Planteamiento de estrategias para la Gestión de la Demanda desde el usuario activo en una red eléctrica inteligente

dc.contributor.advisorDuarte Velasco, Oscar Germán
dc.contributor.authorTéllez Gutiérrez, Sandra Milena
dc.contributor.orcid0000-0002-8303-3611spa
dc.contributor.researchgroupGrisecspa
dc.coverage.countryColombia
dc.date.accessioned2023-02-03T16:49:02Z
dc.date.available2023-02-03T16:49:02Z
dc.date.issued2022-09-22
dc.descriptionilustracionesspa
dc.description.abstractEl principal objetivo de la cadena de energía eléctrica y todos sus sistemas asociados es atender oportuna y eficientemente la demanda de los usuarios, cumpliendo con los requerimientos de calidad y confiabilidad del servicio. Factores como los económicos, sociales y meteorológicos influyen sobre la demanda de energía eléctrica. Puede ser de interés conocer la demanda total que demandará un sistema global o estudiar el comportamiento de la demanda de energía desde los puntos de consumo. Son los usuarios finales de energía quienes determinan, de acuerdo a sus patrones de consumo y las características de su contexto local, la cantidad de energía que demandarán en cada período de tiempo. Esto quiere decir que los grandes generadores del sistema no pueden controlar la demanda de forma directa; por esta razón es necesario entender el comportamiento de la demanda y evaluar estrategias indirectas de para influenciarla. Los patrones de consumo tienen una alta diversidad y pueden ser más estables en unos usuarios que en otros, existen grupos de usuarios que presentan regularidad en la cantidad de energía y los intervalos de tiempo en que la requieren durante el día. También pueden encontrarse grupos de usuarios con patrones de consumo similares debido al uso final que le dan a la energía consumida, este hecho da origen a múltiples estudios de caracterización y predicción de la demanda. Tradicionalmente el sistema de potencia eléctrico ha necesitado adecuarse a la demanda de los usuarios, esto puede interpretarse como una respuesta del sistema a la demanda. Por otro lado, ha existido un interés para modificar los patrones de consumo de los usuarios a través de planes y estímulos se buscan obtener una respuesta de la demanda de los usuarios. Aquí se involucran las nuevas tecnologías como las smart grids. Esta tesis identifica el impacto de las características de los usuarios activos de energía eléctrica en la formulación de una estrategia de implementación de programas locales de Gestión de la Demanda de Energía Eléctrica aplicable a contextos Colombianos. En el Capitulo 1 se introduce el tema y planteamiento general de la investigación, en el capítulo 2 se presenta un marco teórico construido a partir del estado del arte y se propone como complemento un nuevo marco teórico que incluye conceptos que se desarrollan en esta tesis. El capítulo 3 desarrolla un modelo cualitativo del a gestión de la demanda basado en análisis PESTAL y presenta un análisis de influencias que fueron validados por expertos mediante Análisis Jerárquico. En el capítulo 4 se presenta el modelo cuantitativo para estimar las modificaciones en los patrones de consumo ante técnicas clásicas de respuesta de la demanda como los programas de precios variables en el tiempo, considerando adicionalmente nuevos factores como la cultura energética. El capítulo 5 incluye el desarrollo de software en Modelica que permitió implementar el modelo. En el capítulo 6 se presentan los ejercicios de simulación desarrollados con el modelo junto con los resultados encontrados. El capítulo 7 presenta la validación de los resultados realizados por expertos en el área y el capítulo 8 expone las conclusiones y recomendaciones de la investigación. (Texto tomado de la fuente)spa
dc.description.abstractFinal energy consumers themselves determine the quantity of energy that will be consumed in each period of time, according to their electricity consumption patterns and the particularities of their local context. This implies that large power generators in the system are not able to directly control the demand; therefore, it is necessary to understand its behavior and to evaluate strategies to indirectly control it. Electricity consumption patterns are highly diverse. Some patterns tend to be more stable than others depending on the user behavior, that is, there are users that have a regular behavior in terms of the quantity of consumed electricity and the time intervals during the day when the consumption occurs. Also, there are groups of users that have similar consumption patterns due to the given end use of the electricity consumed, this fact gives rise to a variety of studies dealing with the characterization and forecasting of demand . Traditionally, the electric power system has needed to be tailored to users’ demand, this can be interpreted as a system's response to the demand. Conversely, there has been an interest to modify user consumption patterns through plans and incentives that seek a user’s demand responsiveness. Worldwide, DSM has been studied from different perspectives , mainly the technical aspects of DR; each country or region has characteristics that need to be considered. The Colombian electricity sector has implemented DR programs, for example, the Apagar-Paga program that achieved savings of 500 GWh and 170 MW in one month. Also, the mechanisms Voluntary Disconnectable Demand (DVD) and DR in critical conditions registered availabilities of more than 171 MW and 76 MW, respectively. The diversity of criteria, requirements, and information needed to implement a DSM strategy is wide and depends on the local context. It is necessary to consider all aspects related to loading profile variations for each end-user. Given the limited experience in Colombia in the design and implementation of DSM strategies, it is necessary to create a model to conceptualize, implement and validate a model to determine load profile variations and other variables associated. This thesis identifies the impact of the characteristics of active energy end-users in the formulation of a strategy for the implementation of local programs of Demand-side management applicable to Colombian contexts. In Chapter 1, the topic and general approach of the investigation are introduced, in Chapter 2 presents a theoretical framework built from the state of the art and proposes as a complement, a new theoretical framework that includes concepts that are developed in this thesis. Chapter 3 develops a qualitative model of demand management based on PESTAL analysis and presents an analysis of influences that were validated by experts through Hierarchical Analysis. In chapter 4 the quantitative model to estimate the changes in consumption patterns before classical response techniques of the demand, as well as time-varying price programs, additionally considering new factors such as energy culture. Chapter 5 includes software development in Modelica that allowed the model to be implemented. In chapter 6 the exercises are presented. Simulations developed with the model together with the results found. Chapter 7 presents the validation of the results carried out by experts in the area, and chapter 8 presents the conclusions and recommendations of the investigation.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Ingeniería Eléctricaspa
dc.description.researchareaGestión de la energíaspa
dc.description.researchareaSmart Gridsspa
dc.description.researchareadsspa
dc.format.extentxxxv, 180 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83287
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesM. Alizadeh, X. Li, Z. Wang, A. Scaglione, and R. Melton, “Demand-Side Management in the Smart Grid,” IEEE Signal processing Magazine, no. September, pp. 55–67, 2012.spa
dc.relation.referencesM. A. C. Moreno, “Gesti´on activa de la demanda de energ´ıa el´ectrica,” PhD thesis, Universidad Carlos III de MAdrid, 2010, p. 102.spa
dc.relation.referencesEuropean Comission, European Smart Grids Technology Platform. Brussels, 2006, p. 44, isbn: 9279014145.spa
dc.relation.referencesJ. Xia and Y. Wang, “Secure Key Distribution for the Smart Grid,” IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1437–1443, Sep. 2012, issn: 1949-3053. doi: 10.1109/TSG.2012.2199141. [Online]. Available: http:// ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6205351spa
dc.relation.referencesR. Cespedes, “A reference model for the electrical energy system based on Smart Grids,” 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA), pp. 1–6, Sep. 2012. doi: 10.1109/TDCLA . 2012 . 6319068. [Online]. Available: http : / / ieeexplore . ieee . org / lpdocs/epic03/wrapper.htm?arnumber=6319068.spa
dc.relation.referencesS. Tellez, D. Alvarez, W. Montano, C. Vargas, R. Cespedes, E. Parra, and J. Rosero, “National Laboratory of Smart Grids ( LAB + i ) at the National University of Colombia-Bogota Campus,” in IEEE T&DLA Transmission and Distribution Conference, 2014, isbn: 9781479962518spa
dc.relation.referencesFederal Energy Regulatory Commission, “Assessment of Demand Response and Advanced Metering - Staff Report,” Tech. Rep., 2006spa
dc.relation.referencesC. Gellings, “The concept of demand-side management for electric utilities,” Proceedings of the IEEE, vol. 73, no. 10, pp. 1468–1470, 1985, issn: 0018-9219. doi: 10.1109/PROC.1985.13318.spa
dc.relation.referencesC. Gu, L. Liu, T. Zhang, and Y. Zheng, “Demand response model and impact studies based on bidirectional interactive of information and electrical energy,” 2012 China International Conference on Electricity Distribution, no. Ciced, pp. 1–6, Sep. 2012. doi: 10.1109/CICED.2012.6508575.spa
dc.relation.referencesC. Grajales and L. Figueroa, “Programas de respuesta en demanda y su posible impacto en el sistema el´ectrico colombiano,” PhD thesis, Universidad Tecnologica de Pereira, 2012, p. 82.spa
dc.relation.referencesInternational Energy Agency (IEA) and Organization for Economic Cooperation and Development (OECD), “The Power to choose: Demand Response in Liberalised Electricicty Markets,” Paris - France, Tech. Rep., 2003.spa
dc.relation.referencesNorth American Electric Reliability Corporation (NERC), “Demand Response Availability Data Systems Definitions,” Atlanta, Tech. Rep. March, 2014spa
dc.relation.referencesP. Palensky and D. Dietrich, “Demand Side Management : Demand Response , Intelligent Energy Systems , and Smart Loads,” IEEE Transaction on Industrial Informatics, vol. 7, no. 3, pp. 381–388, 2011.spa
dc.relation.referencesW. Gellings, “Evolving practice of demand-side management,” 2016 Modern Power Systems and Clean Energy, no. 5, pp. 1–9, 2016. doi: 10.1007/s40565- 016-0252-1.spa
dc.relation.referencesA. F. Meyabadi and M. Deihimi, “A review of demand-side management: Reconsidering theoretical framework,” Renewable and Sustainable Energy Reviews, vol. 80, pp. 367–379, 2017, issn: 1364-0321spa
dc.relation.referencesB. P. Esther and K. S. Kumar, “A survey on residential Demand Side Management architecture, approaches, optimization models and methods,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 342–351, 2016, issn: 1364-0321spa
dc.relation.referencesA. Shewale, A. Mokhade, N. Funde, and N. D. Bokde, “An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem,” Energies, vol. 13, no. 16, 2020, issn: 1996-1073.spa
dc.relation.referencesA. Brezavˇsˇcek and D. Kofjac, “The use of quantitative methods for electricity demand forecasting,” in 32. mednarodna konferenca o razvoju organizacijskih znanosti PAMETNA ORGANIZACIJA Talenti., Portoroˇz, Slovenija, 2013spa
dc.relation.referencesUnidad de Planeacion Minero Energetica (UPME), C. Garc´ıa, and M. William, Modelo para la proyeccion de demanda de energıa electrica en colombia, Bogota, Colombia, 2014spa
dc.relation.referencesIEA DSM, “IEA DSM TASK 25: Business models for a more effective market uptake of EE energy services for SMEs and communities,” Tech. Rep., 2014, p. 34.spa
dc.relation.referencesa. Mahmood, M. Ullah, S. Razzaq, a. Basit, U. Mustafa, M. Naeem, and N. Javaid, “A New Scheme for Demand Side Management in Future Smart Grid Networks,” Procedia Computer Science, vol. 32, pp. 477–484, 2014, issn: 18770509spa
dc.relation.referencesJ. S. Vardakas, N. Zorba, and C. V. Verikoukis, “A Survey on Demand Response in Smart Grids: Pricing Methods and Optimization Algorithms,” IEEE Transactions on Industrial Informatics, vol. 11, no. 3, p. 1, 2015, issn: 1551-3203. doi: 10.1109/TII.2015.2414719.spa
dc.relation.referencesMarcela Jim´enez Castrill´on, “Estudio de la viabilidad de implementaci´on de tecnolog´ıas Smart Grids en el mercado el´ectrico colombiano,” PhD thesis, Universidad Pontificia Bolivariana, 2013, p. 118.spa
dc.relation.referencesM. A. L´opez, S. D. Torre, S. Mart´ın, and J. A. Aguado, “Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support,” vol. 64, pp. 689–698, 2014. doi: 10.1016/j.ijepes. 2014.07.065spa
dc.relation.referencesN. G. Paterakis, O. Erdin¸c, and J. P. Catal˜ao, “An overview of Demand Response: Key-elements and international experience,” Renewable and Sustainable Energy Reviews, vol. 69, no. December 2016, pp. 871–891, 2017, issn: 18790690.spa
dc.relation.referencesH. J. Jabir, J. Teh, D. Ishak, and H. Abunima, “Impact of demand-side management on the reliability of generation systems,” Energies, vol. 11, no. 8, 2018, issn: 1996-1073. doi: 10.3390/en11082155. [Online].spa
dc.relation.referencesS. Nolan and M. O’Malley, “Challenges and barriers to demand response deployment and evaluation,” Applied Energy, vol. 152, pp. 1–10, 2015, issn: 03062619. doi: 10.1016/j.apenergy.2015.04.083spa
dc.relation.referencesP. Bradley, M. Leach, and J. Torriti, “A review of the costs and benefits of demand response for electricity in the UK,” Energy Policy, vol. 52, pp. 312– 327, 2013,spa
dc.relation.referencesGrupo T´ecnico Proyecto BID, “Smart Grids Colombia Vision 2030 Parte II - Mapa de Ruta: Construcci`on y Resultados (Componente I),” Bogot´a-Colombia, Tech. Rep., 2016, p. 183.spa
dc.relation.referencesS. M. T´ellez Guti´errez, J. Rosero Garc´ıa, and R. C´espedes Gandarillas, “Sistemas de medici´on avanzada en Colombia : beneficios , retos y oportunidades Advanced metering infrastructure in Colombia : benefits , challenges and opportunities,” Ingenier´ıa y desarrollo. Universidad del Norte, vol. Vol. 36 n. No. Julio-diciembre, pp. 469–488, 2018. doi: ISSN:0122-3461spa
dc.relation.referencesL. L. Bernal Mart´ınez, “Marco Conceptual de la Gobernanza de Datos en el Dominio de las Redes Inteligentes en Colombia,” PhD thesis, Universidad Nacional de Colombia, 2018, p. 288.spa
dc.relation.referencesA. Keyhani and B. Ramachandran, “Real-time simulation of demand side management and vehicle to grid power flow in a smart distribution grid,” in 2017 IEEE International Conference on Electro Information Technology (EIT), 2017, pp. 1–5. doi: 10.1109/EIT.2017.8053426.spa
dc.relation.referencesH. Sui, Y. Sun, and W.-J. Lee, “A demand side management model based on advanced metering infrastructure,” in 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), 2011, pp. 1586–1589. doi: 10.1109/DRPT.2011.5994150.spa
dc.relation.referencesO. G. Duarte, “T´ecnicas difusas en la evaluaci´on de impacto ambiental,” PhD thesis, Universidad de Granada, 2000.spa
dc.relation.referencesM. Delgado, O. G. Duarte, and I. Requena, “An arithmetic approach for the computing with words paradigm,” International journal of intelligent systems, vol. 21, no. 2, pp. 121–142, 2006.spa
dc.relation.referencesO. G. Duarte and S. T´ellez, “A family of owa operators based on faulhaber’s formulas,” arXiv preprint arXiv:1801.10545, 2018.spa
dc.relation.referencesM. Delgado, M. Vila, and W. Voxman, “On a canonical representation of fuzzy numbers,” no. 93, pp. 205–216, 1988.spa
dc.relation.referencesI. Requena, A.Blanco, and M. Delgado, “A decision personal index of fuzzy numbers based on neural networks,” vol. 73, no. 2, pp. 185–199, 1995.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddcIngeniería Eléctricaspa
dc.subject.ddcGestión de la Demandaspa
dc.subject.lembAbastecimiento de energíaspa
dc.subject.lembEnergy supplyeng
dc.subject.lembConsumo de energíaspa
dc.subject.lembEnergy consumptioneng
dc.subject.proposalGestión de la Demandaspa
dc.subject.proposalModelos cuantitativosspa
dc.subject.proposalRespuesta de la Demandaspa
dc.subject.proposalSmart Gridseng
dc.subject.proposalDemand-side managementeng
dc.subject.proposalMathematical modelseng
dc.subject.proposalConsumer behavioreng
dc.subject.proposalEnergy managementeng
dc.titlePlanteamiento de estrategias para la Gestión de la Demanda desde el usuario activo en una red eléctrica inteligentespa
dc.title.translatedDemand-side management strategies approach from the active end-user in an electric smart grideng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52190361.2022.pdf
Tamaño:
4.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: