Aplicaciones de fibra óptica en la industria minero energética

dc.contributor.advisorSánchez Arredondo, Luis Hernán
dc.contributor.authorRamirez Palacio, Gabriel Jaime
dc.date.accessioned2021-04-20T20:30:20Z
dc.date.available2021-04-20T20:30:20Z
dc.date.issued2021-04-19
dc.description.abstractLos sistemas DAS-DTS (Distributed acoustic sensing – Distributed temperature sensing) han tenido gran acogida en diversas industrias, la minero-energética no es la excepción, sin embargo, no existe una masificación debido a que aún son técnicas en desarrollo y en regiones como Colombia, por ejemplo, el desconocimiento de sus bondades es alto. El objetivo principal de esta disertación es dar a conocer el desarrollo de la tecnología de fibra óptica en la industria minero-energética en varias aplicaciones que se desarrollan actualmente en el mundo, exponiendo una metodología para implementación del sistema fibra óptica - DTS en minas de carbón como control y prevención de incendios mediante el perfil de temperatura y el sistema fibra óptica-DAS para detección de cambios de esfuerzos en el frente de explotación, además, el uso de la tecnología acústica para rescate o sistema de alerta de intrusos. Se definen los principios de la tecnología de forma simple, Se prueba con demostraciones de campo y laboratorio el funcionamiento, desplegando líneas de fibra óptica y monitoreando los parámetros con DTS y DAS para estudiar su comportamiento. Finalmente, se desarrollan aplicaciones simulando el despliegue, la instalación y los resultados esperados. Se trabajó sobre una mina subterránea simulada donde se demostró que integrar estos sistemas ayudará a mejorar todo el plan de prevención de riesgo, así como la toma de decisiones para operaciones de rescate en caso de accidentes, prevención y detección de intrusos. De otro lado, se aplicaron estas técnicas al desarrollo de pozos no convencionales tipos CBM, donde en estos se pudo demostrar cómo se calcula el perfil de flujo, cualitativamente, a través de la medida DTSspa
dc.description.abstractThe DAS–DTS (Distributed acoustic sensing–Distributed Temperature sensing) systems have been very well-received in different industries; mining and energy are no exception, however, there is no massification since they are still techniques in development, and in some countries as Colombia, for example, the lack of knowledge of their benefits is high. The main objective of this dissertation is to show the development of fiber-optic technology in the mining–energy industry in different applications that are currently being developed in the world by exposing a methodology for the implementation of the fiber-optic system–DTS in mines of coal as fire control and prevention through the temperature profile, and the fiber optic–DAS system for detecting changes in efforts at the mine face; in addition, the use of acoustic technology for rescue or intruder warning system. The principles of the technology are defined in a single way: operation is tested with field and laboratory demonstrations by deploying fiber-optic lines and monitoring the parameters with DTS and DAS to study their behavior and after that, applications are developed by simulating the deployment, installation and expected results. We worked on a simulated underground mine where it was shown that, on one hand, integrating these systems helps improve the entire risk prevention plan as well as the decision-making for rescue operations in case of accidents, prevention and detection of intruders; on the other hand, these techniques are applied in the development of unconventional CBM wells where it is demonstrated how the flow profile is qualitatively calculated through the DTS measure.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaSeguridad mineraspa
dc.format.extent158spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional UNspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79406
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Mineralesspa
dc.relation.indexedN/Aspa
dc.relation.referencesAminossadati, S. M., Mohammed, N. M., & Shemshad, J. (2010). Distributed temperature measurements using optical fibre technology in an underground mine environment. Tunnelling and Underground Space Technology, 25(3), 220-229. https://doi.org/10.1016/j.tust.2009.11.006spa
dc.relation.referencesBaquero, K., Blandón, A., & Molina, J. (1969). Análisis de los factores que influyen en la explosividad del polvo de carbón en las minas subterráneas. INGENIERÍA Y COMPETITIVIDAD, 14(2), 147-160. https://doi.org/10.25100/iyc.v14i2.2663spa
dc.relation.referencesBarnoski, M. K., & Jensen, S. M. (1976). Fiber waveguides: a novel technique for investigating attenuation characteristics. Applied Optics, 15(9), 2112. https://doi.org/10.1364/ao.15.002112spa
dc.relation.referencesCarras, J. N., & Young, B. C. (1994). Self-heating of coal and related materials: Models, application and test methods. Progress in Energy and Combustion Science, 20(1), 1-15. https://doi.org/10.1016/0360-1285(94)90004-3spa
dc.relation.referencesDakin, J. P., Pratt, D. J., Bibby, G. W. and Ross, J. N. (1985) "Distributed Anti-stokes Ratio Thermometry," in Optical Fiber Sensors, (Optical Society of America, 1985), paper PDS3spa
dc.relation.referencesFarahani, M., & T.Gogolla. (1999). Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing. Journal of Lightwave Technology, 1652-1662.spa
dc.relation.referencesGloge, D., & Marcatili, E. A. J. (1973a). Multimode Theory of Graded-Core Fibers. Bell System Technical Journal, 52(9), 1563-1578. https://doi.org/10.1002/j.1538-7305.1973.tb02033.xspa
dc.relation.referencesHartog, A. H. (2018). An Introduction to Distributed Optical Fibre Sensors (Reprint ed.). CRC Press.spa
dc.relation.referencesImproved Production Profiling Using Thermal Balance and Statistical Modeling in the Pinedale Anticline of the US Rocky Mountains. Donovan, G., y otros. Denver, Colorado, USA : s.n., 2008. SPE Annual Technical Conference and Exhibition, 21-24 Septemberspa
dc.relation.referencesLiu, Y,. Lei, T., Wei, L., Sun, Z., Wang, C., and Liu, T. (2012) "Application of Distributed Optical Fiber Temperature Sensing System Based on Raman Scattering in Coal Mine Safety Monitoring," Symposium on Photonics and Optoelectronics, Shanghai, 2012, pp. 1-4, doi: 10.1109/SOPO.2012.6270924spa
dc.relation.referencesKapron, F. P., Maurer, R. D., & Teter, M. P. (1972). Theory of Backscattering Effects in Waveguides. Applied Optics, 11(6), 1352. https://doi.org/10.1364/ao.11.001352spa
dc.relation.referencesLiokumovich, L. B., Ushakov, N. A., Kotov, O. I., Bisyarin, M. A., & Hartog, A. H. (2015). Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions. Journal of Lightwave Technology, 33(17), 3660-3671. https://doi.org/10.1109/jlt.2015.2449085spa
dc.relation.referencesMolenaar, M. M., Hill, D., Webster, P., Fidan, E., & Birch, B. (2012). First Downhole Application of Distributed Acoustic Sensing for Hydraulic-Fracturing Monitoring and Diagnostics. SPE Drilling & Completion, 27(01), 32-38. https://doi.org/10.2118/140561-paspa
dc.relation.referencesOuyang, L.-B., & Belanger, D. (2004). Flow Profiling via Distributed Temperature Sensor (DTS) System - Expectation and Reality. SPE Annual Technical Conference and Exhibition. Houston, USA.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasspa
dc.subject.lemMina de carbón
dc.subject.lembIndustria minera
dc.subject.lembIndustria energética
dc.subject.lembComunicaciones opticas
dc.subject.proposalDistributed acoustin sensingeng
dc.subject.proposalDistributed temperature sensingeng
dc.subject.proposalDTS
dc.subject.proposalDAS
dc.subject.proposalFibra ópticaspa
dc.subject.proposalMineríaspa
dc.subject.proposalPetróleospa
dc.subject.proposalMining and gas productioneng
dc.subject.proposalBackscatteringeng
dc.subject.proposalMinería y producción de gasspa
dc.titleAplicaciones de fibra óptica en la industria minero energéticaspa
dc.title.translatedFiber optic applications in the mining-energy industry
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1035415578.2021.pdf
Tamaño:
6.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería - Recursos Minerales

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: