Is the survival of tree species in the tropical dry forest explained by functional drought resistance traits?

dc.contributor.advisorMoreno Hurtado, Flavio Humberto
dc.contributor.advisorCifuentes Gómez, Lucas
dc.contributor.authorCaro Marín, Natali
dc.contributor.orcidCaro Marín, Natali [0000-0002-1563-8627]spa
dc.contributor.researchgroupBosques y Cambio Climáticospa
dc.coverage.cityItuango (Antioquia, Colombia)
dc.date.accessioned2025-07-08T13:32:29Z
dc.date.available2025-07-08T13:32:29Z
dc.date.issued2025-07-07
dc.descriptionIlustraciones, mapasspa
dc.description.abstractDeterminar la susceptibilidad general a la sequía de las especies del bosque seco tropical no es fácil, puesto que todas poseen diferentes características y afrontan la sequía de diversas formas (evadiendo o enfrentando). Para evaluar la capacidad de los árboles a sobrevivir a la sequía no basta con evaluar rasgos a diferentes niveles de la planta, sino que se necesitan comprender más profundamente los rasgos y cómo se asocian a los mecanismos de resistencia a la sequía de cada especie. En este estudio evaluamos rasgos estructurales (como área foliar específica: SLA, espesor de la hoja: LT); anatómicos (como área de vasos: MVA; densidad de vasos: VD) y mecanismos de resistencia a la sequía como potencial hídrico a pérdida de turgencia (WPLT), resistencia a la cavitación (P50), densidad de la madera (WD) y pérdida de electrolitos (EL), de 12 especies con velocidades de crecimiento contrastantes, usadas en la restauración ecológica del proyecto Hidroeléctrico Ituango, en donde se midió la sobrevivencia de los árboles sembrados entre 2019 y 2021. Se estudió la variación intra e interespecífica de los rasgos evaluados, y las relaciones entre ellos por medio de correlaciones y análisis de componentes principales que demostraron la importancia de evaluar mecanismos en lugar de rasgos, debido a su alta capacidad de explicar la sobrevivencia en campo. Ajustamos Modelos Lineales Generalizados para evaluar la importancia de la resistencia a la cavitación (P50) en la sobrevivencia en campo, y para estudiar cuáles rasgos o cuáles combinaciones de rasgos les confieren a las especies evaluadas mayor capacidad de sobrevivir. Encontramos que existen correlaciones entre los rasgos a diferentes niveles de planta, y que el potencial osmótico a pérdida de turgencia es un mecanismo fácil de medir y con una alta capacidad de explicar la sobrevivencia en campo. También encontramos que tejidos densos están asociados a P50 más negativos, sin embargo, un P50 más negativo no significa mayor sobrevivencia, como lo demostró Jatropha curcas (P50=-1,07 MPa). El rol del P50 en la determinación de la sobrevivencia en campo de los árboles del bosque seco tropical no es determinante en especies que prefieren evitar la sequía que enfrentarla. Estos resultados destacan la importancia de tener en cuenta otros mecanismos de resistencia a la sequía (e.g., densidad de la madera, potencial hídrico a pérdida de turgencia y pérdida de electrolitos) al predecir la sobrevivencia en campo. (Tomado de la fuente)spa
dc.description.abstractDetermining the general species drought susceptibility in the tropical dry forest is challenging, as they all possess different characteristics and face drought in different ways (evading or confronting it). Assessing the ability of trees to survive drought requires more than evaluating traits at different plant levels; a deeper understanding of the set of traits and how they are associated with the drought resistance mechanisms of each species is necessary. In this study, we evaluated structural traits (such as specific leaf area: SLA, leaf thickness: LT), anatomical traits (such as vessel area: MVA, vessel density: VD), and drought resistance mechanisms such as water potential at turgor loss (WPLT), cavitation resistance (P50), wood density (WD), and electrolyte leakage (EL) in 12 species with contrasting growth rates used in the ecological restoration of the Ituango Hydroelectric Project. Tree survival was measured between 2019 and 2021. We examined intra- and interspecific variation in the evaluated traits and their relationships through correlations and principal component analysis, which demonstrated the importance of evaluating mechanisms rather than traits due to their high explanatory power for field survival. Generalized Linear Models were fitted to assess the importance of cavitation resistance (P50) in field survival and to study which traits or combinations of traits confer greater survival capacity to the evaluated species. We found correlations between traits at different plant levels, and osmotic potential at turgor loss was identified as an easily measurable mechanism with high explanatory power for field survival. Dense tissues were associated with more negative P50 values; however, a more negative P50 did not necessarily mean higher survival, as demonstrated by Jatropha curcas (P50 = -1.07 MPa). The role of P50 in determining field survival in the tropical dry forest trees is not deterministic, especially for species that prefer to avoid drought rather than face it. These results highlight the importance of considering other drought resistance traits when predicting field survival.eng
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMágister en Bosques y Conservación Ambientalspa
dc.description.methodsOur study site is located at the northwest Colombian TDF in the Cauca River basin, specifically in the town of La Angelina, in the department of Antioquia. The mean annual precipitation (MAP) in the basin is 800 mm and the mean annual temperature (MAT) is 30°C. The altitude ranges from 450 to 800 meters above sea level. The study was developed within a restoration area, where more than 80.000 trees were planted. The restoration occurred in 3 sites and phases to encompass different growth conditions. Samples were taken from two different study sites. Phase 1 and phase 2 (6°41'51.62"N, 75°51'9.68"O) are on the west side of the Cauca River, where the microclimatic conditions are different from the east side of the river. The wind currents are faster, the daylight is longer, and the soil conditions are different. The main vegetation cover (based on Corine Land Cover, 2018) in phases 1 and 2 is Riparian Forest, Low Secondary Vegetation, and Dense Grassland. Phase 3 (6°41'19.96"N, 75°49'53.64"O) is on the east side of the Cauca River, where slopes are higher, forests are further, and the main vegetation cover is Dense Grassland (Figure 1). The plant material was selected from the same source as the planted specimens. It was left in the planting area to maintain consistent environmental conditions until the seedlings reached 6 months old. To account for potential mortality or failure to reach the required size, 15 individuals per species were selected. Since some measurements required destructive sampling, these seedlings were used to assess xylem vulnerability to embolism, anatomical traits, leaf and stomatal characteristics, and electrolyte leakage. Other traits, such as osmotic potential at full turgor and water potential at turgor loss point, were measured from well-established trees that were already planted and had adapted effectively to the harsh conditions, allowing for an evaluation of their physiological responses.spa
dc.description.researchareaEcofisiologíaspa
dc.description.sponsorshipFacultad de Ciencias Agrarias - Universidad Nacional de Colombiaspa
dc.format.extent53 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88309
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambientalspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesÁlvarez‐Añorve, M. Y., Quesada, M., Sánchez‐Azofeifa, G. A., Avila‐Cabadilla, L. D., & Gamón, J. A. (2012). Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem. American Journal of Botany, 99(5), 816-826.spa
dc.relation.referencesAnfodillo, T., Carraro, V., Carrer, M., et al. (2006). Convergent tapering of xylem conduits in different woody species. New Phytologist, 169, 279–290. https://doi.org/10.1111/j.1469-8137.2005.01587.xspa
dc.relation.referencesAnderegg, W. R. L., et al. (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences, 113(18), 5024–5029.spa
dc.relation.referencesBarros, F. V., et al. (2019). Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. New Phytologist, 223(3), 1253–1266.spa
dc.relation.referencesBartlett, M. K., Scoffoni, C., Ardy, R., et al. (2012). Rapid determination of comparative drought tolerance traits: Using an osmometer to predict turgor loss point. Methods in Ecology and Evolution, 3, 880–888. https://doi.org/10.1111/j.2041-210X.2012.00230.xspa
dc.relation.referencesBarton, K. (2022). MuMIn: Multi-Model Inference.spa
dc.relation.referencesBates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67, 1–48.spa
dc.relation.referencesBeikircher, B., & Mayr, S. (2009). Intraspecific differences in drought tolerance and acclimation in hydraulics of Ligustrum vulgare and Viburnum lantana. Tree Physiology, 29, 1–11. https://doi.org/10.1093/treephys/tpp018spa
dc.relation.referencesBen-Gal, A., Borochov-Neori, H., Yermiyahu, U., & Shani, U. (2009). Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity? Environmental and Experimental Botany, 65(2-3), 232-237.spa
dc.relation.referencesBlum, A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell & Environment, 40(1), 4–10spa
dc.relation.referencesBurnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer.spa
dc.relation.referencesCampos, P. S., Quartin, V., Ramalho, J. C., & Nunes, M. A. (2003). Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. Journal of Plant Physiology, 160(3), 283-292spa
dc.relation.referencesCastellanos, E., McClain, M., Alvarez, M., Brklacich, M., Calvo-Alvarado, J., Coutinho, H., Jiménez-Osornio, J., & Schellenberg, M. (2008). Conservation to sustain ecological processes and services in landscapes of the Americasspa
dc.relation.referencesCavender-Bares, J., Cortes, P., Rambal, S., et al. (2005). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: A comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytologist, 168, 597–612. https://doi.org/10.1111/j.1469-8137.2005.01555.xspa
dc.relation.referencesCharrier, G., et al. (2016). Drought will not leave your glass empty: Low risk of hydraulic failure revealed by long-term drought observations in world’s top wine regions. Science Advances, 2(9), e1501453.spa
dc.relation.referencesChoat, B., et al. (2018). Triggers of tree mortality under drought. Nature, 558(7711), 531–539spa
dc.relation.referencesCosme, L. H. M., Schietti, J., Costa, F. R. C., & Oliveira, R. S. (2017). The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist, 215, 113–125. https://doi.org/10.1111/nph.14508spa
dc.relation.referencesDemidchik, V., Straltsova, D., Medvedev, S. S., Pozhvanov, G. A., Sokolik, A., & Yurin, V. (2014). Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany, 65(5), 1259-1270.spa
dc.relation.referencesDuursma, R. A., & Choat, B. (2017). fitplc - an R package to fit hydraulic vulnerability curves.spa
dc.relation.referencesEtter, A., Andrade, A., Nelson, C. R., Cortés, J., & Saavedra, K. (2020). Assessing restoration priorities for high-risk ecosystems: An application of the IUCN Red List of Ecosystems. Land Use Policy, 99, 104874.spa
dc.relation.referencesGe, W., Han, J., Zhang, D., & Wang, F. (2021). Divergent impacts of droughts on vegetation phenology and productivity in the Yungui Plateau, southwest China. Ecological Indicators, 127, 107743. https://doi.org/10.1016/j.ecolind.2021.107743spa
dc.relation.referencesGea-Izquierdo, G., Fonti, P., Cherubini, P., et al. (2012). Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiology, 32, 401–413. https://doi.org/10.1093/treephys/tps026spa
dc.relation.referencesGonzález-M, R., García, H., Isaacs, P., Cuadros, H., López-Camacho, R., Rodríguez, N., ... & Pizano, C. (2018). Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia. Environmental Research Letters, 13(4), 045007.spa
dc.relation.referencesGreenwood, S., Ruiz‐Benito, P., Martínez‐Vilalta, J., Lloret, F., Kitzberger, T., Allen, C., Fensham, R., Laughlin, D., Kattge, J., Bönisch, G., Kraft, N., & Jump, A. (2017). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20(4), 539-553. https://doi.org/10.1111/ele.12748spa
dc.relation.referencesGyenge, J., & Dalla Salsa, G. (2010). Técnicas en Medición en Ecofisiología Vegetalspa
dc.relation.referencesHacke, U. G., Sperry, J. S., & Pittermann, J. (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1, 31-41.spa
dc.relation.referencesHartig, F. (2021). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models.spa
dc.relation.referencesLavergne, S., Mouquet, N., Thuiller, W., & Ronce, O. (2010). Biodiversity and climate change: Integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics, 41, 321-350spa
dc.relation.referencesLachenbruch, B., & McCulloh, K. A. (2014). Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New Phytologist, 204(4), 747-764.spa
dc.relation.referencesMaréchaux, I., Bartlett, M. K., Sack, L., et al. (2015). Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 29, 1268–1277. https://doi.org/10.1111/1365-2435.12452spa
dc.relation.referencesMasoumi, A., Kafi, M., Khazaei, H., & Davari, K. (2010). Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of kochia (Kochia scoparia) under saline condition. Pakistan Journal of Botany, 42(5), 3517-3524spa
dc.relation.referencesMatías, L., Quero, J. L., Zamora, R., & Castro, J. (2012). Evidence for plant traits driving specific drought resistance: A community field experiment. Environmental and Experimental Botany, 81, 55-61. https://doi.org/10.1016/j.envexpbot.2012.03.002spa
dc.relation.referencesMazerolle, M. (2020). AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c).spa
dc.relation.referencesOgle, K., Barber, J. J., Willson, C., & Thompson, B. (2009). Hierarchical statistical modeling of xylem vulnerability to cavitation: Methods. New Phytologist, 182, 541–554. https://doi.org/10.1111/j.1469-8137.2008.02760.xspa
dc.relation.referencesOliveira, R. S., et al. (2019). Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 223(2), 632-646.spa
dc.relation.referencesParmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.spa
dc.relation.referencesPennington, R. T., Lehmann, C. E., & Rowland, L. M. (2018). Tropical savannas and dry forests. Current Biology, 28(9), R541-R545spa
dc.relation.referencesPoorter, L., et al. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185(2), 481–492.spa
dc.relation.referencesPortillo-Quintero, C., Sánchez-Azofeifa, A., Calvo-Alvarado, J., Quesada, M., & do Espirito Santo, M. M. (2015). The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: Lessons learned and opportunities for its sustainable management. Regional Environmental Change, 15, 1039-1049.spa
dc.relation.referencesPremachandra, G., & Shimada, T. (1987). The measurement of cell membrane stability using polyethylene glycol as a drought tolerance test in wheat. Japanese Journal of Crop Science, 56, 92–98.spa
dc.relation.referencesPratt, R. B., Jacobsen, A. L., Ewers, F. W., & Davis, S. D. (2007). Relationships among xylem transport, biomechanics, and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174(4), 787-798.spa
dc.relation.referencesR Core Team. (2021). R: A Language and Environment for Statistical Computingspa
dc.relation.referencesRodríguez-Zaccaro, F. D., et al. (2019). Wood structure and function change with maturity: Age of the vascular cambium is associated with xylem changes in current-year growth. Plant, Cell & Environment, 42(6), 1816-1831.spa
dc.relation.referencesRolny, N., Costa, L., Carrión, C., & Guiamet, J. J. (2011). Is the electrolyte leakage assay an unequivocal test of membrane deterioration during leaf senescence? Plant Physiology and Biochemistry, 49(10), 1220-1227.spa
dc.relation.referencesRuíz, J., Vargas, O., & Rodríguez, N. (2023). Restoration priorities: Integrating successional states and landscape resilience in tropical dry forest compensation projects in Colombia. Applied Geography, 157, 103021spa
dc.relation.referencesSanders, G., & Arndt, S. (2012). Osmotic adjustment under drought conditions. In R. Aroca (Ed.), Plant Responses to Drought Stress: From Morphological to Molecular Features (pp. 1-5). Springerspa
dc.relation.referencesShao, J., Zhou, X., Zhang, P., Zhai, D., Yuan, T., Li, Z., He, Y., & McDowell, N. (2022). Embolism resistance explains mortality and recovery of five subtropical evergreen broadleaf trees to persistent drought. Ecology, e3877. https://doi.org/10.1002/ecy.3877spa
dc.relation.referencesSiddiq, Z., Zhang, Y. J., Zhu, S. D., & Cao, K. F. (2019). Canopy water status and photosynthesis of tropical trees are associated with trunk sapwood hydraulic properties. Plant Physiology and Biochemistry, 139, 724-730. https://doi.org/10.1016/j.plaphy.2019.04.031spa
dc.relation.referencesSperry, J. S., Donnelly, J. R., & Tyree, M. T. (1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11, 35–40. https://doi.org/10.1111/j.1365-3040.1988.tb01774.xspa
dc.relation.referencesStrassburg, B. B., Iribarrem, A., Beyer, H. L., Cordeiro, C. L., Crouzeilles, R., Jakovac, C. C., ... & Visconti, P. (2020). Global priority areas for ecosystem restoration. Nature, 586(7831), 724-729.spa
dc.relation.referencesTabarelli, M., Filgueiras, B. K. C., Ribeiro, E. M. S., et al. (2023). Tropical Dry Forests. Reference Module in Life Sciences. https://doi.org/10.1016/B978-0-12-822562-2.00090-6spa
dc.relation.referencesTyree, M. T., Davis, S. D., & Cochard, H. (1994). Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? IAWA Journal, 15, 335–360. https://doi.org/10.1163/22941932-90001369spa
dc.relation.referencesUNEP. (2019). Nueva década de la ONU para la Restauración de los Ecosistemas, una gran oportunidad para la seguridad alimentaria y la acción climática. Retrieved from https://www.unep.org/es/noticias-y-reportajes/comunicado-de-prensa/nueva-decada-de-la-onu-para-la-restauracion-de-losspa
dc.relation.referencesVilagrosa, A., Chirino, E., Peguero-Pina, J. J., Barigah, T. S., Cochard, H., & Gil-Pelegrin, E. (2012). Xylem cavitation and embolism in plants living in water-limited ecosystems. In Plant Responses to Drought Stress: From Morphological to Molecular Features (pp. 63-109). Springer.spa
dc.relation.referencesWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827spa
dc.relation.referencesZanne, A. E., Westoby, M., Falster, D. S., et al. (2010). Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. American Journal of Botany, 97, 207–215. https://doi.org/10.3732/ajb.0900178spa
dc.relation.referencesZimmermann, M. H., & Jeje, A. A. (1981). Vessel-length distribution in stems of some American woody plants. Canadian Journal of Botany, 59, 1882–1892. https://doi.org/10.1139/b81-248spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionadosspa
dc.subject.ddc330 - Economía::333 - Economía de la tierra y de la energíaspa
dc.subject.lembBosques tropicales - Ituango (Antioquia, Colombia)
dc.subject.lembArboles - Resistencia a la sequía - Ituango (Antioquia, Colombia)
dc.subject.lembConservación de bosques - Ituango (Antioquia, Colombia)
dc.subject.lembEcología forestal - Ituango (Antioquia, Colombia)
dc.subject.proposalResistencia a la cavitaciónspa
dc.subject.proposalPérdida de electrolitosspa
dc.subject.proposalRestauración ecológicaspa
dc.subject.proposalPotencial osmóticospa
dc.subject.proposalCavitation resistanceeng
dc.subject.proposalElectrolyte leakageeng
dc.subject.proposalEcological restorationeng
dc.subject.proposalOsmotic potentialeng
dc.titleIs the survival of tree species in the tropical dry forest explained by functional drought resistance traits?eng
dc.title.translated¿Los rasgos funcionales de resistencia a la sequía explican la supervivencia de las especies arbóreas en el bosque seco tropical?eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleIs the survival of tree species in the tropical dry forest explained by functional drought resistance traits?spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameAlain Paquette, Laboratorio Urban Forestspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152706186.2025.pdf
Tamaño:
2.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bosques y Conservación Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: