Aplicaciones de fibra óptica en la industria minero energética
dc.contributor.advisor | Sánchez Arredondo, Luis Hernán | |
dc.contributor.author | Ramirez Palacio, Gabriel Jaime | |
dc.date.accessioned | 2021-04-20T20:30:20Z | |
dc.date.available | 2021-04-20T20:30:20Z | |
dc.date.issued | 2021-04-19 | |
dc.description.abstract | Los sistemas DAS-DTS (Distributed acoustic sensing – Distributed temperature sensing) han tenido gran acogida en diversas industrias, la minero-energética no es la excepción, sin embargo, no existe una masificación debido a que aún son técnicas en desarrollo y en regiones como Colombia, por ejemplo, el desconocimiento de sus bondades es alto. El objetivo principal de esta disertación es dar a conocer el desarrollo de la tecnología de fibra óptica en la industria minero-energética en varias aplicaciones que se desarrollan actualmente en el mundo, exponiendo una metodología para implementación del sistema fibra óptica - DTS en minas de carbón como control y prevención de incendios mediante el perfil de temperatura y el sistema fibra óptica-DAS para detección de cambios de esfuerzos en el frente de explotación, además, el uso de la tecnología acústica para rescate o sistema de alerta de intrusos. Se definen los principios de la tecnología de forma simple, Se prueba con demostraciones de campo y laboratorio el funcionamiento, desplegando líneas de fibra óptica y monitoreando los parámetros con DTS y DAS para estudiar su comportamiento. Finalmente, se desarrollan aplicaciones simulando el despliegue, la instalación y los resultados esperados. Se trabajó sobre una mina subterránea simulada donde se demostró que integrar estos sistemas ayudará a mejorar todo el plan de prevención de riesgo, así como la toma de decisiones para operaciones de rescate en caso de accidentes, prevención y detección de intrusos. De otro lado, se aplicaron estas técnicas al desarrollo de pozos no convencionales tipos CBM, donde en estos se pudo demostrar cómo se calcula el perfil de flujo, cualitativamente, a través de la medida DTS | spa |
dc.description.abstract | The DAS–DTS (Distributed acoustic sensing–Distributed Temperature sensing) systems have been very well-received in different industries; mining and energy are no exception, however, there is no massification since they are still techniques in development, and in some countries as Colombia, for example, the lack of knowledge of their benefits is high. The main objective of this dissertation is to show the development of fiber-optic technology in the mining–energy industry in different applications that are currently being developed in the world by exposing a methodology for the implementation of the fiber-optic system–DTS in mines of coal as fire control and prevention through the temperature profile, and the fiber optic–DAS system for detecting changes in efforts at the mine face; in addition, the use of acoustic technology for rescue or intruder warning system. The principles of the technology are defined in a single way: operation is tested with field and laboratory demonstrations by deploying fiber-optic lines and monitoring the parameters with DTS and DAS to study their behavior and after that, applications are developed by simulating the deployment, installation and expected results. We worked on a simulated underground mine where it was shown that, on one hand, integrating these systems helps improve the entire risk prevention plan as well as the decision-making for rescue operations in case of accidents, prevention and detection of intruders; on the other hand, these techniques are applied in the development of unconventional CBM wells where it is demonstrated how the flow profile is qualitatively calculated through the DTS measure. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.researcharea | Seguridad minera | spa |
dc.format.extent | 158 | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional UN | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79406 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.department | Departamento de Materiales y Minerales | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín | spa |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Recursos Minerales | spa |
dc.relation.indexed | N/A | spa |
dc.relation.references | Aminossadati, S. M., Mohammed, N. M., & Shemshad, J. (2010). Distributed temperature measurements using optical fibre technology in an underground mine environment. Tunnelling and Underground Space Technology, 25(3), 220-229. https://doi.org/10.1016/j.tust.2009.11.006 | spa |
dc.relation.references | Baquero, K., Blandón, A., & Molina, J. (1969). Análisis de los factores que influyen en la explosividad del polvo de carbón en las minas subterráneas. INGENIERÍA Y COMPETITIVIDAD, 14(2), 147-160. https://doi.org/10.25100/iyc.v14i2.2663 | spa |
dc.relation.references | Barnoski, M. K., & Jensen, S. M. (1976). Fiber waveguides: a novel technique for investigating attenuation characteristics. Applied Optics, 15(9), 2112. https://doi.org/10.1364/ao.15.002112 | spa |
dc.relation.references | Carras, J. N., & Young, B. C. (1994). Self-heating of coal and related materials: Models, application and test methods. Progress in Energy and Combustion Science, 20(1), 1-15. https://doi.org/10.1016/0360-1285(94)90004-3 | spa |
dc.relation.references | Dakin, J. P., Pratt, D. J., Bibby, G. W. and Ross, J. N. (1985) "Distributed Anti-stokes Ratio Thermometry," in Optical Fiber Sensors, (Optical Society of America, 1985), paper PDS3 | spa |
dc.relation.references | Farahani, M., & T.Gogolla. (1999). Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing. Journal of Lightwave Technology, 1652-1662. | spa |
dc.relation.references | Gloge, D., & Marcatili, E. A. J. (1973a). Multimode Theory of Graded-Core Fibers. Bell System Technical Journal, 52(9), 1563-1578. https://doi.org/10.1002/j.1538-7305.1973.tb02033.x | spa |
dc.relation.references | Hartog, A. H. (2018). An Introduction to Distributed Optical Fibre Sensors (Reprint ed.). CRC Press. | spa |
dc.relation.references | Improved Production Profiling Using Thermal Balance and Statistical Modeling in the Pinedale Anticline of the US Rocky Mountains. Donovan, G., y otros. Denver, Colorado, USA : s.n., 2008. SPE Annual Technical Conference and Exhibition, 21-24 September | spa |
dc.relation.references | Liu, Y,. Lei, T., Wei, L., Sun, Z., Wang, C., and Liu, T. (2012) "Application of Distributed Optical Fiber Temperature Sensing System Based on Raman Scattering in Coal Mine Safety Monitoring," Symposium on Photonics and Optoelectronics, Shanghai, 2012, pp. 1-4, doi: 10.1109/SOPO.2012.6270924 | spa |
dc.relation.references | Kapron, F. P., Maurer, R. D., & Teter, M. P. (1972). Theory of Backscattering Effects in Waveguides. Applied Optics, 11(6), 1352. https://doi.org/10.1364/ao.11.001352 | spa |
dc.relation.references | Liokumovich, L. B., Ushakov, N. A., Kotov, O. I., Bisyarin, M. A., & Hartog, A. H. (2015). Fundamentals of Optical Fiber Sensing Schemes Based on Coherent Optical Time Domain Reflectometry: Signal Model Under Static Fiber Conditions. Journal of Lightwave Technology, 33(17), 3660-3671. https://doi.org/10.1109/jlt.2015.2449085 | spa |
dc.relation.references | Molenaar, M. M., Hill, D., Webster, P., Fidan, E., & Birch, B. (2012). First Downhole Application of Distributed Acoustic Sensing for Hydraulic-Fracturing Monitoring and Diagnostics. SPE Drilling & Completion, 27(01), 32-38. https://doi.org/10.2118/140561-pa | spa |
dc.relation.references | Ouyang, L.-B., & Belanger, D. (2004). Flow Profiling via Distributed Temperature Sensor (DTS) System - Expectation and Reality. SPE Annual Technical Conference and Exhibition. Houston, USA. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas | spa |
dc.subject.lem | Mina de carbón | |
dc.subject.lemb | Industria minera | |
dc.subject.lemb | Industria energética | |
dc.subject.lemb | Comunicaciones opticas | |
dc.subject.proposal | Distributed acoustin sensing | eng |
dc.subject.proposal | Distributed temperature sensing | eng |
dc.subject.proposal | DTS | |
dc.subject.proposal | DAS | |
dc.subject.proposal | Fibra óptica | spa |
dc.subject.proposal | Minería | spa |
dc.subject.proposal | Petróleo | spa |
dc.subject.proposal | Mining and gas production | eng |
dc.subject.proposal | Backscattering | eng |
dc.subject.proposal | Minería y producción de gas | spa |
dc.title | Aplicaciones de fibra óptica en la industria minero energética | spa |
dc.title.translated | Fiber optic applications in the mining-energy industry | |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1035415578.2021.pdf
- Tamaño:
- 6.75 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis Maestría en Ingeniería - Recursos Minerales
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: