS. Maric, A. Biswas, and S. Reisenfeld, “A complete algorithm to diagnose and alleviate the effects of physical layer attacks,” in 2017 International Conference on Signals and Systems (ICSigSys), 2017, pp. 29–34.spa
dc.relation.referencesM. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-learning techniques in cognitive radios,” IEEE Commun. Surv. Tutor., vol. 15, no. 3, pp. 1136–1159, 2012.spa
dc.relation.referencesY. Sharaf-Dabbagh and W. Saad, “Transfer learning for device fingerprinting with application to cognitive radio networks,” in 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015, pp. 2138–2142.spa
dc.relation.referencesS. M. Elghamrawy, “Security in cognitive radio network: defense against primary user emulation attacks using genetic artificial bee colony (GABC) algorithm,” Future Gener. Comput. Syst., 2018.spa
dc.relation.referencesM. Aslam and M. N. Ayyaz, “Real-time delivery of 4G services with cross-layered and power-optimized cognitive radio architecture,” IEEE Syst. J., vol. 10, no. 1, pp. 325–334, 2014.spa
dc.relation.referencesS. Zaman and F. Karray, “TCP/IP model and intrusion detection systems,” in 2009 International Conference on Advanced Information Networking and Applications Workshops, 2009, pp. 90–96.spa
dc.relation.referencesA. Kliks, D. Triantafyllopoulou, L. De Nardis, O. Holland, L. Gavrilovska, and A. Bantouna, “Cross-layer analysis in cognitive radio—Context identification and decision making aspects,” IEEE Trans. Cogn. Commun. Netw., vol. 1, no. 4, pp. 450–463, 2015.spa
dc.relation.referencesY. Liu and Q. Zhou, “State of the art in cross-layer design for cognitive radio wireless networks,” in 2009 International Symposium on Intelligent Ubiquitous Computing and Education, 2009, pp. 366–369.spa
dc.relation.referencesR. Yu, Y. Zhang, Y. Liu, S. Gjessing, and M. Guizani, “Securing Cognitive Radio Networks against Primary User Emulation Attacks,” IEEE Netw., vol. 30, no. 6, pp. 62–69, 2016.spa
dc.relation.referencesF. Foukalas, V. Gazis, and N. Alonistioti, “Cross-layer design proposals for wireless mobile networks: a survey and taxonomy,” IEEE Commun. Surv. Tutor., vol. 10, no. 1, pp. 70–85, 2008.spa
dc.relation.referencesA. A.-H. Khader, A. M. H. Shabani, M. T. Beg, and others, “Differentiation and discrimination between GSM and WiMAX signal’s technologies,” in 2014 World Congress on Computer Applications and Information Systems (WCCAIS), 2014, pp. 1–6.spa
dc.relation.referencesC. An and H.-G. Ryu, “CPW-OFDM (Cyclic Postfix Windowing OFDM) for the B5G (Beyond 5th Generation) Waveform,” in 2018 IEEE 10th Latin-American Conference on Communications (LATINCOM), 2018, pp. 1–4.spa
dc.relation.referencesJ. Mrkic, E. Kocan, and M. Pejanovic-Djurisic, “Index modulation techniques in OFDM relay systems for 5G wireless networks,” in 2017 40th International Conference on Telecommunications and Signal Processing (TSP), 2017, pp. 208–211.spa
dc.relation.referencesM. Mistry, “Cross Layer in Cognitive Radio Networks: Issues and Possible Solutions,” Carleton University, 2019.spa
dc.relation.referencesM. Dabaghchian, A. Alipour-Fanid, K. Zeng, Q. Wang, and P. Auer, “Online Learning With Randomized Feedback Graphs for Optimal PUE Attacks in Cognitive Radio Networks,” IEEEACM Trans. Netw. TON, vol. 26, no. 5, pp. 2268–2281, 2018.spa
dc.relation.referencesG. Carneiro, J. Ruela, and M. Ricardo, “Cross-layer design in 4 G wireless terminals,” IEEE Wirel. Commun., vol. 11, no. 2, pp. 7–13, 2004.spa
dc.relation.referencesM. J. Saber and S. M. S. Sadough, “Optimal energy detection in cognitive radio networks in the presence of malicious users,” in ICCKE 2013, 2013, pp. 173–177.spa
dc.relation.referencesX. Chen and S. Nagaraj, “Entropy based spectrum sensing in cognitive radio,” in 2008 Wireless Telecommunications Symposium, 2008, pp. 57–61.spa
dc.relation.referencesJ. So, “Entropy-based Spectrum Sensing for Cognitive Radio Networks in the Presence of an Unauthorized Signal.,” KSII Trans. Internet Inf. Syst., vol. 9, no. 1, 2015.spa
dc.relation.referencesS. Verdú, “Empirical Estimation of Information Measures: A Literature Guide,” Entropy, vol. 21, no. 8, p. 720, 2019.spa
dc.relation.referencesP. Bromiley, N. Thacker, and E. Bouhova-Thacker, “Shannon entropy, Renyi entropy, and information,” Stat. Inf Ser. 2004-004, 2004.spa
dc.relation.referencesA. Rényi and others, “On measures of entropy and information,” 1961.spa
dc.relation.referencesA. Eggels and D. Crommelin, “Quantifying Data Dependencies with Rényi Mutual Information and Minimum Spanning Trees,” Entropy, vol. 21, no. 2, p. 100, 2019.spa
dc.relation.referencesA. Lapidoth and C. Pfister, “Two measures of dependence,” Entropy, vol. 21, no. 8, p. 778, 2019.spa
dc.relation.referencesC. Cai and S. Verdú, “Conditional Rényi Divergence Saddlepoint and the Maximization of α-Mutual Information,” Entropy, vol. 21, no. 10, p. 969, 2019.spa
dc.relation.referencesM. H. Ansari, A. van Steensel, and Y. V. Nazarov, “Entropy production in quantum is different,” Entropy, vol. 21, no. 9, p. 854, 2019.spa
dc.relation.referencesG. Aswathy and K. Gopakumar, “Cognitive Radio Network with Wideband Spectrum Sensing and Reliable Data Transmission,” in 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS), 2018, pp. 70–74.spa
dc.relation.referencesW. Zhu, J. Ma, and O. Faust, “A comparative study of different entropies for spectrum sensing techniques,” Wirel. Pers. Commun., vol. 69, no. 4, pp. 1719–1733, 2013.spa
dc.relation.referencesY. Wei, S. Fang, and X. Wang, “Automatic Modulation Classification of Digital Communication Signals Using SVM Based on Hybrid Features, Cyclostationary, and Information Entropy,” Entropy, vol. 21, no. 8, p. 745, 2019.spa
dc.relation.referencesN. Chandwani, A. Jain, and P. D. Vyavahare, “Throughput comparison for Cognitive Radio network under various conditions of primary user and channel noise signals,” in 2015 Radio and Antenna Days of the Indian Ocean (RADIO), 2015, pp. 1–2.spa
dc.relation.referencesF. J. Valverde-Albacete and C. Peláez-Moreno, “The Rényi Entropies Operate in Positive Semifields,” Entropy, vol. 21, no. 8, p. 780, 2019.spa
dc.relation.referencesE. Ahmed, M. Shiraz, and A. Gani, “Spectrum-aware distributed channel assignment for cognitive radio wireless mesh networks,” Malays. J. Comput. Sci., vol. 26, no. 3, pp. 232–250, 2013.spa
dc.relation.referencesV. Shrivastav, S. K. Dhurandher, I. Woungang, V. Kumar, and J. J. Rodrigues, “Game theory-based channel allocation in cognitive radio networks,” in 2016 IEEE Global Communications Conference (GLOBECOM), 2016, pp. 1–5.spa
dc.relation.referencesA. K. Azad, J. K. Das, and I. Islam, “Signal detection of co-operative cognitive radio network under neural network,” J. Comput. Commun., vol. 6, no. 9, pp. 60–72, 2018.spa
dc.relation.referencesA. A. Khan, M. H. Rehmani, and A. Rachedi, “Cognitive-radio-based internet of things: Applications, architectures, spectrum related functionalities, and future research directions,” IEEE Wirel. Commun., vol. 24, no. 3, pp. 17–25, 2017.spa
dc.relation.referencesG. Li, E. Geng, Z. Ye, Y. Xu, J. Lin, and Y. Pang, “Indoor positioning algorithm based on the improved RSSI distance model,” Sensors, vol. 18, no. 9, p. 2820, 2018.spa
dc.relation.referencesF. Meneses and A. Moreira, “Using GSM CellID positioning for place discovering,” in 2006 Pervasive Health Conference and Workshops, 2006, pp. 1–8.spa
dc.relation.referencesH. Alrashede and R. A. Shaikh, “IMSI Catcher Detection Method for Cellular Networks,” in 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), 2019, pp. 1–6.spa
dc.relation.referencesR. V. Bulychev, D. E. Goncharov, and I. F. Babalova, “Obtaining IMSI by software-defined radio (RTL-SDR),” in 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2018, pp. 21–23.spa
dc.relation.referencesM. Hadžialić et al., “An approach to analyze security of GSM network,” in 2014 22nd Telecommunications Forum Telfor (℡FOR), 2014, pp. 99–102.spa
dc.relation.referencesD. A. Burgess, H. S. Samra, and others, “The openbts project,” Rep. Available Httpopenbts Sourceforge Net HttpopenBTS Org, 2008.spa
dc.relation.referencesM. Iedema, Getting Started with OpenBTS: Build Open Source Mobile Networks. O’Reilly Media, Inc., 2014.spa
dc.relation.referencesJ. H. H. A. Garcia, C. J. P. Rodríguez, F. E. Ñ. Ruiz, and J. L. A. Alarcón, “Implementación de una red celular GSM mediante software OPENBTS,” PUEBLO Cont., vol. 30, no. 1, pp. 101–108, 2019.spa
dc.relation.referencesJ. Hernandez-Guillen, E. Rodriguez-Colina, R. Marcelin-Jimenez, and M. P. Chalke, “CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access,” in 2012 IEEE Latin-America Conference on Communications, 2012, pp. 1–6.spa
dc.relation.referencesS. L. G. Molina, A. Torres, S. M. Fajardo, and others, “Herramienta de análisis multi-criterio como soporte para el diseño del programa social de la Facultad de Ingeniería,” Estud. Gerenciales, vol. 27, no. 121, pp. 175–194, 2011.spa
dc.relation.referencesL. Rivera, L. F. Cardona, L. V. Palacios, and M. A. Rodríguez, “Selección de alternativas de redistribución de planta: un enfoque desde las organizaciones,” Sist. Telemàtica, vol. 10, no. 23, pp. 9–26, 2012.spa
dc.relation.referencesC. Ettus, “Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux.” 2019, [Online]. Available: https://kb.ettus.com/Building_and_Installing_the_USRP_Open-Source_Toolchain_(UHD_and_GNU_Radio)_on_Linux.spa
dc.relation.referencesM. Abirami, V. Hariharan, M. Sruthi, R. Gandhiraj, and K. Soman, “Exploiting GNU radio and USRP: an economical test bed for real time communication systems,” in 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), 2013, pp. 1–6.spa
dc.relation.referencesA. Studio, “Android Studio,” Off. IDE Android, 2017.spa
dc.relation.referencesI. El Masrura and B. Rahmadya, “Indoor Positioning System (IPS) Berdasarkan Kekuatan Received Signal Strength Indicator (RSSI),” JITCE J. Inf. Technol. Comput. Eng., vol. 2, no. 01, pp. 27–33, 2018.spa
dc.relation.referencesP. Pandya, A. Durvesh, and N. Parekh, “Energy Detection Based Spectrum Sensing for Cognitive Radio Network,” in 2015 Fifth International Conference on Communication Systems and Network Technologies, Apr. 2015, pp. 201–206, doi: 10.1109/CSNT.2015.264.spa
dc.relation.referencesM. A. Mohamoud, E. M. A. Elsheikh, and M. H. Habaebi, “A comparative study of energy detector performance under AWGN and fading channels,” in 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), 2016, pp. 89–94.spa
dc.relation.referencesX. Liu, B. G. Evans, and K. Moessner, “Comparison of reliability, delay and complexity for standalone cognitive radio spectrum sensing schemes,” IET Commun., vol. 7, no. 9, pp. 799–807, 2013.spa
dc.relation.referencesL. Lopez-Lopez, M. Cardenas-Juarez, E. Stevens-Navarro, U. Pineda-Rico, A. Arce, and A. G. Orozco-Lugo, “Superimposed Training Combined Approach for a Reduced Phase of Spectrum Sensing in Cognitive Radio,” Sensors, vol. 19, no. 11, p. 2425, 2019.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.proposalCross-layer designeng
dc.subject.proposalDiseño cross-layerspa
dc.subject.proposalEmulación de usuario primariospa
dc.subject.proposalPrimary user emulationeng
dc.subject.proposalEntropyeng
dc.subject.proposalEntropíaspa
dc.subject.proposalRedes móviles de radio cognitivaspa
dc.subject.proposalSoftware-defined radioeng
dc.subject.proposalRadio definido por softwarespa
dc.subject.proposalMobile cognitive radio networkseng
dc.titleDetección de emulación de usuario primario con localización dinámica en la red de radio cognitiva móvil mediante diseño cross-layerspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80130839.2021.pdf
Tamaño:
6.34 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: