Estudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónica

dc.contributor.advisorDussán Cuenca, Anderson
dc.contributor.authorCalderón Cómbita, Jorge Arturo
dc.contributor.researchgroupMateriales Nanoestructurados y Sus Aplicacionesspa
dc.date.accessioned2022-03-24T12:20:37Z
dc.date.available2022-03-24T12:20:37Z
dc.date.issued2021
dc.descriptionilustraciones, graficasspa
dc.description.abstractEn este trabajo se fabricaron muestras de películas delgadas de GaSb y sistemas multicapas de [GaSb/Mn]_n por medio de la técnica de pulverización catódica asistida por Campo Magnético de corriente directa (“DC magnetron Sputtering”), para valores de n=1,3,6 y 12. Utilizando XRD, FTIR y Raman se estableció la presencia de fases de GaSb, Mn2Sb2, para las muestras depositadas a temperatura ambiente (300 K), junto con Mn3Ga para muestras con temperatura de sustrato de 423 K. A través de medidas de SEM, HR-SEM y AFM-MFM fue posible estudiar la formación granular en la superficie de las muestras. Se estableció que la formación de granos está descrita por el modelo de Burke para crecimiento anormal y no se tiene una correlación de la formación de dominios magnéticos en la superficie. Además, la constitución de las multicapas sigue el crecimiento columnar denso dado por el modelo MD. A partir de medidas espectroscopia de electrones Auger-Meitner y RBS fue posible estudiar los procesos de auto-difusión (D_Ga≈D_Sb~5,03×10^(-17) cm^2/s) y se propuso una solución para la segunda ley de Fick para sistemas multicapas obteniendo coeficientes de difusión de D_Mn~6,50×10^(-15) cm^2/s. Adicionalmente, el comportamiento magnético de las muestras fue estudiado utilizando un magnetrómetro SQUID y se evidenció la manifestación del fenómeno de sesgo de intercambio (“Exchange Bias”) correlacionado con la contribución ferromagnética de las fases Mn2Sb2, Mn3Ga y la contribución del comportamiento tipo ferromagnético del diluido GaSb:Mn, todas presentes en las regiones de interfaz para las muestras multicapas y la contribución antiferromagnética del Mn a 5 K; junto con la generación de histéresis a temperatura ambiente para sistemas de n=3 y n=6. A partir de medidas de I-V fue posible establecer la conmutación resistiva de las muestras, la cual se ve alterada bajo la presencia de un campo magnético externo, cuyo comportamiento fue explicado basándose en la conjunción de dos mecanismos de conducción dados por la presencia de regiones espaciales de carga y la formación de hilos de conducción manifestando su potencial uso como memorias M-RRAM. (Texto tomado de la fuente)spa
dc.description.abstractIn this work, thin film samples of GaSb and multilayer systems of [GaSb/Mn]_n were manufactured by DC magnetron Sputtering, for values of n = 1, 3, 6 and 12. Using XRD, FTIR and Raman, the presence of GaSb phases, Mn2Sb2, was established for the samples deposited at room temperature (300 K), together with Mn3Ga for samples with a substrate temperature of 423 K. SEM, HR-SEM and AFM-MFM measurements allowed to study the granular formation on the surface of the samples. The grain formation was described by the abnormal growth using the Burke model, and the magnetic responses is not correlated with the grains on the surface. Furthermore, the constitution of the multilayers follows the dense columnar growth given by MD model. From Auger-Meitner electron spectroscopy and RBS measurements it was possible to study the self-diffusion processes (D_Ga≈D_Sb~5,03×10^(-17) cm^2/s) and a solution was proposed for the second Fick's law for multilayer systems obtaining diffusion coefficients of D_Mn~6,50×10^(-15) cm^2/s. Additionally, the magnetic behavior of the samples was studied using a SQUID magnetrometer, and the Exchange Bias phenomenon was correlated with the ferromagnetic contribution of the Mn2Sb2, Mn3Ga phases and the contribution of the ferromagnetic-type behavior of the diluted GaSb: Mn, all present in the interface regions for the multilayer samples and the antiferromagnetic contribution of Mn at 5 K; together with the generation of hysteresis at room temperature for systems of n = 3 and n = 6. From I-V curves, it was possible to establish the resistive switching of the samples, which is altered under the presence of an external magnetic field, whose behavior was explained based on the conjunction of two conduction mechanisms given by the presence of spatial regions and the formation of conduction wires manifesting their potential use as M-RRAM memories.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Físicaspa
dc.description.funderBecas de Doctorados Nacionales convocatoria 785 de 2017spa
dc.description.methodsEste trabajo corresponde a una investigación experimental.spa
dc.description.researchareaFabricación de Dispositivos Nanoestructurados con Aplicaciones Tecnológicasspa
dc.format.extentxx, 234 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81348
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Físicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Físicaspa
dc.relation.references[1] J. B. Rodriguez, K. Madiomanana, L. Cerutti, A. Castellano, and E. Tournié, “X-ray diffraction study of GaSb grown by molecular beam epitaxy on silicon substrates,” J. Cryst. Growth, vol. 439, pp. 33–39, 2016, doi: 10.1016/j.jcrysgro.2016.01.005.spa
dc.relation.references[2] A. Ruiz and L. González, “Epitaxia por Haces Moleculares (Molecular Beam Epitaxy), MBE,” in Capas Delgadas y Modificación Superficial de Materiales, Primera., J. M. Albella, Ed. Madrid, España: Consejo Superior de Investigaciones Científicas, 2018, pp. 219–243.spa
dc.relation.references[3] P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys., vol. 81, no. 9, pp. 5821–5870, 1997, doi: 10.1063/1.365356.spa
dc.relation.references[4] J. A. Calderón, S. M. López, H. P. Quiroz, and A. Dussan, “Effect of annealing process on natural zeolites from volcanic ash for environmental applications: Structural and morphological characterizations,” Solid State Phenom., vol. 257, pp. 233–236, 2017, doi: 10.4028/www.scientific.net/SSP.257.233.spa
dc.relation.references[5] K. Khaing Oo, S. Vorathamrong, S. Panyakeow, P. Praserthdam, and S. Ratanathammaphan, “Effect of substrate temperature on GaAs nanowires growth directly on Si (111) substrates by molecular beam epitaxy,” Mater. Today Proc., vol. 23, no. December 2018, pp. 685–689, 2020, doi: 10.1016/j.matpr.2019.12.259.spa
dc.relation.references[6] G. J. Ackland, “High-pressure phases of group IV and III-V semiconductors,” Reports Prog. Phys., vol. 64, no. 4, pp. 483–516, 2001, doi: 10.1088/0034-4885/64/4/202.spa
dc.relation.references[7] E. Chusovitin et al., “Formation of a thin continuous GaSb film on Si(001) by solid phase epitaxy,” Nanomaterials, vol. 8, no. 12, pp. 7–9, 2018, doi: 10.3390/nano8120987.spa
dc.relation.references[8] H. V. Atkinson, “Overview no. 65. Theories of normal grain growth in pure single phase systems,” Acta Metall., vol. 36, no. 3, pp. 469–491, 1988, doi: 10.1016/0001-6160(88)90079-X.spa
dc.relation.references[9] S. Koch, Carl C.; Ovid’ko, Ilya A.; Seal , Sudipta; Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications, First Edit. Cambridge: Cambridge University press, 2007.spa
dc.relation.references[10] F. Sun, A. Zúñiga, P. Rojas, and E. J. Lavernia, “Thermal stability and recrystallization of nanocrystalline Ti produced by cryogenic milling,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 37, no. 7, pp. 2069–2078, 2006, doi: 10.1007/BF02586127.spa
dc.relation.references[11] J. E. Burke and D. Turnbull, “Recrystallization and grain growth,” Prog. Met. Phys., vol. 3, no. C, 1952, doi: 10.1016/0502-8205(52)90009-9.spa
dc.relation.references[12] P. Cao, L. Lu, and M. O. Lai, “Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying,” Mater. Res. Bull., vol. 36, no. 5–6, pp. 981–988, 2001, doi: 10.1016/S0025-5408(01)00578-5.spa
dc.relation.references[13] R. L. Doiphode, S. V. S. N. Murty, N. Prabhu, and B. P. Kashyap, “Grain growth in calibre rolled Mg-3Al-1Zn alloy and its effect on hardness,” J. Magnes. Alloy., vol. 3, no. 4, pp. 322–329, 2015, doi: 10.1016/j.jma.2015.11.003.spa
dc.relation.references[14] C. Q. Zhou and Q. A. Zhang, “Effect of Pr3Al11 nanoparticles on crystallite growth kinetics of nanocrystalline Mg,” J. Alloys Compd., vol. 804, pp. 299–304, 2019, doi: 10.1016/j.jallcom.2019.07.047.spa
dc.relation.references[15] R. G. Pavelko et al., “Crystallite growth kinetics of highly pure nanocrystalline tin dioxide: The effect of palladium doping,” Mater. Chem. Phys., vol. 121, no. 1–2, pp. 267–273, 2010, doi: 10.1016/j.matchemphys.2010.01.034.spa
dc.relation.references[16] L. Hao and W. Xiong, “An evaluation of the Mn–Ga system: Phase diagram, crystal structure, magnetism, and thermodynamic properties,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 68, no. December 2019, 2020, doi: 10.1016/j.calphad.2019.101722.spa
dc.relation.references[17] A. Talantsev, O. Koplak, and R. Morgunov, “Effect of MnSb clusters recharge on ferromagnetism in GaSb-MnSb thin films,” Superlattices Microstruct., vol. 95, pp. 14–23, Jul. 2016, doi: 10.1016/j.spmi.2016.04.012.spa
dc.relation.references[18] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, pp. 1113–1118, 2017, doi: 10.1016/j.apsusc.2016.11.096.spa
dc.relation.references[19] R. M. Gutiérrez-Pérez, R. López Antón, K. Załęski, J. T. Holguín-Momaca, F. Espinosa-Magaña, and S. F. Olive-Méndez, “Tailoring magnetization and anisotropy of tetragonal Mn3Ga thin films by strain-induced growth and spin orbit coupling,” Intermetallics, vol. 92, no. September 2017, pp. 20–24, 2018, doi: 10.1016/j.intermet.2017.09.008.spa
dc.relation.references[20] L. Fan et al., “Promising spintronics: Mn-based Heusler alloys Mn3Ga, Mn2YGa (Y = V, Nb, Ta), ScMnVGa,” J. Magn. Magn. Mater., no. March, 2019, doi: 10.1016/j.jmmm.2019.166060.spa
dc.relation.references[21] W. Liu, P. K. J. Wong, and Y. Xu, “Hybrid spintronic materials: Growth, structure and properties,” Prog. Mater. Sci., vol. 99, no. February 2018, pp. 27–105, 2019, doi: 10.1016/j.pmatsci.2018.08.001.spa
dc.relation.references[22] A. Lahiri, N. Borisenko, M. Olschewski, R. Gustus, J. Zahlbach, and F. Endres, “Electroless Deposition of III-V Semiconductor Nanostructures from Ionic Liquids at Room Temperature,” Angew. Chemie - Int. Ed., vol. 54, no. 40, pp. 11870–11874, 2015, doi: 10.1002/anie.201504764.spa
dc.relation.references[23] K. Sato and E. Saitoh, Spintronics for Next Generation. 2015.spa
dc.relation.references[24] B. C. Johnson, J. C. McCallum, and M. J. Aziz, Handbook of Crystal Growth: Thin Films and Epitaxy, vol. 3. 2015.spa
dc.relation.references[25] H. L. Li et al., “Sonochemical preparation of GaSb nanoparticles,” Inorg. Chem., vol. 41, no. 4, pp. 637–639, 2002, doi: 10.1021/ic015616j.spa
dc.relation.references[26] B. D. McCombe et al., “Novel ferromagnetism in digital GaAs/Mn and GaSb/Mn alloys,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 16, no. 1, pp. 90–98, 2003.spa
dc.relation.references[27] G. I. Boishin, J. M. Sullivan, and L. J. Whitman, “Structure of GaSb digitally doped with Mn,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 71, no. 19, pp. 0–4, 2005, doi: 10.1103/PhysRevB.71.193307.spa
dc.relation.references[28] G. B. Kim, M. Cheon, S. Wang, H. Luo, and B. D. McCombe, “Magnetic and electrical properties of random and digital alloys of GaSb:Mn,” J. Supercond. Nov. Magn., vol. 18, no. 1, pp. 87–92, 2005, doi: 10.1007/s10948-005-2156-6.spa
dc.relation.references[29] J. A. Calderón, F. Mesa, A. Dussan, R. González-Hernandez, and J. G. Ramirez, “The effect of Mn2Sb2 and Mn2Sb secondary phases on magnetism in (GaMn)Sb thin films,” PLoS One, vol. 15, no. 4, pp. 1–10, 2020, doi: 10.1371/journal.pone.0231538.spa
dc.relation.references[30] H. P. Quiroz, J. A. Calderón, and A. Dussan, “Micro-structural and morphological properties and magnetic behavior of GaΛSb (Λ = Mn, Ni) nanostructured thin films by magnetron co-sputtering,” J. Magn. Magn. Mater., vol. 497, no. May 2019, p. 165942, 2020, doi: 10.1016/j.jmmm.2019.165942.spa
dc.relation.references[31] J. A. Calderón Cómbita, “Estudio de las propiedades Ópticas y eléctricas del compuesto Ga1-xMnxSb usado para aplicaciones en espintrónica,” p. 134, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/55516/.spa
dc.relation.references[32] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, pp. 1113–1118, Feb. 2017, doi: 10.1016/j.apsusc.2016.11.096.spa
dc.relation.references[33] L. Vásquez, “Medida del Espesor y Análisis de la Rugosidad,” in Láminas delgadas y Recubrimientos: Preparación, propiedades y aplicaciones, Primera., J. M. Albella, Ed. Consejo Superior de Investigaciones Científicas, 2003, pp. 337–363.spa
dc.relation.references[34] J. Maslar, W. Hurst, and C. A. Wang, “Raman spectroscopy of n-type and p-type GaSb with multiple excitation wavelengths,” Appl. Spectrosc., vol. 61, no. 10, pp. 1093–1102, 2007, doi: 10.1366/000370207782217789.spa
dc.relation.references[35] X. Zhou et al., “Optical Properties of GaSb Nanofibers,” Nanoscale Res. Lett., vol. 6, no. 1, pp. 1–6, 2011, doi: 10.1007/s11671-010-9739-2.spa
dc.relation.references[36] G. Yang, F. Zhu, and S. Dong, “Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn,” Journal of Crystal Growth, vol. 316, no. 1, North-Holland, pp. 145–148, 01-Feb-2011.spa
dc.relation.references[37] J. A. Calderón, F. Mesa, and A. Dussan, “Magnetoelectric and transport properties of (GaMn)Sb thin films: A ferrimagnetic phase in dilute alloys,” Appl. Surf. Sci., vol. 396, 2017, doi: 10.1016/j.apsusc.2016.11.096.spa
dc.relation.references[38] G. Yang, F. Zhu, and S. Dong, “Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn,” J. Cryst. Growth, vol. 316, no. 1, pp. 145–148, Feb. 2011, doi: 10.1016/j.jcrysgro.2010.12.022.spa
dc.relation.references[39] A. I. Dmitriev, A. D. Talantsev, O. V. Koplak, and R. B. Morgunov, “Magnetic fluctuations sorted by magnetic field in MnSb clusters embedded in GaMnSb thin films,” Journal of Applied Physics, vol. 119, no. 7, 2016.spa
dc.relation.references[40] A. I. Dmitriev and A. A. Filatov, “Effect of the Magnetic Anisotropy Energy Distribution of MnSb Clusters on Spontaneous Magnetization Reversal of GaMnSb Thin Films,” vol. 58, no. 10, pp. 2005–2010, 2016, doi: 10.1134/S1063783416100127.spa
dc.relation.references[41] X. Chen et al., “Above-room-temperature ferromagnetism in GaSb/Mn digital alloys,” Appl. Phys. Lett., vol. 81, no. 3, pp. 511–513, 2002, doi: 10.1063/1.1481184.spa
dc.relation.references[42] G. I. Boishin, J. M. Sullivan, and L. J. Whitman, “Structure of GaSb digitally doped with Mn,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 71, no. 19, pp. 1–4, 2005, doi: 10.1103/PhysRevB.71.193307.spa
dc.relation.references[43] H. Bracht, S. P. Nicols, W. Walukiewicz, J. P. Silveira, and F. Briones, “Large disparity between gallium and antimony self-diffusion in gallium antimonide,” vol. 408, no. November, pp. 1–4, 2000.spa
dc.relation.references[44] H. A. Tahini, A. Chroneos, H. Bracht, S. T. Murphy, R. W. Grimes, and U. Schwingenschlögl, “Antisites and anisotropic diffusion in GaAs and GaSb,” Appl. Phys. Lett., vol. 103, no. 14, pp. 1–5, 2013, doi: 10.1063/1.4824126.spa
dc.relation.references[45] Springer Handbook of Electronic and Photonic Materials. 2007.spa
dc.relation.references[46] A. Chroneos and H. Bracht, “Concentration of intrinsic defects and self-diffusion in GaSb,” J. Appl. Phys., vol. 104, no. 9, 2008, doi: 10.1063/1.3010300.spa
dc.relation.references[47] R. W. Balluffi, S. M. Allen, and W. C. Carter, Kinetics of Materials, no. 1. 2005.spa
dc.relation.references[48] D. Wbiler and H. Mehrer, “Self-diffusion of gallium and antimony in GaSb,” Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop., vol. 49, no. 2, pp. 309–325, 1984, doi: 10.1080/01418618408234931.spa
dc.relation.references[49] B. Namnuan, K. Yoodee, and S. Chatraphorn, “Probing diffusion of In and Ga in CuInSe2/CuGaSe2 bilayer thin films by x-ray diffraction,” J. Cryst. Growth, vol. 432, pp. 24–32, 2015, doi: 10.1016/j.jcrysgro.2015.09.010.spa
dc.relation.references[50] A. Paul and S. Divinski, Handbook of Solid State Diffusion, First edit., vol. 2. Elsevier Inc., 2017.spa
dc.relation.references[51] R. Jakiela, K. Gas, M. Sawicki, and A. Barcz, “Diffusion of Mn in gallium nitride: Experiment and modelling,” J. Alloys Compd., vol. 771, pp. 215–220, 2019, doi: 10.1016/j.jallcom.2018.08.263.spa
dc.relation.references[52] I. S. Yahia, S. AlFaify, F. Yakuphanoglu, S. Chusnutdinow, T. Wojtowicz, and G. Karczewski, “Impedance Spectroscopy of n-CdTe/p-CdMnTe/p-GaAs Diluted Magnetic Diode,” J. Electron. Mater., vol. 44, no. 8, pp. 2768–2772, 2015, doi: 10.1007/s11664-015-3707-7.spa
dc.relation.references[53] J. M. Slaughter, W. Weber, G. Güntherodt, and C. M. Falco, “Quantitative Auger and XPS Analysis of Thin Films,” MRS Bulletin, vol. 17, no. 12, pp. 39–45, 1992.spa
dc.relation.references[54] J. F. Watts and J. Wolstenholme, An Introduction to surface analysis by XPS and AES, Primera., vol. 1. John Wiley & Sons Ltd., 2015.spa
dc.relation.references[55] I. Montero and R. Gago, “Análisis con haces de iones: RBS, ERDA, PIXE, NRA y SIMS,” in Capas Delgadas y Modificación Superficial de Materiales, Consejo Superior de Investigaciones Científicas, 2018, pp. 489–503.spa
dc.relation.references[56] A. Michels, C. E. Krill, H. Ehrhardt, R. Birringer, and D. T. Wu, “Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials,” Acta Mater., vol. 47, no. 7, pp. 2143–2152, 1999, doi: 10.1016/S1359-6454(99)00079-8.spa
dc.relation.references[57] J. R. Ares, A. Pascual, I. J. Ferrer, and C. Sánchez, “Grain and crystallite size in polycrystalline pyrite thin films,” Thin Solid Films, vol. 480–481, pp. 477–481, 2005, doi: 10.1016/j.tsf.2004.11.064.spa
dc.relation.references[58] A. Palmero and J. M. Albella, “Mecanismos de Nucleación y Crecimiento de capas delgadas,” in Capas Delgadas y Modificación Superficial de Materiales, J. M. Albella, Ed. Madrid, España: Consejo Superior de Investigaciones Científicas, 2018, pp. 105–136.spa
dc.relation.references[59] A. Krier, M. K. Parry, and D. S. Lanchester, “Optoelectronic properties of gallium antimonide light emitting diodes,” Semicond. Sci. Technol., vol. 6, no. 11, pp. 1066–1071, 1991, doi: 10.1088/0268-1242/6/11/006.spa
dc.relation.references[60] Z. Qiao, Y. Sun, W. He, Q. He, and C. Li, “Polycrystalline GaSb thin films grown by co-evaporation,” J. Semicond., vol. 30, no. 3, 2009, doi: 10.1088/1674-4926/30/3/033004.spa
dc.relation.references[61] S. Basu and T. Adhikari, “Variation of band gap with Mn concentration in Ga1-xMnxSb - A new III-V diluted magnetic semiconductor,” Solid State Commun., vol. 95, no. 1, pp. 53–55, 1995, doi: 10.1016/0038-1098(95)00160-3.spa
dc.relation.references[62] L. Patrick, “Antiferromagnetism of manganese,” Phys. Rev., vol. 93, no. 3, p. 370, 1954, doi: 10.1103/PhysRev.93.370.spa
dc.relation.references[63] J. S. Kasper and B. W. Roberts, “Antiferromagnetic structure of α-manganese and a magnetic structure study of β-manganese,” Phys. Rev., vol. 101, no. 2, pp. 537–544, 1956, doi: 10.1103/PhysRev.101.537.spa
dc.relation.references[64] A. C. Lawson et al., “Magnetic and crystallographic order in α-manganese,” J. Appl. Phys., vol. 76, no. 10, pp. 7049–7051, 1994, doi: 10.1063/1.358024.spa
dc.relation.references[65] T. Sahu, S. K. Nayak, and R. N. Acharya, “Diamagnetic and Dielectric Susceptibilities of AlSb and GaSb,” Phys. Status Solidi, vol. 178, no. 2, pp. 343–351, 1993, doi: 10.1002/pssb.2221780211.spa
dc.relation.references[66] A. E. Taylor et al., “Influence of interstitial Mn on magnetism in the room-temperature ferromagnet Mn1+δSb,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 91, no. 22, p. 224418, Jun. 2015, doi: 10.1103/PhysRevB.91.224418.spa
dc.relation.references[67] E. Lu, D. C. Ingram, A. R. Smith, J. W. Knepper, and F. Y. Yang, “Reconstruction control of magnetic properties during epitaxial growth of ferromagnetic Mn3-δGa on wurtzite GaN(0001),” Phys. Rev. Lett., vol. 97, no. 14, pp. 1–4, 2006, doi: 10.1103/PhysRevLett.97.146101.spa
dc.relation.references[68] S. N. Sofronova, N. V. Kazak, E. V. Eremin, E. M. Moshkina, A. V. Chernyshov, and A. F. Bovina, “Magnetization reversal and sign reversal exchange bias field in polycrystalline Ni5.33Ta0.67B2O10,” J. Alloys Compd., vol. 864, p. 158200, 2021, doi: 10.1016/j.jallcom.2020.158200.spa
dc.relation.references[69] A. G. Kolesnikov et al., “Magnetic properties and the interfacial Dzyaloshinskii-Moriya interaction in exchange biased Pt/Co/NixOy films,” Appl. Surf. Sci., vol. 543, no. November 2020, p. 148720, 2021, doi: 10.1016/j.apsusc.2020.148720.spa
dc.relation.references[70] P. Sharma, S. K. Srivastav, and R. Chatterjee, “Evidence of two dimensional dilute antiferromagnet mediated exchange bias field and vertical shift in LaFeO3-NiO nanocomposite,” J. Magn. Magn. Mater., vol. 523, no. August 2020, p. 167619, 2021, doi: 10.1016/j.jmmm.2020.167619.spa
dc.relation.references[71] W. B. Cui et al., “Cooling-field dependence of exchange bias in Mg-diluted Ni1-xMgxO/Ni granular systems,” J. Magn. Magn. Mater., vol. 321, no. 13, pp. 1943–1946, 2009, doi: 10.1016/j.jmmm.2008.12.016.spa
dc.relation.references[72] H. P. Quiroz Gaitán, “Estudio de las propiedades físicas del TiO 2 : Co como un semiconductor magnético diluido para aplicaciones en espintrónica,” Universidad Nacional de Colombia, 2019.spa
dc.relation.references[73] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv., vol. 4, no. 10, pp. 0–22, 2014, doi: 10.1063/1.4899186.spa
dc.relation.references[74] J. De Clercq, J. Leliaert, and B. Van Waeyenberge, “Modelling compensated antiferromagnetic interfaces with MuMax 3 Supplementary Material 1 Implementation of a compensated AFM/FM interface in MuMax 3,” vol. 2, no. 1, pp. 1–10, [Online]. Available: http://mumax.github.io/api.html.spa
dc.relation.references[75] J. De Clercq, J. Leliaert, and B. Van Waeyenberge, “Modelling compensated antiferromagnetic interfaces with MuMax3,” arXiv, 2017.spa
dc.relation.references[76] O. Koplak et al., “Spin filtering on the MnSb cluster interface in GaSbMn thin films,” Solid State Phenom., vol. 233–234, pp. 643–647, 2015, doi: 10.4028/www.scientific.net/SSP.233-234.643.spa
dc.relation.references[77] M. D. Kuz’min, K. P. Skokov, L. V. B. Diop, I. A. Radulov, and O. Gutfleisch, “Exchange stiffness of ferromagnets,” Eur. Phys. J. Plus, vol. 135, no. 3, 2020, doi: 10.1140/epjp/s13360-020-00294-y.spa
dc.relation.references[78] H. Lee et al., “2017 - Interlayer exchange coupling in MBE-grown GaMnAs-based multilayer.pdf,” J. Cryst. Growth, vol. 477, pp. 188–192, 2017.spa
dc.relation.references[79] Z. Kurant, M. Tekielak, I. Sveklo, A. Wawro, and A. Maziewski, “Interlayer coupling-driven magnetic ordering and magnetization processes in ultrathin Au/Co/Mo/Co/Au film,” Journal of Magnetism and Magnetic Materials, vol. 475, no. December 2018, Elsevier B.V., pp. 683–694, 2019.spa
dc.relation.references[80] H. P. Quiroz Gaitán, J. A. Calderón Cómbita, and A. Dussán Cuenca, Nanomateriales que revolucionan la tecnología Perspectivas y aplicaciones en espintrónica, Primera Ed. Bogotá D.C., Colombia: Universidad Nacional de Colombia, 2020.spa
dc.relation.references[81] I. Ammar, N. Sfina, and M. Fnaiech, “Optical gain and threshold current density for mid-infrared GaSbBi/GaSb quantum-well laser structure,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 266, no. August 2020, p. 115056, 2021, doi: 10.1016/j.mseb.2021.115056.spa
dc.relation.references[82] Zon et al., “Investigation of hybrid InSb and GaSb quantum nanostructures,” Microelectron. Eng., vol. 237, no. September 2020, p. 111494, 2021, doi: 10.1016/j.mee.2020.111494.spa
dc.relation.references[83] B. Kochman et al., “Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors,” IEEE J. Quantum Electron., vol. 39, no. 3, pp. 459–467, 2003, doi: 10.1109/JQE.2002.808169.spa
dc.relation.references[84] W. H. Lin et al., “High-temperature operation GaSb/GaAs quantum-dot infrared photodetectors,” IEEE Photonics Technol. Lett., vol. 23, no. 2, pp. 106–108, 2011, doi: 10.1109/LPT.2010.2091949.spa
dc.relation.references[85] A. Martí et al., “Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell,” Thin Solid Films, vol. 511–512, pp. 638–644, 2006, doi: 10.1016/j.tsf.2005.12.122.spa
dc.relation.references[86] C. Chevuntulak et al., “Molecular beam epitaxial growth of interdigitated quantum dots for heterojunction solar cells,” J. Cryst. Growth, vol. 512, no. February, pp. 159–163, 2019, doi: 10.1016/j.jcrysgro.2019.02.031.spa
dc.relation.references[87] M. Yang et al., “Electric transmission behavior of self-assembled Cu–W nano multilayers,” Prog. Nat. Sci. Mater. Int., no. February, pp. 1–8, 2020, doi: 10.1016/j.pnsc.2020.11.001.spa
dc.relation.references[88] D. Josell, S. H. Brongersma, and Z. Tokei, “Size-dependent resistivity in nanoscale interconnects,” Annu. Rev. Mater. Res., vol. 39, pp. 231–254, 2009, doi: 10.1146/annurev-matsci-082908-145415.spa
dc.relation.references[89] F. Zhuge et al., “Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments,” Nanotechnology, vol. 22, no. 27, 2011, doi: 10.1088/0957-4484/22/27/275204.spa
dc.relation.references[90] P. C. Lacaze and J.-C. Lacroix, Non-Volatile Memory. Wiley UK, 2014.spa
dc.relation.references[91] Z. H. U. Jian-Gang, “Magnetoresistive random access memory: The path to competitiveness and scalability,” Proc. IEEE, vol. 96, no. 11, pp. 1786–1798, 2008, doi: 10.1109/JPROC.2008.2004313.spa
dc.relation.references[92] H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98, pp. 2201–2227, 2010.spa
dc.relation.references[93] S. Yu and K. Iniewski, Resistive Random Access Memory (RRAM) From Devices to Array Architectures SyntheSiS LectureS on emerging engineering technoLogieS SyntheSiS LectureS on emerging engineering technoLo. 2016.spa
dc.relation.references[94] R. L. de Orio et al., “Robust magnetic field-free switching of a perpendicularly magnetized free layer for SOT-MRAM,” Solid. State. Electron., vol. 168, no. November 2019, p. 107730, 2020, doi: 10.1016/j.sse.2019.107730.spa
dc.relation.references[95] S. Seo et al., “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett., vol. 85, no. 23, pp. 5655–5657, 2004, doi: 10.1063/1.1831560.spa
dc.relation.references[96] B. J. Choi et al., “Resistive switching mechanism of TiO 2 thin films grown by atomic-layer deposition,” J. Appl. Phys., vol. 98, no. 3, 2005, doi: 10.1063/1.2001146.spa
dc.relation.references[97] A. Chen et al., “Non-volatile resistive switching for advanced memory applications,” Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2005, no. c, pp. 746–749, 2005, doi: 10.1109/iedm.2005.1609461.spa
dc.relation.references[98] H. P. Quiroz, J. E. Serrano, and A. Dussan, “Magnetic behavior and conductive wall switching in TiO2 and TiO2:Co self-organized nanotube arrays,” J. Alloys Compd., vol. 825, p. 154006, 2020, doi: 10.1016/j.jallcom.2020.154006.spa
dc.relation.references[99] H. P. Quiroz, M. Manso-Silván, A. Dussan, C. Busó-Rogero, P. Prieto, and F. Mesa, “TiO2 and Co multilayer thin films via DC magnetron sputtering at room temperature: Interface properties,” Mater. Charact., vol. 163, no. February, 2020, doi: 10.1016/j.matchar.2020.110293.spa
dc.relation.references[100] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Erratum: Electrochemical metallization memories - Fundamentals, applications, prospects (Nanotechnology (2011) 22 (254003)),” Nanotechnology, vol. 22, no. 28, 2011, doi: 10.1088/0957-4484/22/28/289502.spa
dc.relation.references[101] Z. Çaldiran, M. Şinoforoʇlu, Ö. Metin, Ş. Aydoʇan, and K. Meral, “Space charge limited current mechanism (SCLC) in the graphene oxide-Fe3O4 nanocomposites/n-Si heterojunctions,” J. Alloys Compd., vol. 631, pp. 261–265, 2015, doi: 10.1016/j.jallcom.2015.01.117.spa
dc.relation.references[102] Y. Caglar, M. Caglar, S. Ilican, and F. Yakuphanoglu, “Thermally stimulated current and space charge limited current mechanism in film of the gold/zinc oxide/gold type,” Phys. B Condens. Matter, vol. 392, no. 1–2, pp. 99–103, 2007, doi: 10.1016/j.physb.2006.11.014.spa
dc.relation.references[103] H. P. Quiroz, J. A. Calderón, and A. Dussan, “Magnetic switching control in Co/TiO2 bilayer and TiO2:Co thin films for Magnetic-Resistive Random Access Memories (M-RRAM),” J. Alloys Compd., vol. 840, pp. 2–7, 2020, doi: 10.1016/j.jallcom.2020.155674.spa
dc.relation.references[104] R. L. Sime and F. Ajzenberg‐Selove, “ Lise Meitner: A Life in Physics ,” Phys. Today, vol. 49, no. 6, pp. 55–58, 1996, doi: 10.1063/1.2807657.spa
dc.relation.references[105] O. H. Duparc, L. Meitner, and C. D. Ellis, “Pierre Auger – Lise Meitner :,” vol. 100, 2009.spa
dc.relation.references[106] D. Matsakis, A. Coster, B. Laster, and R. Sime, “A renaming proposal: ‘The Auger–Meitner effect,’” Phys. Today, vol. 72, no. 9, pp. 10–11, 2019, doi: 10.1063/pt.3.4281.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.ddc530 - Física::538 - Magnetismospa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembESPINTRONICAspa
dc.subject.lembSpintronicseng
dc.subject.proposalDC Magnetron Sputteringeng
dc.subject.proposalArquitecturas Multicapaspa
dc.subject.proposalPulverización Catódica asistida por campo magnético de corriente continuaspa
dc.subject.proposalGaMnSbeng
dc.subject.proposalGaMnSbspa
dc.subject.proposalM-RRAMeng
dc.subject.proposalMM-RAAspa
dc.subject.proposalMultilayer Architectureseng
dc.subject.proposalDMSeng
dc.subject.proposalSesgo de Intercambiospa
dc.subject.proposalExchange Biaseng
dc.subject.proposalSMDspa
dc.subject.proposalConmutación Resistivaspa
dc.subject.proposalResistive Commutationeng
dc.titleEstudio de las propiedades físicas de sistemas multicapas basados en GaMnSb para aplicaciones en espintrónicaspa
dc.title.translatedStudy of the physical properties of multilayer systems based on GaMnSb for applications in spintronicseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombia - MinCienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023863546.2021.pdf
Tamaño:
10.52 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: