Efecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)

dc.contributor.advisorEstrada Bonilla, German Andres
dc.contributor.advisorBonilla, Carmen Rosa
dc.contributor.authorTorres Cuesta, Daniel Ricardo
dc.contributor.orcidDaniel Ricardo Torres [0000-0001-9101-0543]spa
dc.contributor.researchgroupSistemas agropecuarios Sosteniblesspa
dc.date.accessioned2023-05-24T21:07:08Z
dc.date.available2023-05-24T21:07:08Z
dc.date.issued2023-05-05
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa co-inoculación con bacterias solubilizadoras de fósforo (PGPB) en asocio con fuentes de fósforo (P) puede mejorar la disponibilidad de P en el suelo, generando sistemas de cultivos más sostenibles, eficientes en el aprovechamiento de nutrientes y de mayor productividad. La implementación de estas tecnologías en gramíneas de pastoreo como el kikuyo establecidas sobre suelos Andisoles con alta retención fosfórica ha sido poco explorada. El objetivo de esta investigación fue evaluar la respuesta productiva del pasto kikuyo y la dinámica del P en el suelo a la co-inoculación de PGPB con diferentes fuentes de P. El experimento se estableció sobre una pradera de kikuyo durante 18 meses, utilizando fuentes de P: alta solubilidad (fosfato diamónico-DAP), baja solubilidad (roca fosfórica-RF) y (compost-MO); y la co-inoculación de tres BSF (Herbaspirillum sp. AP21, Azospirillum brasilense D7, Rhizobium leguminosarum T88). Se encontró que la co-inoculación con BSF mejoró en 20% la disponibilidad de P en el suelo con una mayor actividad enzimática (64%), incrementando la productividad del kikuyo en 45,2% con la aplicación de RF. La co-inoculación con aplicación de MO aumentó la disponibilidad del P inorgánico en la reserva del P lábil. En conclusión, la co-inoculación de estas BSF mostró una mayor eficiencia en la solubilización y mineralización de fuentes de P de baja solubilidad, mejorando la disponibilidad del Fósforo inorgánico (Pi) en la solución del suelo y aumentando la producción del pasto kikuyo, representando una importante estrategia de manejo en praderas establecidas con esta gramínea de pastoreo. (Texto tomado de la fuente)spa
dc.description.abstractInoculation of Phosphorus Solubilizing Bacteria (PSB) in association with phosphorus (P) sources can improve the availability of P in the soil, generating more sustainable crop systems, efficient in the use of nutrients with higher productivity. The implementation of these technologies in grazing grasses such as kikuyo in Andisols with high phosphorus retention has been little explored. The objective of this research was to evaluate the productive response of kikuyo grass and soil P dynamics to BSF inoculation with different P sources. The experiment was established on a kikuyo pasture for ten and eight months, using P sources: high solubility (diammonium phosphate (DAP)), low solubility (rock phosphate (RF)) and (compost (MO)); and the co-inoculation of three BSF (Herbaspirillum sp. AP21, Azospirillum brasilense D7, Rhizobium leguminosarum T88). It was found that inoculation with BSF improved soil P availability by 20% with higher enzymatic activity (64%), increasing kikuyo productivity by 45.2% with RF application. Inoculation with MO application increased the availability of inorganic P in the labile P pool. In conclusion, the inoculation of these BSF showed greater efficiency in the solubilization of low solubility P sources, improving the availability of inorganic Phosphate (Pi) in the soil solution and increasing the production of kikuyo grass, representing an important management strategy in established pastures with this grazing grass.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaCiencias Agrícolas - Agricultura, Silvicultura y Pesca - Agronomíaspa
dc.description.sponsorshipMinisterio de Agricultura y Desarrollo Ruralspa
dc.format.extent107 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83861
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAcevedo, O., Ortiz, E., Cruz, M y Cruz, E. 2004. El papel de óxidos de hierro en suelos Terra Latinoamericana, vol. 22, núm. 4, octubre-diciembre, 2004, pp. 485-497 Sociedad Mexicana de la Ciencia del Suelo, A.C. Chapingo, México. https://www.redalyc.org/pdf/573/57311096013.pdfspa
dc.relation.referencesAbbasi, M., Musa, N & Manzoor, M., 2015. Mineralization of soluble P fertilizers and insoluble rock phosphate in response to phosphate-solubilizing bacteria and poultry manure and their effect on the growth and P utilization efficiency of Chilli (Capsicum annuum L.). Biogeosciences 12, 4607–4619. https://doi.org/10.5194/bg-12-4607-2015.spa
dc.relation.referencesAdegoke, H., Adekola, F., Fatoki, O & Ximba, B. 2013. Sorptive interaction of oxyanions with iron oxides: a review. Polish Journal of Environmental Studies 22:7-24. http://www.pjoes.com/pdf-88948-22807?filename=Sorptive%20Interactión%20of.pdf.spa
dc.relation.referencesAdesemoye, A., Torberto, H & Kloepper, J. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 2009, 58, 921–929. https://doi.org/10.1007/s00248-009-9531-y.spa
dc.relation.referencesAhmad, F., Ahmad, I & Khan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163, 173–181 (2008). doi: 10.1016/j.micres.2006.04.001.spa
dc.relation.referencesAipova, R., Aitkeldiyeva, S., Kurmanbayev, A., Sadanov, A & Topalova, O. 2010. Assessment of biotechnological potential of phosphate solubilizing bacteria isolated from soils of Southern Kazakhstan. Natural Science Vol.2 No.8, August 25, 2010. DOI: 10.4236/ns.2010.28105.spa
dc.relation.referencesAlbacete, M. 2014. Residuos orgánicos como fuentes de fósforo (Doctoral disertación, Universidad Politécnica de Madrid).spa
dc.relation.referencesAlam, F., Khan, A., Fahad, S., Nawaz, S., Ahmed, N., Arif Ali, M., Adnan, M., Dawar, K., Saud, S., Hassan, S., Aown M., Raza, S., Naveed, K., Arif, M., Datta, R & Danish,S. 2022. Phosphate solubilizing bacteria optimize wheat yield in mineral phosphorus applied alkaline soil, Journal of the Saudi Society of Agricultural Sciences, Volume 21, Issue 5, 2022, Pages 339-348, ISSN 1658-077X, https://doi.org/10.1016/j.jssas.2021.10.007.spa
dc.relation.referencesAlamzeb, M. 2022. Management of Phosphorus Sources in Combination with Rhizobium and Phosphate Solubilizing Bacteria Improve Nodulation, Yield and Phosphorus Uptake in Chickpea. Gesunde Pflanzen, 1-16. https://doi.org/10.1007/s10343-022-00722-2spa
dc.relation.referencesAlori, E., Glick, B & Babalola, O. 2017. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol., 02 June 2017. Sec. Plant Pathogen Interactions. https://doi.org/10.3389/fmicb.2017.00971spa
dc.relation.referencesAlvarado, A., Mata, R., Chinchilla, M. 2014. Arcillas identificadas en suelos de costa rica a nivel generalizado durante el período 1931-2014: i. Historia, metodología de análisis y mineralogía de arcillas en suelos derivados de cenizas volcánicas. Agronomía Costarricense 38(1):75-106. ISSN:0377-9424 / 2014.spa
dc.relation.referencesAnda, M., Kasno, A., Ginting, C., Barus, P & Purwanto, S. 2021. Response of Andisols to intensive agricultural land use: Implication on changes in P accumulation and colloidal surface charge. Earth and Environmental Science648 (2021) 012016. Doi:10.1088/1755-1315/648/1/012016.spa
dc.relation.referencesArai, Y & Sparks, D. 2007. Phosphate reaction dynamics in soils and soil minerals: a multiscale approach. Adv Agron 94: 135–179. https://doi.org/10.1016/S0065-2113(06)94003-6spa
dc.relation.referencesArcand, M & Schneider, K. 2006. Plant- And microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: A review. In Anais da Academia Brasileira de Ciências (Vol. 78, Issue 4, pp. 791-807). Academia Brasileira de Ciências. https://doi.org/10.1590/S0001-37652006000400013.spa
dc.relation.referencesAriza-Nieto, C., Mayorga, O. L., Mojica, B., Parra, D., & Afanador-Tellez, G. 2018. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. Journal of Near Infrared Spectroscopy, 26(1), 44-52. https://journals.sagepub.com/doi/pdf/10.1177/0967033517746900?casa_token=7bneprh80isAAAAA:uVcRn63Yf2OiGcvy0gah9wTNQRtOZgLa2LlBtHeOBLcbOBXAsgDycWz0-qtDVtEh_VHhDuH5l-vl3oE.spa
dc.relation.referencesÁvila, E. 2005. Los suelos de Colombia y sus estadísticas más recientes. Análisis Geográficos 29, pp. 13-21. http://documentación.ideam.gov.co/cgi-bin/koha/opac-MARCdetail.pl?bibliónumber=29015.spa
dc.relation.referencesAzeem, M., Riaz, A., Chaudhary, A., Hayat, R., Hussain, Q., Tahir, M & Imran, M., 2014. Microbial phytase activity and their role in organic P mineralization. Archives of Agronomy and Soil Science 14, 1–16. https://doi.org/10.1080/03650340.2014.963796.spa
dc.relation.referencesBai, J., Ye, X., Jia, J., Zhang, G., Zhao, Q., Cui, B & Liu,X. 2017. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions, Chemosphere, Volume 188, 2017, Pages 677-688, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2017.08.117.spa
dc.relation.referencesBarrow, N & Debnath, A. 2015. Effect of phosphate status and pH on sulphate sorption and desorption Eur. J. Soil Sci., 66 (2) (2015), pp. 286-297, https://doi.org/10.1111/ejss.12223.spa
dc.relation.referencesBarrow, N. 2017. The effects of pH on phosphate uptake from the soil. Plant Soil, 410 (1-2) (2017), pp. 401-410, https://doi.org/10.1007/s11104-016-3008-9.spa
dc.relation.referencesBarrow, N. 2020. Comparing two theories about the nature of soil phosphate Eur. J. Soil Sci., 72 (2) (2020), pp. 679-685. https://doi.org/10.1111/ejss.13027.spa
dc.relation.referencesBehera, B., Singdevasachan, S., Mishra, R., Dutta, S & Thatoi, H. 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrive – A review. Biocatal. Agr. Biotechn. (Netherlands). 3:97-110. https://doi.org/10.1016/j.bcab.2013.09.008.spa
dc.relation.referencesBenavides, J., Avellaneda, Y., Buitrago, C., Castro, E., Castillo, J., Rendón, C., Romero, J., Torres, D., Vargas, J., Zuñiga, A., Benavides, G., Carrillo, J., Díaz, J., Gómez, C., Hernández, D., Porras, A & Vela, J. 2019. Guías de mejores prácticas en sistemas de producción de leche con base en pasturas para el trópico alto colombiano. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA) y The Agribusiness Group. http://hdl.handle.net/20.500.12324/35641.spa
dc.relation.referencesBeltrán, M. 2014. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Artículo de revisión. Corpoica Cienc. Tecnol. Agropecu. (2014) 15(1) 101-113. http://www.scielo.org.co/pdf/ccta/v15n1/v15n1a09.pdf.spa
dc.relation.referencesBeltran-Medina, J. I., Romero-Perdomo, F., Molano-Chavez, L., Silva, A. M., & Estrada-Bonilla, G. A. 2022. Differential Plant Growth Promotion Under Reduced Phosphate Rates in Two Genotypes of Maize by a Rhizobial Phosphate-Solubilizing Strain. Frontiers in Sustainable Food Systems, 6, 1-13. https://www.researchgate.net/profile/German-Estrada-Bonilla/publication/361847066_Differential_Plant_Growth_Promotion_Under_Reduced_Phosphate_Rates_in_Two_Genotypes_of_Maize_by_a_Rhizobial_Phosphate-Solubilizing_Strain/links/62c975f8cab7ba7426dfedf7/Differential-Plant-Growth-Promotion-Under-Reduced-Phosphate-Rates-in-Two-Genotypes-of-Maize-by-a-Rhizobial-Phosphate-Solubilizing-Strain.pdf.spa
dc.relation.referencesBelgaroui, N., Berthomieu, P., Rouached, H., & Hanin, M. 2016. The secretion of the bacterial phytase PHY‐US 417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co‐growth. Plant biotechnology journal, 14(9), 1914-1924. https://doi.org/10.1111/pbi.12552.spa
dc.relation.referencesBernal, J. 1998. Fertilización de pastos mejorados. En: Guerrero, R. (ed). Fertilización de cultivos en clima frío. Ed. Sáenz y Cía. Ltda. Bogotá, Colombia. p. 278-328.spa
dc.relation.referencesBillah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. 2019. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 1–13. https://doi:10.1080/01490451.2019.1654043.spa
dc.relation.referencesBobadilla, C y Rincón, S. 2008. Aislamiento y producción de Bacterias Fosfatosolubilizadoras a partir de compost obtenido de residuos de plaza. Trabajo de grado para obtener el título de Microbiología Industrial, Pontificia Universidad Javeriana, Facultad de Ciencias. Junio 2008. https://repository.javeriana.edu.co/handle/10554/8433.spa
dc.relation.referencesBorggaard, O., Szilas, C., Gimsing, A & Rasmussen, L. 2004. Estimation of soil phosphate absorption capacity by means of a pedotransfer function. Geoderma. Volume 118,issue 1-2; 55-61. https://doi.org/10.1016/S0016-7061(03)00183-6.spa
dc.relation.referencesBol, R., Bolger, T., Cully, R., & Little, D. 2003. Recalcitrant soil organic materials mineralize more efficiently at higher temperatures. Journal of Plant Nutrition and Soil Science, 166(3), 300–307. https://doi.org/10.1002/jpln.200390047.spa
dc.relation.referencesBolland, M., Gilkes, R & Brennan, R. 2001. The influence of soil proper- ties on the effectiveness of phosphate rock fertilizers. Soil Res 39:773–798. https://doi.org/10.1071/SR00025.spa
dc.relation.referencesBonatotzky, T., Ottner, F., Erlendsson, E & Gísladottir, G. 2021. Weathering of tephra and the formation of pedogenic minerals in young andosols, South East Iceland. Catena 198, 105030 (2021). https://doi.org/10.1016/j.catena.2020.105030.spa
dc.relation.referencesBorie, F., Rubio, R. 2003. Total and organic phosphorus in Chilean volcanic soils. Gayana Botanica. 60, 69-78. http://dx.doi.org/10.4067/S0717-66432003000100011.spa
dc.relation.referencesBriceño, M., Escudey, M., Galindo, G., Borchardt, D., Chang, A. 2004. Characterization of chemical phosphorus forms in volcanic soils using 31P-NMR spectroscopy. Commun.Soil Sci. Plan. 35, 1323-1337. https://doi.org/10.1081/CSS-120037549.spa
dc.relation.referencesBunemann, E. 2015. Assessment of gross and net mineralization rates of soil organic phosphorus–A review. Soil Biology and Biochemistry, 89, 82–98. https://doi.org/10.1016/j.soilbio.2015.06.026.spa
dc.relation.referencesBurns, R., DeForest, J., Marxsen, J., Sinsabaugh, R., Stromberger, M., Wallenstein, M., Weintraub, M & Zoppini, A. 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, Volume 58, 2013, Pages 216-234. ISSN 0038-0717. https://doi.org/10.1016/j.soilbio.2012.11.009.spa
dc.relation.referencesCarulla, J., Cárdenas, E., Sánchez, N., Riveros, C. 2004. Valor nutricional de los forrajes más usados en los sistemas de producción lechera especializada de la zona andina colombiana; En: Eventos y Asesorías Agropecuarias EU (editores), Seminario Nacional de Lechería Especializada: “Bases Nutricionales y su Impacto en la Productividad”. Medellín, 21 – 38 p.spa
dc.relation.referencesCarpenter, S. 2008. Phosphorus control is critical to mitigating eutrophicatión. Proceedings of the Natiónal Academy of Sciences of the United States of America, 105, 11039–11040. https://doi.org/10.1073/pnas.0806112105.spa
dc.relation.referencesChandler, D., Davidson, G., Grant, W.P., Greaves, J & Tatchell, G. 2008. Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability: Trends Food Sci. Tec,. 19: 275-283. https://doi.org/10.1016/j.tifs.2007.12.009.spa
dc.relation.referencesChaverra, G., Davila, S., Villamizar, R & Bernal, J. 1967. El cultivo de los pastos en la Sabana de Bogotá. ICA. Bogotá, Colombia. Cursillo sobre manejo de praderas y cultivo de pastos de clima frío. Sociedad de Agricultores de Colombia. Aedita Editores Ltda., Bogotá, COL.spa
dc.relation.referencesChapin, F. 1980. The mineral nutrition of wild plants. Annual review of ecology and systematics, Alaska, p. 233-260, 1980. https://doi.org/10.1146/annurev.es.11.110180.001313.spa
dc.relation.referencesChen, Y., Rekha, P., Arun, A., Shen, F., Lai, W & Young, C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. App Soil Ecol 34:33–41. doi.org/10.1016/j.apsoil.2005.12.002.spa
dc.relation.referencesChiu, C., Baillie, I., Jien, S., Hallett, L & Hallett, S. 2021. Sequestration of P fractions in the soils of an incipient ferralisation chronosequence on a humid tropical volcanic island. Bot Stud. 2021 Dec 2;62(1):20. doi: 10.1186/s40529-021-00326-5. PMID: 34855017; PMCID: PMC8639856.spa
dc.relation.referencesColf, J., Truter, W & Botha, P. 2014. The production potential of Kikuyu (Pennisetum clandestinum) pastures over-sown with Ryegrass (Lolium spp.); “University of Pretoria. https://repository.up.ac.za/bitstream/handle/2263/25770/dissertation.pdf?sequence=1.spa
dc.relation.referencesCondron, L., Turner, B., Cade-Menun, B. 2005. Chemistry and dynamics of soil organic phosphorus. In: Sims, J.T., Sharpley, A.N. (Eds.), Phosphorus: agriculture and the environment. ASA/CSSA/SSSA, Madison, Wisconsin. United States of America, pp 87-121. https://doi.org/10.2134/agronmonogr46.c4.spa
dc.relation.referencesCondron, L & Newman, S. 2011. Revisiting the fundamentals of phosphorus fractionation in soils and sediments. J. Soils Sediments. 11, 830-840. https://doi.org/10.1007/s11368-011-0363-2.spa
dc.relation.referencesConant, R., Paustian, K., & Elliott, E. 2001. Grassland Management and Conversion into Grassland: Effects on Soil Carbon. Ecological Applications, 11(2), 343–355. https://doi.org/10.2307/3060893.spa
dc.relation.referencesCorrea, H., Pabón, M., Sánchez, M., Carulla, J. 2018a. Efecto del nivel de suplementación sobre el uso de nitrógeno, el volumen y la calidad de la leche en vacas Holstein de primer y segundo tercio de lactancia en el trópico alto de Antioquia. Livestock Research and Rural Development 2011; 23:77. URL: http://www.lrrd.org/lrrd23/4/corr23077.htm.spa
dc.relation.referencesCortés-Patiño, S., Vargas, C., Álvarez-Flórez, F., Bonilla, R., Estrada-Bonilla, G. 2021. Potential of Herbaspirillum and Azospirillum Consortium to Promote Growth of Perennial Ryegrass under Water Deficit. Microorganisms 2021, 9, 91. https://doi.org/10.3390/microorganisms9010091.spa
dc.relation.referencesCortés-Patiño, S., Vargas, C., Alvarez-Flórez, F., Estrada-Bonilla, G. 2022. Co-Inoculation of Plant-Growth Promoting Bacteria Modulates Physiological and Biochemical Responses of Perennial Ryegrass to Water Deficit. Plants 2022, 11, 2543. https://doi.org/10.3390/spa
dc.relation.referencesCrews. T & Brookes, P. 2014. Changes in soil phosphorus forms through time in perennial versus annual agroecosystems. Agriculture, Ecosystems and Environment, 184: 168–181 http://dx.doi.org/10.1016/j.agee.2013.11.022.spa
dc.relation.referencesDahlgren, R., Saigusa, M & Ugolini, F. 2004. The Nature, Properties and management of Volcanic Soils. Glob. In Advances in Agronomy, Vol 82, 113-181. https://books.google.com.co/books?hl=es&lr=&id=_19ObhE8rRoC&oi=fnd&pg=PA113&dq=Ugolini,+F.C.,+Dahlgren,+R.A.,+2003.+Soil+development+in+volcanic+ash.&ots=vikujWDo1V&sig=zRL8YGGSKBrDaj4eCYEz0YWd4To#v=onepage&q=Ugolini%2C%20F.C.%2C%20Dahlgren%2C%20R.A.%2C%202003.%20Soil%20development%20in%20volcanic%20ash.&f=false.spa
dc.relation.referencesDavidson, J & Milthorpe, F. 1966. Leaf Growth in Dactylis glomerate after Defoliation, Annals of Botany, Volume 30, Issue 2, April 1966, Pages 173–184. https://doi.org/10.1093/oxfordjournals.aob.a084065.spa
dc.relation.referencesDe Bolle, S. 2013. Phosphate saturation and phosphate leaching of acidic sandy soils in Flanders: analysis and mitigation options. Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium. Doctoral dissertation, Thesis submitted for degree of Doctor (PhD) in Applied Biological Sciences. https://biblio.ugent.be/publicatión/4143518/file/4143536.spa
dc.relation.referencesDel Campillo, M., Van der Zee, S & Torrent, J. 1999.Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. European Journal of Soil Science. Volume 50, issue 3;391-399. https://doi.org/10.1046/j.1365-2389.1999.00244.x.spa
dc.relation.referencesDelfim, J., Schoebitz, M., Paulino, L., Hirzel, J & Zagal, E. 2018. Phosphorus Availability in Wheat, in Volcanic Soils Inoculated with Phosphate-Solubilizing Bacillus thuringiensis. Sustainability 2018, 10, 144. https://doi.org/10.3390/su10010144.spa
dc.relation.referencesDelmelle, P., Opfergelt, S and Cornelis, J. 2015. The Encyclopedia of Volcanoes || Volcanic Soils. , (), 1253–1264. https://doi.org/10.1016/B978-0-12-385938-9.00072-9.spa
dc.relation.referencesDevau, N., Le Cadre, E., Hinsinger, P & Gérard, F. 2010. A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Annals of Botanic (Lond), Volume 105: 1183–1197. https://doi.org/10.1093/aob/mcq098.spa
dc.relation.referencesDodd, I. & Ruiz, J. 2012. Microbial enhancement of crop resource use efficiency. Curr. Opin. Biotechnol. 2012, 23, 236–242. https://doi.org/10.1016/j.copbio.2011.09.005.spa
dc.relation.referencesEbelhar, S. 2008. Labile pool. In: Chesworth, W. (eds) Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3995-9_313.spa
dc.relation.referencesEcheverri, J; Restrepo, L y Parra, J. 2010. Evaluación comparativa de los parámetros productivos y agronómicos del pasto kikuyo Pennisetum clandestinum bajo dos metodologías de fertilización. Revista Lasallista de Investigación, vol. 7, núm. 2, julio-diciembre, 2010, pp. 94 - 100. Corporación Universitaria Lasallista Antioquia, Colombia.spa
dc.relation.referencesElhaissoufi, W., Khourchi, S., Ibnyasser, A., Ghoulam, C., Rchiad, Z., Zeroual, Y., Ehrlich, H., Newman, D., Kappler, A., editors. 2016. Ehrlich´s Geomicrobiology book. 6 th edition. Boca Raton: Taylor & Francis Group; 2016. Geomicrobial Interactions with Phosphorus. ISBN 9780367658724, Published March 30, 2021 by CRC Press 668 Pages. https://books.google.com.co/books?hl=es&lr=&id=0NWYCgAAQBAJ&oi=fnd&pg=PP1&dq=Ehrlich,+H.,+Newman,+D.,+Kappler,+A.,+editors.+2016.+Ehrlich%C2%B4s+Geomicrobiology+&ots=DMXLgS7k0F&sig=lYvdkry3bFC0B850BohT8eTX_TM&redir_esc=y#v=onepage&q&f=false.spa
dc.relation.referencesEscudey, M., Galindo, G., Föster, J., Briceño, M., Diaz, P., Chang, A. 2001. Chemical forms of phosphorus of volcanic ash derived soils in Chile. Commun. Soil Sci. Plant. 32, 601-606. https://doi.org/10.1081/CSS-100103895.spa
dc.relation.referencesEspinoza, J. 2004. Fijación de fósforo en suelos derivados de ceniza volcánica. informaciones agronómicas 55:5-8. 2004. https://www.researchgate.net/publicatión/237118666_FIJACIÓN_DE_FOSFORO_EN_SUELOS_DERIVADOS_DE_CENIZA_VOLCANICA.spa
dc.relation.referencesEspinoza, J y Rubiano, Y. 2015. Procesos específicos de formación en Andisoles, Alfisoles y Ultisoles en Colombia. Revista Escuela de Ingeniería de Antioquia - EIA, ISSN 1794-1237 / Año XII / Volumen 12 / Edición Especial N.2 / junio 2015/ pp. E85-E97. https://revistas.eia.edu.co/index.php/reveia/article/view/709/664.spa
dc.relation.referencesEstrada, G., Baldani, V., De Oliveira, D. et al. 2013. Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 369, 115–129 (2013). https://doi.org/10.1007/s11104-012-1550-7.spa
dc.relation.referencesEstrada-Bonilla, G., Durrer, A., & Cardoso, E. 2021. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Applied Soil Ecology, 157, 103760. https://doi.org/10.1016/j.apsoil.2020.103760.spa
dc.relation.referencesEstrada, G., Durrer, A & Cardoso, E. 2021. Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Appl. Soil Ecol. 157, 103760. https://doi.org/10.1016/j.apsoil.2020.103760.spa
dc.relation.referencesFageria, V. 2001. Nutrient interactions in crop plants, Journal of Plant Nutrition, 24:8, 1269-1290, https://doi.org/10.1081/PLN-100106981.spa
dc.relation.referencesFassbender, H. 1982. Química de suelos; con énfasis en suelos de América Latina. 1ed. 3 reimpresión. San José de Costa Rica, IICA. 422 p.spa
dc.relation.referencesFujii, K., Sukartiningsih, Hayakawa, C. et al. 2020. Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant Soil 446, 425–439 (2020). https://doi.org/10.1007/s11104-019-04367-5.spa
dc.relation.referencesFisher, R & Schmincke, H. 1984. Pyroclastic Rocks. Spronger-Verlag, Berlin. https://www.geokniga.org/bookfiles/geokniga-pyroclastic-rocks.pdfspa
dc.relation.referencesFink, J., Inda, A., Tiecher, T & Barrón, V. 2016.Iron oxides and organic matter on soil phosphorus availability Cienc. e Agrotecnologia, 40 (4) (2016), pp. 369-379. https://doi.org/10.1590/1413-70542016404023016.spa
dc.relation.referencesFonseca, C., Balocchi, O., Keim, J. P., & Rodríguez, C. 2016. Effect of defoliation frequency on yield and nutritional composition of Pennisetum clandestinum Hochst. ex Chiov. Agro Sur, 44(3), 67-76. http://revistas.uach.cl/pdf/agrosur/v44n3/art07.pdf.spa
dc.relation.referencesFrossard, E., Sinaj, S., Bangerter, F & Traore, O. 2002. Forms and exchangeability of inorganic phosphate in composted solid organic waste. Nutr Cycle Agroecosyst 62:103–113.https://www.research- collectión.ethz.ch/bitstream/handle/20.500.11850/422919/1/10705_2004_Article_323297.pdf.spa
dc.relation.referencesFontes, M., Weed, S & Bowen, L. 1992. Association of Microcrystalline Goethite and Humic Acid in Some Oxisols from Brazil. Soil Science Society of America Journal, 56: 982-990. https://doi.org/10.2136/sssaj1992.03615995005600030050x.spa
dc.relation.referencesFox, R & Searle, P. 1978. Phosphate Adsorption by Soils of the Tropics. In Diversity of Soils in the Tropics (eds J.J. Nicholaides and L.D. Swindale). https://doi.org/10.2134/asaspecpub34.c7.spa
dc.relation.referencesFu, H., Yang, Y., Zhu, R., Liu, J., Usman, M., Chen, Q., & He, H. 2018. Superior adsorption of phosphate by ferrihydrite-coated and lanthanum-decorated magnetite. Journal of Colloid and Interface Science, 530, 704-713. https://doi.org/10.1016/j.jcis.2018.07.025.spa
dc.relation.referencesFulkerson, B., Griffiths, N., Sinclair, K., & Beale, P. 2010. Milk production from kikuyu grass-based pastures. Primefacts, 1068(May), 1–13. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0012/359949/Milk-productión-from-kikuyu-grass-based-pastures.pdf.spa
dc.relation.referencesFulkerson, W & Donaghy, D. 2001. Plant-soluble carbohydrate reserves and senescence- Key criteria for developing an effective grazing management system or Ryegrass-based pastures: A review. Australian Journal of Experimental Agriculture. 41: 261-275. https://doi.org/10.1071/EA00062.spa
dc.relation.referencesGarcía, S., Islam, M., Clark, E & Martin, P. 2014. Kikuyu based pasture for dairy production: A review. Crop and Pasture Science 65(8). https://doi.org/10.1071/CP13414.spa
dc.relation.referencesGasparatos, D., Haidouti, C., Haroulis, A & Tsaousidou, P. 2006. Estimation of phosphorus status of soil Fe-enriched concretions with the acid ammonium oxalate method. Communications in Soil Science and Plant Analysis 37:2375-2387. https://doi.org/10.1080/00103620600819891.spa
dc.relation.referencesGatiboni, L & Condron, L. 2021. A rapid fractionation method for assessing key soil phosphorus parameters in agroecosystems, Geoderma, Volume 385, 2021, 114893, ISSN 0016-7061, https://doi.org/10.1016/j.geoderma.2020.114893.spa
dc.relation.referencesGoldstein, A. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biological Agriculture & Horticulture Vol 12:185–193. https://doi.org/10.1080/01448765.1995.9754736.spa
dc.relation.referencesGyaneshwar, P., Kumar, G., Parekh, L., Poole, P. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83-93. https://doi.org/10.1023/A:1020663916259.spa
dc.relation.referencesHe, Z., Bian, W & Zhu, J. 2002. Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Comm. Soil Sci. Plant Anal., 33: 647-663. https://doi.org/:10.1081/CSS-120003057.spa
dc.relation.referencesGueçaimburu, J., Vázquez, J., Tancredi, F., Reposo, G., Rojo, V., Martínez, M & Introcaso, R. 2019. Evolución del fósforo disponible a distintos niveles de compactación por tráfico agrícola en un argiudol típico. Chilean journal of agricultural & animal sciences, 35(1), 81-89. https://dx.doi.org/10.4067/S0719-38902019005000203.spa
dc.relation.referencesHedley, M., Steward, J., Chauhuan, B. 1982. Changes in organic and inorganic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 46, 970-976. https://doi.org/10.2136/sssaj1982.03615995004600050017x.spa
dc.relation.referencesHernández, G., Cabrera, G., Izquierdo, I., Socarrás, A., Hernández, L., Sánchez, J. 2018. Indicadores edáficos después de la conversión de un pastizal a sistemas Agroecológicos. Pastos y Forrajes, Vol. 41, No. 1, pp 3-12. enero-marzo, 2018.spa
dc.relation.referencesHerrera, M. 2006. Suelos derivados de cenizas volcánicas en Colombia: Estudio fundamental e implicaciones en ingeniería. Trabajo presentado para obtener el título de Doctor en ingeniería. Universidad de los Andes, Facultad de Ingeniería. https://repositorio.uniandes.edu.co/bitstream/handle/1992/7812/u277084.pdf?sequence=1&isAllowed=y.spa
dc.relation.referencesHinsinger, P. 2001. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237(2), 173-195. https://doi.org/10.1023/A:1013351617532.spa
dc.relation.referencesHuygens, D., Boeckx, P., Van Cleemput, O., Oyarzún, C., & Godoy, R. 2005. Aggregate and soil organic carbon dynamics in South Chilean Andisols, Biogeosciences, 2, 159–174, https://doi.org/10.5194/bg-2-159-2005.spa
dc.relation.referencesHutchins, D., Qu, P., Fu, F., Kling, J., Huh, M., Wang, X. 2019. Distinct responses of the nitrogen-fixing marine cyanobacterium Trichodesmium to a thermally-variable environment as a function of phosphorus availability. Front Microbiol 10:1282. https://doi.org/10.3389/fmicb.2019.01282.spa
dc.relation.referencesIbrahim, M., Anwar-Ul-Hassan, Iqbal, M & Valeem, E. 2008. Response of wheat growth and yield to various levels of compost and organic manure. Pakistan J Bot 40(5):2135–2141.https://www.researchgate.net/publicatión/222101716_Response_of_wheat_growth_and_yield_to_various_levels_of_compost_and_organic_manure.spa
dc.relation.referencesIllmer, P & Schinner, F. 1995. Solubilizatión of inorganic calcium phosphates—solubilizatión mechanisms Soil Biology and Biochemistry. Vol 27, 257–263. https://doi.org/10.1016/0038-0717(94)00190-C.spa
dc.relation.referencesInstituto geográfico Agustín Codazzi (IGAC). 2012. Levantamiento Detallado de Suelos en las Áreas Planas de 14 municipios de la Sabana de Bogotá. Departamento de Cundinamarca. Escala 1:10.000.spa
dc.relation.referencesInsuasti, G., Parra, A. S., & Salazar, J. J. 2014. Producción de materia seca y calidad del pasto Kikuyo Pennisetum clandestinum en diferentes niveles de fertilización nitrogenada y en asocio con aliso Alnus acuminata en el trópico alto colombiano. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123660/1/p32-41-Doc.-268-Anais.pdf.spa
dc.relation.referencesJanes, V., Blackwell, M., Blair, G., Davies, J., Haygarth, P., Mezeli, M & Stewart, G. 2022. A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency. Soil Biology and Biochemistry, Volume 165, 2022, 108537, ISSN 0038-0717. https://doi.org/10.1016/j.soilbio.2021.108537.spa
dc.relation.referencesJahnke, R. 1992. The Phosphorus Cycle. International Geophysics, Volume 50, 1992, Pages 301-315. https://doi.org/10.1016/S0074-6142(08)62697-2.spa
dc.relation.referencesJiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., Ouyang, T & Wang, Y. 2015. Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Applied Surface Science 353:1087-1094. https://doi.org/10.1016/j.apsusc.2015.06.190.spa
dc.relation.referencesJorquera, M., Crowley, D., Marschner, P., Greiner, R., Fernández, M., Romero, D., Menezes-Blackburn, D & De La Luz Mora, M. 2011.Identificatión of β-propeller phytase-encoding genes in culturable Paenibacillus and Bacillus spp. from the rhizosphere of pasture plants on volcanic soils. FEMS Microbiol. Ecol. 2011, 75, 163–172. https://doi.org/10.1111/j.1574-6941.2010.00995.x.spa
dc.relation.referencesKalayu, G. 2019. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. Int. J. Agron. Volume 2019 | Article ID 4917256 | https://doi.org/10.1155/2019/4917256.spa
dc.relation.referencesKavanová, M., Lattanzi, F., Grimoldi, A & Schnyder, H. 2006. Phosphorus deficiency decreases cell division and elongation in grass leaves. Plant Physiol. 2006 Jun;141(2):766-75. https://doi.org/10.1104/pp.106.079699.spa
dc.relation.referencesKwesi, S. 2020. Processes and Factors Affecting Phosphorus Sorption in Soils. Sorption in 2020s. https://doi.org/10.5772/intechopen.90719.spa
dc.relation.referencesKhan, M., Zaidi, A., Ahemad, M., Oves, M., Wani, P. 2010. Plant growth promotion by phosphate solubilizing fungi—current perspective. Arch Agron Soil Sci 56:73–98.. https://doi.org/10.1080/03650340902806469.spa
dc.relation.referencesKhan, I., Zada, S., Rafiq, M. et al. 2022. Phosphate solubilizing epilithic and endolithic bacteria isolated from clastic sedimentary rocks, Murree lower Himalaya, Pakistan. Arch Microbiol 204, 332 (2022). https://doi.org/10.1007/s00203-022-02946-2.spa
dc.relation.referencesKishore, N., Pindi, P.K., Ram Reddy, S. 2015. Phosphate-Solubilizing Microorganisms: A Critical Review. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2286-6_12.spa
dc.relation.referencesKonietzny, U & Greiner, R. 2004. Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology. Vol. 35 p. 11–18. https://doi.org/10.1590/S1517-83822004000100002.spa
dc.relation.referencesKruse, J., Abraham, M., Amelung, W., Baum, C., Bol, R., Kühn, O., Lewandowski, H., Niederberger, J., Oelmann, Y., Rüger, C., Santner, J., Siebers, M., Siebers, N., Spohn, M., Vestergren, J., Vogts, A & Leinweber, P. 2015. Innovative methods in soil phosphorus research: A review. J. Plant Nutr. Soil Sci., 178 (1) (2015), pp. 43-88. https://doi.org/10.1002/jpln.201400327.spa
dc.relation.referencesKumar, R., Kumar, R., Mittal, S., Arora, M & Babu, J. 2016. Role of soil physicochemical characteristics on the present state of arsenic and its absorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India. Journal of Soils and Sediments 16:605-620. https://doi.org/10.1007/s11368-015-1262-8.spa
dc.relation.referencesKumar, A & Patel, H. 2018. Role of microbes in phosphorus availability and acquisition by plants. International Journal of Current Microbiology and Applied Sciences, vol. 7, no. 5, pp. 1344–1347, 2018. https://doi.org/10.20546/ijcmas.2018.705.161.spa
dc.relation.referencesLambers, H & Plaxton, W. 2018. P: back to the roots. Annu. Plant Rev. 48,3–22. https://doi.org/10.1146/annurev-arplant-102720.spa
dc.relation.referencesLarsen S. 1967. Soil phosphorus. In Adv Agron, Volume 19: 151–210. https://doi.org/10.1016/S0065-2113(08)60735-X.spa
dc.relation.referencesLeamy, M. 1984. Andisols of the world In: Congreso internacional de suelos volcánicos comunicaciones Universidad de la Laguna Secretariado de Publicaciones serie informes 13 pp 368–387. https://escholarship.org/content/qt0xw6q794/qt0xw6q794_noSplash_9f88f13468576cabd293c6888416e1a3.pdf.spa
dc.relation.referencesLeirós, M., Trasar-Cepeda, C., Seoane, S & Gil-Sotres, F. 1999. Dependence of mineralization of soil organic matter on temperature and moisture, Soil Biology and Biochemistry, Volume 31, Issue 3, Pages 327-335, ISSN 0038-0717, https://doi.org/10.1016/S0038-0717(98)00129-1.spa
dc.relation.referencesLeite, M. 2009. Fungos Filamentosos do Lodo de Esgoto: Impacto na Microbiana Fúngica e Potencial Enzimático. 65 f. Dissertação (Mestrado em Desenvolvimento de Processos Ambientais) — Universidade Católica de Pernambuco, Recife. http://tede2.unicap.br:8080/bitstream/tede/590/1/dissertacao_marcela_leite.pdf.spa
dc.relation.referencesLi, X., Luo, L., Yang, J., Li, B & Yuan, H. 2015. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2. Appl. Biochem. Biotechnol. 2015, 175, 2755–2768. https://doi.org/10.1007/s12010-014-1465-2.spa
dc.relation.referencesLindsay, W. 1979. Chemical equilibria in soils. New York: Wiley. http://catalog.hathitrust.org/api/volumes/oclc/4883190.html.spa
dc.relation.referencesLindsay, W., Vlek, P & Chien, S. 1989. Phosphate minerals. In Minerals in Soil Environment - Dixon JB Weed SB eds, Ed 2. Soil Science Society of America, Madison, WI, pp 1089–1130. https://doi.org/10.2136/sssabookser1.2ed.c22.spa
dc.relation.referencesLuengo, C., Brigante, M., Antelo, J & Avena, M. 2006. Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. J Colloid Interface Sci 300: 511–518. https://doi.org/10.1016/j.jcis.2006.04.015.spa
dc.relation.referencesMahfud, A., Devnita, M., Anda, M., Goenadi, D & Nugraha, A. 2022. "Characteristics of Andisols Developed from Andesitic and Basaltic Volcanic Ash in Different Agro-Climatic Zones" Soil Systems 6, no. 4: 78. https://doi.org/10.3390/soilsystems6040078.spa
dc.relation.referencesMasuco, M., Miranda, A., Estrada, G., Ferraz, R., Vilela, J., Otto, R., Vitti, G & Nogueira, E. 2021. Improving the fertilizer value of sugarcane wastes through phosphate rock amendment and phosphate-solubilizing bacteria inoculation. Journal of Cleaner Production 298 (2021) 126821. https://doi.org/10.1016/j.jclepro.2021.126821.spa
dc.relation.referencesMears, P. 1970. Kikuyu (Pennisetum clandestinum) as a pasture grass - a review. Tropical Grasslands 4, 139-152. https://www.doc-developpement-durable.org/file/Culture/Fertilisation-des-Terres-et-des-Sols/eaux-et-sols-salins/plantes-pour-sols-salins/Pennisetum%20clandestinum/Pennisetum%20clandestinum%20as%20a%20pasture%20grass_review.pdf.spa
dc.relation.referencesMADR. 2014. Resultados del primer censo de Unidades Productoras de leche en la Región del Valle de Ubaté y Chiquinquirá. Ministerio de agricultura y desarrollo rural; Unidad de seguimiento de precios de la leche, USP; Corporación Colombia Internacional, CCI.spa
dc.relation.referencesMcGill, W & Cole, C. 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter, Geoderma, Volume 26, Issue 4, 1981, Pages 267-286, ISSN 0016-7061, https://doi.org/10.1016/0016-7061(81)90024-0.spa
dc.relation.referencesMalagón, D. 2003. Ensayo sobre tipología de suelos colombianos -Énfasis en génesis y aspectos ambientales- Rev. Acad. Colomb. Cienc. 27(104): 319-341. 2003. ISSN 0370-3908. https://www.accefyn.com/revista/Vol_27/104/319-341.pdf.spa
dc.relation.referencesMarais, J. 2001. Factors affecting the nutritive value of kikuyu grass (Cenchrus clandestinus) a review. Tropical Grasslands 35: 65-84. https://www.tropicalgrasslands.info/public/journals/4/Historic/Tropical%20Grasslands%20Journal%20archive/PDFs/Vol_35_2001/Vol_35_02_01_pp65_84.pdf.spa
dc.relation.referencesMason, J & Zanner, C. 2005. Grassland Soils, Editor(s): Daniel Hillel, Encyclopedia of Soils in the Environment, Elsevier, 2005, Pages 138-145, ISBN 9780123485304, https://doi.org/10.1016/B0-12-348530-4/00028-X.spa
dc.relation.referencesMejía, A., Ochoa, R., & Medina, M. 2014. Efecto de diferentes dosis de fertilizante compuesto en la calidad del pasto kikuyo (Pennisetum clandestinum Hochst. Ex Chiov.). Obtenido de Grupo de investigación en ciencias agrarias (GRICA), Universidad de Antioquia: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942014000100004.spa
dc.relation.referencesMiles, N. 1997. Responses of productive and unproductive kikuyu pastures to top ‐ dressed nitrogen and phosphorus fertilizer. African Journal of Range and Forage Science 14: 1–6. https://doi.org/10.1080/10220119.1997.9647911.spa
dc.relation.referencesMojica, J., Castro, E., León, J., Cárdenas, E., Pabón, M., & Carulla, J. 2009. Efecto de la oferta de pasto kikuyo y ensilaje de avena sobre la producción y calidad composicional de la leche bovina. Ciencia y Tecnología Agropecuaria, 10(1), 81-90.spa
dc.relation.referencesMokula, R., Krishnaveni, M & Charyulu, P. 2019. Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. Recent Developments in Applied Microbiology and Biochemistry, Pages 223-233. https://doi.org/10.1016/B978-0-12-816328-3.00017-9.spa
dc.relation.referencesMukhametzyanova, A., Akhmetova, A & Sharipova, M. 2012. Microorganisms as phytase producers. Microbiology 81, 267–275 (2012). https://doi.org/10.1134/S0026261712030095.spa
dc.relation.referencesNanzyo, M. 2002. Unique Properties of Volcanic Ash Soils. Global Environmental Research, 6, pp. 99-112. https://d1wqtxts1xzle7.cloudfront.net/43820929/06_2-11-with-cover-page-v2.pdf?Expires=1661605700&Signature=YPFozXInu0CNjrSHS-rqYAmBMmICAZfFTUA3kWrAPiwAmtJj6IO8VEPcl13h0bP-YajkLkx7cWIQQXQrCrgZZ2P5pdWhxEzpRrC7ko4xE68k92aEJ~4IdwFzQ6yO3UWpYXp0m3JpnBs~uLtuYYTeD12aC-2i~SDZH6lsmtbcLIIUrtTTAJG5pAubisbIUv4-~DYNwV0dYc9N0CZpjKgZ8Ud7ZIprsnOJMrtbHOi2HCe5rKRYsiviRjaW9YH9kIIY-BDZjfSUITps8QDhpu~~UE~VyLy1sOETQFl3-1RyWvnFjU7M6B6DJXcOZzQcWoSZzz~rioH1PvW6kwkZSfuPNw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.spa
dc.relation.referencesNannipieri, P., Giagnoni, L., Landi, L., Renella, G. 2011. Role of Phosphatase Enzymes in Soil. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Actión. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_9.spa
dc.relation.referencesNesme, T; Metson, G & Bennett, E. 2018. Global P flows through agricultural trade. Glob. Environ. Change 50, 133–141. https://doi.org/10.1016/j.gloenvcha.2018.04.004.spa
dc.relation.referencesNieuwenhuis, E & Elbersen, G. 1972. Algunas observaciones sobre las cenizas volcánicas en Colombia. Revista Centro Interamericano de Fotointerpretación – CIAF.spa
dc.relation.referencesOhel, F., Frossard, E., Fliessbach, A., Dubois, D. 2004. Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol. Biochem, 36: 667-675. https://doi.org/10.1016/j.soilbio.2003.12.010.spa
dc.relation.referencesPardo-Díaz, S., et al. 2021. Endophytic PGPB Improves Plant Growth and Quality, and Modulates the Bacterial Community of an Intercropping System. Front. Sustain. Food Syst. 5:715270. https://doi.org/10.3389/fsufs.2021.715270.spa
dc.relation.referencesPérez, L., Peyraud, J & Delagarde, R. 2011. Pasture intake, milk production and grazing behavior of dairy cows grazing low-mass pastures at three daily allowances in winter. Livestock Science, 137(1-3), 151–160. https://doi.org/10.1016/j.livsci.2010.10.013.spa
dc.relation.referencesPierzynski, G., McDowell, R & Sims, T. 2005. Chemistry, cycling, and potential movement of inorganic phosphorus in soils. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment. vol phosphorus agric. American Society of Agronomy, pp 53-86. https://doi.org/10.2134/agronmonogr46.c3.spa
dc.relation.referencesPrabhu, N., Borkar, S., & Garg, S. 2019. Phosphate solubilization by microorganisms: overview, mechanisms, applicatións and advances. Advances in biological science research, 161-176. https://doi.org/10.1016/B978-0-12-817497-5.00011-2Get.spa
dc.relation.referencesPradhan, N & Sukla, L. 2005. Solubilization of inorganic phosphate by fungi isolated from agriculture soil. African Journal of Biotechnology, vol. 5, pp. 850–854, 2005. https://www.ajol.info/index.php/ajb/article/view/42884.spa
dc.relation.referencesPrisca, J., Osumanu, A., Latifah, O & Aainaa, H. 2021. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy. 11. 2010. https://doi.org/10.3390/agronomy11102010.spa
dc.relation.referencesQuintero, C. & Boschetti, N. 2003. Manejo del fósforo en pasturas. Disponible on line.spa
dc.relation.referencesRafi, M. 2019. Recent Developments in Applied Microbiology and Biochemistry || Phosphate-Solubilizing Microorganisms and Their Emerging Role in Sustainable Agriculture. 223–233. https://doi.org/10.1016 /B978-0-12-816328-3.00017-9.spa
dc.relation.referencesRawat, P., Das, S., Shankhdhar, D & Shankhdhar, S. 2021. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J Soil Sci Plant Nutr 21, 49–68 (2021). https://doi.org/10.1007/s42729-020-00342-7.spa
dc.relation.referencesRaymond, N., Gomez, B., Van der Bom, F., Nybroe, O., Jensen, L.S., Muller-Stover, D., Oberson, A & Richardson, A. 2021.Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2021, 229, 1268–1277. https://doi.org/10.1111/nph.16924.spa
dc.relation.referencesRedel, Y., Rubio, R., Rouanet, J & Borie, F. 2007. Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol. Geoderma. 139. 388-396. https://doi.org/10.1016/j.geoderma.2007.02.018.spa
dc.relation.referencesRedel, Y., Staunton, S., Durán, P. et al. 2019. Fertilizer P Uptake Determined by Soil P Fractionation and Phosphatase Activity. J Soil Sci Plant Nutr 19, 166–174 (2019). https://doi.org/10.1007/s42729-019-00024-z.spa
dc.relation.referencesRegión Andina de Colombia. (20 de octubre de 2014). En Wikipedia. https://commons.wikimedia.org/w/index.php?title=File:Mapa_de_Colombia_(regi%C3%B3n_Andina).svg&oldid=615248045.spa
dc.relation.referencesRheinheimer, D., Fornari, M., Bastos, M., Fernandes, G., Santanna, M. A., et al. 2019. Phosphorus distribution after three decades of different soil management and cover crops in subtropical region. Soil Tillage Res. 192, 33–41. https://doi.org/10.1016/j.still.2019.04.018.spa
dc.relation.referencesRichardson, A & Simpson, R. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. https://doi.org/10.1104/pp.111.175448.spa
dc.relation.referencesRodrigues, Y., Andreote, F., Miranda, M., Franco, A., Taketani, R & Cotta, S. 2023. Disentangling the role of soil bacterial diversity in phosphorus transformation in the maize rhizosphere. Applied Soil Ecology, Volume 182, 2023, 104739, ISSN 0929-1393, https://doi.org/10.1016/j.apsoil.2022.104739.spa
dc.relation.referencesRodríguez, H & Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotión. Biotechnol Adv. 1999 Oct;17(4-5):319-39. https://doi.org/10.1016/s0734-9750(99)00014-2.spa
dc.relation.referencesRomero-Perdomo, F., Beltrán, I., Mendoza-Labrador, J., Estrada-Bonilla, G., & Bonilla, R. 2021. Phosphorus nutrition and growth of cotton plants inoculated with growth-promoting bacteria under low phosphate availability. Frontiers in Sustainable Food Systems, 4, 618425. https://doi.org/10.3389/fsufs.2020.618425.spa
dc.relation.referencesRooney, D & Clipson, N. 2009. Phosphate Addition and Plant Species Alters Microbial Community Structure in Acidic Upland Grassland Soil. Microb Ecol 57, 4–13 (2009). https://doi.org/10.1007/s00248-008-9399-2.spa
dc.relation.referencesRumpel, C., Rodríguez, A., González, J., Arbelo, C., Chabbi, A., Nunan, N., & González-Vila, F. 2012. Contrasting composition of free and mineral-bound organic matter in top-and subsoil horizons of Andosols. Biology and Fertility of Soils, 48, 401-411. https://doi.org/10.1007/s00374-011-0635-4.spa
dc.relation.referencesSánchez, P. 2010. Tripling crop yields in tropical Africa. Nature Geoscience, 3(5), 299-300. https://doi.org/10.1038/ngeo853.spa
dc.relation.referencesSantos, M. 2020. Mejoramiento de la fertilización fosfatada en la asociación ryegrass y trébol rojo mediante el uso de bacterias solubilizadoras de fosfato. Trabajo de investigación presentada(o) como requisito parcial para optar al título de Magister en Ciencias – Microbiología. Universidad Nacional de Colombia Facultad de Ciencias, Instituto de Biotecnología. Bogotá, Colombia.spa
dc.relation.referencesSantos, M., Romero, F., Mendoza, J., Gutiérrez, A., Vargas, C., Castro, E., Caro, A., Uribe, D & Estrada, G. 2021. Genomic and phenotypic analysis of rock phosphate-solubilizing rhizobacteria, Rhizosphere, Volume 17, 2021, 100290, ISSN 2452-2198, https://doi.org/10.1016/j.rhisph.2020.100290.spa
dc.relation.referencesSatyaprakash,M., Nikitha,T., Reddi, E., Sadhana, B & Vani, S. 2017. A review on phosphorous and phosphate solubilising bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Scences, vol. 6, pp. 2133–2144, 2017. https://doi.org/10.20546/ijcmas.2017.604.251.spa
dc.relation.referencesSelvi, K., Paul, J., Vijaya, V & Saraswathi, K. 2017. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Applied Sciences Journal, vol. 15, pp. 1310–1318, 2011. https://doi.org/10.21767/2471-8084.100029.spa
dc.relation.referencesSengul, H., Ozer, A & Gulaboglu, M. 2006. Beneficiation of Mardin Mazıdagu (Turkey) calcareous phosphate rock using dilute acetic acid solutions. Chemical Eng J 122:135–140. journal ISSN : 1385-8947. https://doi.org/10.1016/j.cej.2006.06.005.spa
dc.relation.referencesSchachtman, D., Reid, R & Ayling, S. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiology, Washington, v. 116, n. 2, p. 447-453, 1998. https://doi.org/10.1104/pp.116.2.447.spa
dc.relation.referencesSchwertmann, U., Kodama, H & Fischer, W. 1986. Mutual interactions between organics iron oxides. In: Huang PM, Schnitzer M, editors. Interactions of Soil Minerals with Natural Organics and Microbes. Soil Science Society of America, Madison, WI. pp. 223-250. https://doi.org/10.2136/sssaspecpub17.c7.spa
dc.relation.referencesSharma, S., Sayyed, R., Trivedi, M & Gobi, T. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, vol. 2, p. 587, 2013. https://doi.org/10.1186/2193-1801-2-587.spa
dc.relation.referencesShrivastava, M., Kale, S & D’Souza, S. 2011. Rock phosphate enriched post-methanation bio-sludge from kitchen waste based biogas plant as P source for mungbean and its effect on rhizosphere phosphatase activity. European J Soil Biol 47:205–212. https://doi.org/10.1016/j.ejsobi.2011.02.002.spa
dc.relation.referencesShrivastava, M., Srivastava, P & D’Souza, S.F. 2018. Phosphate-Solubilizing Microbes: Diversity and Phosphates Solubilization Mechanism. In: Meena, V. (eds) Role of Rhizospheric Microbes in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-0044-8_5.spa
dc.relation.referencesShoji, S & Takahashi, T. 2002. Environmental and agricultural significance of volcanic ash soils. Global Environmental Research. 6. https://www.researchgate.net/publicatión/228767895_Environmental_and_agricultural_significance_of_volcanic_ash_soils.spa
dc.relation.referencesSingh, H & Reddy, M. 2011. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology, Volume 47, 30–34. https://doi.org/10.1016/j.ejsobi.2010.10.005.spa
dc.relation.referencesSilva, F., Winck, B., Borges, C., Santos, F., Bataiolli, R., Backes, T., ... & Sá, E. 2020. Native rhizobia from southern Brazilian grassland promote the growth of grasses. Rhizosphere, 16, 100240. https://doi.org/10.1016/j.sajb.2019.09.019.spa
dc.relation.referencesSingh, R Singh, P, Singh V & Yadav, R. 2018. Effect of phosphorus and PSB on growth parameters, yield, quality and economics of summer greengram (Vignia radiata L). International Journal of Chemical Studies 2018, 6(4): 2798-2803. https://doi.org/10.13140/RG.2.2.32764.26240.spa
dc.relation.referencesSoil Survey Staff. 1999. Soil Taxonomy, a Basic System of Soil Classification for Making and Interpreting Soil Surveys. Second ed. Soil survey staff. USA, Natural Resources Conservation Service. Agriculture Handbook N. 436, Washington D.C., USA. 868p. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/taxonomy/.spa
dc.relation.referencesSohm, J., Webb, E. & Capone, D. 2011. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9, Pg. 499–508 (2011). https://doi.org/10.1038/nrmicro2594.spa
dc.relation.referencesSoltangheisi, A., Rodrigues, M., Coelho, M. J. A., Gasperini, A. M., Sartor, L. R., & Pavinato, P. 2018. Changes in soil phosphorus lability promoted by phosphate sources and cover crops. Soil and Tillage Research, 179, 20-28. https://doi.org/10.1016/j.still.2018.01.006.spa
dc.relation.referencesSon, H., Park, G., Cha, M & Heo, M. 2006. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresources. Technology. Volume 97, Issue 2, Pages 204-210. https://doi.org/10.1016/j.biortech.2005.02.021.spa
dc.relation.referencesStevenson, F & Cole, M. 1999. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons. https://books.google.com.co/books?hl=es&lr=&id=KdnWIzM-OHIC&oi=fnd&pg=PR17&dq=Stevenson+%26+Cole,+1999&ots=97tYKtoFvf&sig=siMBw-0Aq9l9IG9trRqDkhfD_D0#v=onepage&q=Stevenson%20%26%20Cole%2C%201999&f=false.spa
dc.relation.referencesStephano, F & Mng'ong'o, M. 2022. On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability, Saudi Journal of Biological Sciences, Volume 29, Issue 5, 2022, Pages 3635-3641, ISSN 1319-562X, https://doi.org/10.1016/j.sjbs.2022.02.056.spa
dc.relation.referencesStutter, M., Shand, C., George, T., Blackwell,M., Bol, R., MacKay, R., Richardson, R., Condron, L., Turner, B & Haygarth, P. 2012. Recovering phosphorus from soil: a root solution?. Environ Sci Technol 46:1977–1978. https://doi.org/10.1021/es2044745.spa
dc.relation.referencesSullivan, D., Bary, A., Thomas, D., Fransen, S & Cogger, C. 2002. Food waste compost effects on fertilizer nitrogen efficiency, available nitrogen, and tall fescue yield. Soil Sci Soci Am J 66:154–161. https://doi.org/10.2136/sssaj2002.1540ª.spa
dc.relation.referencesTabatabai, M & Bremner, J. 1969. Use of P-nitro phenyl phosphate for assay of phosphatase activity. Soil Biol Biochem. 1969; 1:301–307. https://doi.org/10.1016/0038-0717(69)90012-1.spa
dc.relation.referencesTabatabai, M. 1994. Soil enzymes. Methods of soil analysis: Part 2 Microbiological and biochemical properties, 5, 775-833. https://doi.org/10.2136/sssabookser5.2.c37.spa
dc.relation.referencesTahir, M et al. 2018. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate. Brazilian Journal of Microbiology [online]. 2018, v. 49, suppl 1 , pp. 15-24. Available from: <https://doi.org/10.1016/j.bjm.2017.11.005>. ISSN 1678-4405.spa
dc.relation.referencesTamad, M., Hanudin, E., Widada, J. 2021. The mechanism of phosphate bacteria in increasing the solubility of phosphorus in Indonesian Andisols. Journal of Water and Land Development. No. 49 (IV–VI) p. 188–194. https://doi.org/10.24425/jwld.2021.137111.spa
dc.relation.referencesTakahashi, T., Shoji, S. 2003. Distributión and classificatión of volcani ash soils. Glob. Environ. Res. 6, 83–97. https://www.nasa.gov/centers/johnson/pdf/486016main_Takahashi.pdf.spa
dc.relation.referencesThomas, L., Hodgson, D., Wentzel, A., Nieselt, K., Ellingsen, T., Moore J, Morrissey, E., Legaie, R., Wohlleben, W., Rodríguez, A., Martín, J., Burroughs, N., Wellington, E & Smith, M. 2012. Metabolic switches and adaptations deduced from the proteomes of Streptomyces coelicolor wild type and phoP mutant grown in batch culture. Mol. Cell. Proteomics. https://doi.org/.1074/mcp.M111.013797.spa
dc.relation.referencesTiecher, T., Rheinheimer, D., & Calegari, A. 2012a. Soil organic phosphorus forms under different soil management systems and winter crops, in a long term experiment. Soil Till. Res. 124, 57–67. https://doi.org/10.1016/j.still.2012.05.001.spa
dc.relation.referencesTimofeeva, A., Galyamova, M & Sedykh, S. 2022. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants 2022, 11 (16), 2119. https://doi.org/10.3390/plants11162119.spa
dc.relation.referencesTsai, C., Chen, Z., Kao, C., Ottner, F., Kao, S & Zehetner, F. 2010. Pedogenic Development of Volcanic Ash Soils Along a Climosequence in Northern Taiwan. Contents Lists Available. Geoderma, 156, pp.48-59. https://doi.org/10.1016/j.geoderma.2010.01.007.spa
dc.relation.referencesUgolini, F & Dahlgren, R. 2003. Soil Development in Volcanic Ash. Global Environmental Research, Vol 6, N° 2. Association of International Research Initiatives for Environmental Studies (AIRIES), Japan. http://www.airies.or.jp>save>06_2_09.pdf.spa
dc.relation.referencesValenzuela, I & Visconti, E. 2018. Influence of climate, soil use and soil depth on soil organic carbon content at two Andean altitudinal sites in Norte de Santander, Colombia. Revista Colombiana de Ciencias Hortícolas, 12(1), 233–243. https://doi.org/10.17584/rcch.2018v12i1.7349.spa
dc.relation.referencesVan-Straaten, P. 2002. Rocks for Crops: Agro-Minerals of Sub-Saharan Africa. Nairobi, Kenya: ICRAF, p338. http://apps.worldagroforestry.org/Units/Library/Books/PDFs/11_Rocks_for_crops.pdf.spa
dc.relation.referencesVargas, J., Sierra, A., Mancipe, E & Avellaneda, Y. 2018. El kikuyo, una gramínea presente en los sistemas de rumiantes en trópico alto colombiano. Rev. CES Med. Zootec. 2018; Vol 13 (2): 137-156. https://doi.org/10.21615/cesmvz.13.2.4.spa
dc.relation.referencesVelasco, A. 2021. Inoculación de compost con microorganismos solubilizadores de fosfato y su efecto sobre la disponibilidad del fósforo. Universidad de Almería, Facultad de Ciencias Experimentales. Trabajo final de grado para optar por el título de Biotecnóloga. http://repositorio.ual.es/bitstream/handle/10835/13510/VELASCO%20SALAS%2C%20ANAHIS%20ISABEL.pdf?sequence=1&isAllowed=y.spa
dc.relation.referencesVelásquez, G., Calabi, M., Poblete, P., Rumpel, C., Demanet, R., Condron, L & Mora, M. 2016. Fertilizer effects on phosphorus fractions and organic matter in Andisols. Journal of soil science and plant nutrition, 16(2), 294-309. Epub 04 de mayo de 2016. https://dx.doi.org/10.4067/S0718-95162016005000024.spa
dc.relation.referencesVijayakumar, A & Rajasekharan, R. 2016. Distinct Roles of Alpha/Beta Hydrolase Domain Containing Proteins. Biochem. Biochemistry & Molecular Biology Journal ISSN 2471-8084. Vol. 2 No. 3: 18. DOI: 10.21767/2471-8084.100027.spa
dc.relation.referencesWalpola, B & Yoon, M. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: a review. African Journal of Microbiology Research, vol. 6, pp. 6600–6605, 2012. https://academicjournals.org/article/article1380799180_Walpola%20and%20Yoon.pdf.spa
dc.relation.referencesWaldrip, H., He, Z., & Erich, M. 2011. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biology and Fertility of Soils, 47, 407-418. https://doi.org/10.1007/s00374-011-0546-4.spa
dc.relation.referencesWang, L & Nancollas, G. 2008. Calcium orthophosphates: crystallization and dissolution. Chem Rev, Volume 108: 4628–4669. https://doi.org/10.1021/cr0782574.spa
dc.relation.referencesWu, C., Wei, X., Sun, H., Wang, Z. 2005. Phosphate availability alters lateral root anatomy and root architecture of Fraxinus mandshurica Rupr. Seedlings. J Integrative Plant Biol 7:292–301. https://doi.org/10.1111/j.1744-7909.2005.00021.x.spa
dc.relation.referencesWyngaard, N., Cabrera, M., Jarosch, K., Bunemann, E. 2016. Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution. Soil Biol Biochem 96:107–118. https://pdf.sciencedirectassets.com/271195/1-s2.0-S0038071716X0003X/1-s2.0-S0038071716000377/Nicolas_Wyngaard_Organic_phosphorus_2016.pdfspa
dc.relation.referencesYang, Y., Tilman, D., Furey, G. et al. 2019. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat Commun 10, 718 (2019). https://doi.org/10.1038/s41467-019-08636-w.spa
dc.relation.referencesYang, Z., Zhang, Y., Wang, Y., Zhang, H., Zhu, Q., Yan, B., ... & Luo, G. 2022. Intercropping regulation of soil phosphorus composition and microbially-driven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crops Research, 287. https://doi.org/10.1016/j.fcr.2022.108666.spa
dc.relation.referencesYousefi, A., Khavazi, K., Moezi, A., Rejali, F & Nadian, H. 2011. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Applied Sciences Journal, vol. 15, pp. 1310–1318, 2011. https://scholar.googleusercontent.com/scholar?q=cache:nzfphxZ-XtYJ:scholar.google.com/&hl=es&as_sdt=0,5.spa
dc.relation.referencesZeng, Q., Wu, X., Wang, J., Ding, X. 2017. Phosphate solubilization and gene expression of phosphate-solubilizing bacterium Burkholderia multivorans WS-FJ9 under different levels of soluble phosphate. J. Microbiol. Biotechnol. 2017; 27(4): 844-855. Published April 28, 2017 https://doi.org/10.4014/jmb.1611.11057.spa
dc.relation.referencesZou, X., Binkley, D., & Doxtader, K. G. 1992. A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant and Soil, 147, 243-250. https://doi.org/10.1007/BF00029076.spa
dc.relation.referencesZhu, L., Fu, F., & Tang, B. 2018. Coexistence or aggression? Insight into the influence of phosphate on Cr (VI) adsorption onto aluminum-substituted ferrihydrite. Chemosphere, 212, 408-417. https://doi.org/10.1016/j.chemosphere.2018.08.085.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocPennisetum clandestinum
dc.subject.agrovocInoculación del suelospa
dc.subject.agrovocSoil inoculationeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalActividad enzimáticaspa
dc.subject.proposalFosfato diamónicospa
dc.subject.proposalRoca fosfóricaspa
dc.subject.proposalCompostspa
dc.subject.proposalInoculantes microbianosspa
dc.subject.proposalBPCVspa
dc.subject.proposalFraccionamiento secuencial de fosfatospa
dc.subject.proposalDiammonium Phosphateeng
dc.subject.proposalPhosphate Rockeng
dc.subject.proposalComposteng
dc.subject.proposalMicrobial inoculantseng
dc.subject.proposalPGPVeng
dc.subject.proposalPhosphate sequential fractionationeng
dc.subject.proposalEnzymatic activityeng
dc.titleEfecto de la inoculación de bacterias promotoras del crecimiento en la dinámica del fósforo edáfico en kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)spa
dc.title.translatedEffect of growth promoting bacteria inoculation on soil phosphorus dynamics in kikuyo (Cenchrus clandestinum Hochst. ex Chiov.)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleImplementación de estrategias de manejo sostenible de suelos bajo praderas del Trópico Alto Colombiano.spa
oaire.fundernameCorporación Colombiana de Investigación Agropecuaria - Agrosaviaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80350691.2023.pdf
Tamaño:
2.1 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: