Metodología para la localización de fallas en sistemas de distribución

dc.contributor.advisorDiaz Morales, Hernando
dc.contributor.authorJagua Gualdron, Jorge Luis
dc.contributor.researchgroupGrupo de Investigación Emc-Unspa
dc.date.accessioned2022-08-10T15:11:19Z
dc.date.available2022-08-10T15:11:19Z
dc.date.issued2022-06
dc.descriptionIlustraciones, graficas, tablasspa
dc.description.abstractUno de los eventos que requiere mayor atención por parte del operador de mantenimiento en una red de distribución es la ocurrencia de una falla en algún punto de esta red. Definir la ubicación de la falla es una de las actividades que requieren de atención inmediata para restablecer el servicio y evitar la disminución de índices de calidad del servicio. El trabajo de esta tesis propone una metodología para la localización de fallas enfocando el análisis a las etapas correspondientes al proceso asociado a la gestión del operador de mantenimiento durante una falla: segmentación y detección, localización, caracterización de la causa. Cada una de estas etapas se presenta de manera individual y se proponen métodos para resolver el problema. Inicialmente se analiza del proceso de identificación/segmentación en el cual se determinan los estados transitorios y de estado estable de la falla a partir de los valores instantáneos de tensión y de corriente validando la aplicación de esta propuesta con eventos con forma de onda rectangular y eventos de rápida y lenta transición. Posteriormente es analizado el problema de la localización de la falla a partir de la aplicación de un método de optimización metaheurístico el cual emplea los valores medidos de tensión y de corriente de la falla en estado estable para realizar una comparación con los valores calculados validando los resultados a partir de simulaciones de falla sobre una red distribución industrial con fuentes en diferentes puntos de la red. Finalmente se explora la caracterización de la causa raíz de las fallas buscando clasificar si los eventos de falla ocurren por contacto de árboles, animales o descargas de rayo. (Texto tomado de la fuente)spa
dc.description.abstractOne of the events that requires the most attention from the maintenance operator in a distribution network is the occurrence of a failure at some point in this network. Defining the location of the fault is one of the activities that requires immediate attention to restore the service and avoid a decrease in service quality indices. This thesis proposes a methodology for fault location, focusing the analysis on the stages corresponding to the process associated with the management of the maintenance operator during a fault: segmentation and detection, location, characterization of the cause. Each of these stages is presented individually and methods are proposed to solve the problem. Initially, the identification/segmentation process is analyzed in which the transient and stable states of the fault are determined from the instantaneous values of voltage and current, validating the application of this proposal with events with a rectangular waveform and events fast and slow transition. Subsequently, the problem of fault location is analyzed from the application of a metaheuristic optimization method which uses the measured values of voltage and current of the fault in stable state to make a comparison with the calculated values, validating the results. from fault simulations on an industrial distribution network with sources at different points of the network. Finally, the characterization of the root cause of the faults is explored, seeking to classify if the fault events occur due to contact with trees, animals, or lightning discharges.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Eléctricaspa
dc.description.researchareaSistemas de distribuciónspa
dc.format.extentxviii, 121 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81834
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónicaspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Eléctricaspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesJ. Flórez, “Localización de faltas en sistemas de distribución de energía eléctrica usando métodos basados en el modelo y métodos basados en el conocimiento,” Universidad de Girona, vol. I Volumen, no. Localizacion de Fallas en sistemas de distribucion, 2007.spa
dc.relation.referencesE. P. Vázquez, “Sistema para Localización de Faltas en Líneas Subterráneas de Distribución Eléctrica de Media Tensión, mediante una Red Distribuida de Sensores de Corriente,” 2017.spa
dc.relation.referencesIEEE Standards, “IEEE Std C37.111-2013/ IEC 60255-24:2013. Measuring relays and protection equipment – Part 24: Common format for transient data exchange (COMTRADE) for power systems,” 61010-1 © Iec:2001, vol. 2014. 2014.spa
dc.relation.referencesG. Dileep, “A survey on smart grid technologies and applications,” Renewable Energy, vol. 146, 2020, doi: 10.1016/j.renene.2019.08.092.spa
dc.relation.referencesV. B. Núñez, S. Kulkarni, S. Santoso, and J. Melendez F., “Feature analysis and classification methodology for overhead distribution fault events,” 2010. doi: 10.1109/PES.2010.5589270.spa
dc.relation.referencesM. H. J. Bollen et al., “Bridging the gap between signal and power,” IEEE Signal Processing Magazine, vol. 26, no. 4, 2009, doi: 10.1109/msp.2009.932706.spa
dc.relation.referencesC. A. DUARTE GUALDRÓN, “TÉCNICAS DE PROCESAMIENTO DE SEÑALES PARA LA MONITORIZACIÓN DE LA CALIDAD DE LA ENERGÍA ELÉCTRICA,” 2004.spa
dc.relation.referencesM. Szmajda, K. Górecki, and J. Mroczka, “DFT algorithm analysis in low-cost power quality measurement systems based on a DSP processor,” 2007. doi: 10.1109/EPQU.2007.4424081.spa
dc.relation.referencesY. Gu and M. H. J. Bollen, “Time-frequency and time-scale domain analysis of voltage disturbances,” IEEE Transactions on Power Delivery, vol. 15, no. 4, 2000, doi: 10.1109/61.891515.spa
dc.relation.references“Electrical power systems quality,” Choice Reviews Online, vol. 34, no. 01, 1996, doi: 10.5860/choice.34-0322.spa
dc.relation.referencesI. Y. H. Gu and E. Styvaktakis, “Bridge the gap: Signal processing for power quality applications,” Electric Power Systems Research, vol. 66, no. 1. 2003. doi: 10.1016/S0378-7796(03)00074-9.spa
dc.relation.referencesJ. C. Goswami and A. K. Chan, Fundamentals of Wavelets. 2011. doi: 10.1002/9780470926994.spa
dc.relation.referencesS. Santoso, E. J. Powers, W. M. Grady, and P. Hofmann, “Power quality assessment via wavelet transform analysis,” IEEE Transactions on Power Delivery, vol. 11, no. 2, 1996, doi: 10.1109/61.489353.spa
dc.relation.referencesL. C. M. de Andrade, M. Oleskovicz, and R. A. S. Fernandes, “Power quality disturbances segmentation based on wavelet decomposition and adaptive thresholds,” 2014. doi: 10.1109/ICHQP.2014.6842906.spa
dc.relation.referencesC. Xiangxun, “Wavelet-based detection, localization, quantification and classification of short duration power quality disturbances,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2002, vol. 2. doi: 10.1109/pesw.2002.985142.spa
dc.relation.referencesJ. Blanco, “Diseño de una metodología para la valoración de eventos causados por fallas de red e insercción de bancos de condensadores en sistemas de distribución de energía eléctrica,” Bucaramanga, 2012.spa
dc.relation.referencesS. A. Deokar and L. M. Waghmare, “Integrated DWT-FFT approach for detection and classification of power quality disturbances,” International Journal of Electrical Power and Energy Systems, vol. 61, 2014, doi: 10.1016/j.ijepes.2014.04.015.spa
dc.relation.referencesJ. Barros and E. Pérez, “Automatic detection and analysis of voltage events in power systems,” IEEE Transactions on Instrumentation and Measurement, vol. 55, no. 5, 2006, doi: 10.1109/TIM.2006.881584.spa
dc.relation.referencesV. Barrera, “Automatic Diagnosis of Voltage Disturbances in Power Distribution Networks,” 2012.spa
dc.relation.referencesC. D. Le, I. Y. H. Gu, and M. H. J. Bollen, “Joint causal and anti-causal segmentation and location of transitions in power disturbances,” 2010. doi: 10.1109/PES.2010.5588103.spa
dc.relation.referencesG. Rilling, P. Flandrin, and P. Goncalves, “On empirical mode decomposition and its algorithms,” in IEEE-EURASIP workshop on nonlinear signal and image processing, 2003, vol. 3.spa
dc.relation.referencesH. Yong, L. Yongqiang, and H. Zhiping, “Detection and location of power quality disturbances based on mathematical morphology and Hilbert-Huang transform,” 2009. doi: 10.1109/ICEMI.2009.5274596.spa
dc.relation.referencesV. Ignatova, P. Granjon, and S. Bacha, “Space vector method for voltage dips and swells analysis,” IEEE Transactions on Power Delivery, vol. 24, no. 4, 2009, doi: 10.1109/TPWRD.2009.2028787.spa
dc.relation.referencesS. Arias-Guzman, A. J. Ustariz-Farfan, and E. Cano-Plata, “Segmentation and characterization of voltage sags in the analysis of industrial circuits,” 2016. doi: 10.1109/IAS.2016.7731944.spa
dc.relation.referencesT. W. Stringfield, D. J. Marihart, and R. F. Stevens, “Fault Location Methods for Overhead Lines,” Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 76, no. 3, 1957, doi: 10.1109/AIEEPAS.1957.4499601.spa
dc.relation.referencesS. Das, S. Kulkarni, N. Karnik, and S. Santoso, “Distribution fault location using short-circuit fault current profile approach,” 2011. doi: 10.1109/PES.2011.6039423.spa
dc.relation.referencesA. R. van C. Warrington, “Erratum: Protective Relays: Their Theory and Practice—Vol. 2,” Electronics and Power, vol. 24, no. 8, 1978, doi: 10.1049/ep.1978.0345.spa
dc.relation.referencesM. S. Sachdev, R. Das, and T. S. Sidhu, “Determining locations of faults in distribution systems,” in IEE Conference Publication, 1997, no. 434. doi: 10.1049/cp:19970060.spa
dc.relation.referencesR. H. Salim, M. Resener, A. D. Filomena, K. R. C. de Oliveira, and A. S. Bretas, “Extended fault-location formulation for power distribution systems,” IEEE Transactions on Power Delivery, vol. 24, no. 2, 2009, doi: 10.1109/TPWRD.2008.2002977.spa
dc.relation.referencesA. D. Filomena, M. Resener, R. H. Salim, and A. S. Bretas, “Fault location for underground distribution feeders: An extended impedance-based formulation with capacitive current compensation,” International Journal of Electrical Power and Energy Systems, vol. 31, no. 9, 2009, doi: 10.1016/j.ijepes.2009.03.026.spa
dc.relation.referencesY. Gong and A. Guzman, “Integrated fault location system for power distribution feeders,” IEEE Transactions on Industry Applications, vol. 49, no. 3, 2013, doi: 10.1109/TIA.2013.2252596.spa
dc.relation.referencesH. Mokhlis, H. Y. Li, and A. R. Khalid, “The application of voltage sags pattern to locate a faulted section in distribution network,” International Review of Electrical Engineering, vol. 5, no. 1, 2010.spa
dc.relation.referencesS. Lotfifard, M. Kezunovic, and M. J. Mousavi, “A systematic approach for ranking distribution systems fault location algorithms and eliminating false estimates,” IEEE Transactions on Power Delivery, vol. 28, no. 1, 2013, doi: 10.1109/TPWRD.2012.2213616.spa
dc.relation.referencesJ. Mora-Florez, V. Barrera-Núñez, and G. Carrillo-Caicedo, “Fault location in power distribution systems using a learning algorithm for multivariable data analysis,” IEEE Transactions on Power Delivery, vol. 22, no. 3, 2007, doi: 10.1109/TPWRD.2006.883021.spa
dc.relation.referencesS. J. Ahn, D. J. Won, I. Y. Chung, and S. il Moon, “Determination of the relative location of voltage sag source according to event cause,” in 2004 IEEE Power Engineering Society General Meeting, 2004, vol. 1. doi: 10.1109/pes.2004.1372880.spa
dc.relation.referencesK. N. Kim, J. W. Park, J. H. Lee, S. J. Ahn, and S. il Moon, “A method to determine the relative location of voltage sag source for PQ diagnosis,” in ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, 2005, vol. 3.spa
dc.relation.referencesT. Tayjasanant, C. Li, and W. Xu, “A resistance sign-based method for voltage sag source detection,” IEEE Transactions on Power Delivery, vol. 20, no. 4, 2005, doi: 10.1109/TPWRD.2005.852341.spa
dc.relation.referencesA. A. Girgis, D. G. Hart, and W. L. Peterson, “A New Fault Location Technique for Two- and Three-Terminal Lines,” IEEE Transactions on Power Delivery, vol. 7, no. 1, 1992, doi: 10.1109/61.108895.spa
dc.relation.referencesD. Novosel, D. G. Hart, E. Udren, and J. Garitty, “Unsynchronized two-terminal fault location estimation,” IEEE Transactions on Power Delivery, vol. 11, no. 1, 1996, doi: 10.1109/61.484009.spa
dc.relation.referencesR. A. F. Pereira, L. G. W. da Silva, M. Kezunovic, and J. R. S. Mantovani, “Improved fault location on distribution feeders based on matching during-fault voltage sags,” IEEE Transactions on Power Delivery, vol. 24, no. 2, 2009, doi: 10.1109/TPWRD.2009.2014480.spa
dc.relation.referencesQ. Jiang, B. Wang, and X. Li, “An efficient PMU-based fault-location technique for multiterminal transmission lines,” IEEE Transactions on Power Delivery, vol. 29, no. 4, 2014, doi: 10.1109/TPWRD.2014.2298865.spa
dc.relation.referencesD. W. Allan and M. A. Weiss, “Accurate Time and Frequency Transfer During Common-View of a GPS Satellite,” 2008. doi: 10.1109/freq.1980.200424.spa
dc.relation.referencesM. A. Lombardi, L. M. Nelson, A. N. Novick, and V. S. Zhang, “Time and Frequency Measurements Using the Global Positioning System,” the International Journal of Metrology, vol. 8, no. 3, 2001.spa
dc.relation.referencesS. R. Nam, S. H. Kang, S. J. Ahn, and J. H. Choi, “Single line-to-ground fault location based on unsynchronized phasors in automated ungrounded distribution systems,” Electric Power Systems Research, vol. 86, 2012, doi: 10.1016/j.epsr.2011.12.010.spa
dc.relation.referencesF. M. Aboshady, D. W. P. Thomas, and M. Sumner, “Fast fault location scheme for distribution systems based on fault transients,” in IET Conference Publications, 2017, vol. 2017, no. CP727. doi: 10.1049/cp.2017.0327.spa
dc.relation.referencesF. M. Aboshady, M. Sumner, and D. W. P. Thomas, “A double end fault location technique for distribution systems based on fault-generated transients,” 2017. doi: 10.1109/ISIE.2017.8001219.spa
dc.relation.referencesC. Zhao, S. Tao, and X. Xiao, “Fault location estimation based on voltage sag information of PQMS,” Dianwang Jishu/Power System Technology, vol. 40, no. 2, 2016, doi: 10.13335/j.1000-3673.pst.2016.02.044.spa
dc.relation.referencesJ. Blanco-Solano, J. F. Petit-Suarez, G. Ordonez-Plata, and N. Kagan, “Voltage sag state estimation using compressive sensing in power systems,” 2019. doi: 10.1109/PTC.2019.8810771.spa
dc.relation.referencesC. C. J. G. J. Mora, “Técnica de localización de faltas para un sistema de potencia radial, con cargas laterales desequilibradas y circuitos no homogéneos,” Revista Scientia et Técnica, vol. 28, pp. 56–62, Sep. 2005.spa
dc.relation.referencesR. N. Mahanty and P. B. Dutta Gupta, “Application of RBF neural network to fault classification and location in transmission lines,” in IEE Proceedings: Generation, Transmission and Distribution, 2004, vol. 151, no. 2. doi: 10.1049/ip-gtd:20040098.spa
dc.relation.referencesD. Thukaram, H. P. Khincha, and H. P. Vijaynarasimha, “Artificial neural network and support vector machine approach for locating faults in radial distribution systems,” IEEE Transactions on Power Delivery, vol. 20, no. 2 I, 2005, doi: 10.1109/TPWRD.2005.844307.spa
dc.relation.referencesA. ZAPATA-TAPASCO and S. a. M.-F. J. PEREZ-LONDONO, “Método basado en clasificadores k-NN parametrizados con algoritmos genéticos y la estimación de la reactancia para localización de fallas en sistemas de distribución,” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 70, pp. 220–232, Mar. 2014.spa
dc.relation.referencesG. Manassero, S. G. di Santo, and L. Souto, “Heuristic Method for Fault Location in Distribution Feeders with the Presence of Distributed Generation,” IEEE Transactions on Smart Grid, vol. 8, no. 6, 2017, doi: 10.1109/TSG.2016.2598487.spa
dc.relation.referencesC. F. Chien, S. L. Chen, and Y. S. Lin, “Using Bayesian network for fault location on distribution feeder,” IEEE Transactions on Power Delivery, vol. 17, no. 3, 2002, doi: 10.1109/TPWRD.2002.1022804.spa
dc.relation.referencesZ. Q. Bo, G. Weller, and M. A. Redfern, “Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals,” IEE Proceedings: Generation, Transmission and Distribution, vol. 146, no. 1, 1999, doi: 10.1049/ip-gtd:19990074.spa
dc.relation.referencesF. H. Magnago and A. Abur, “Fault location using wavelets,” IEEE Transactions on Power Delivery, vol. 13, no. 4, 1998, doi: 10.1109/61.714808.spa
dc.relation.referencesI. Niazy and J. Sadeh, “A new single ended fault location algorithm for combined transmission line considering fault clearing transients without using line parameters,” International Journal of Electrical Power and Energy Systems, vol. 44, no. 1, 2013, doi: 10.1016/j.ijepes.2012.08.007.spa
dc.relation.referencesW. Zhao, Y. H. Song, and W. R. Chen, “Improved GPS travelling wave fault locator for power cables by using wavelet analysis,” International Journal of Electrical Power and Energy Systems, vol. 23, no. 5, 2001, doi: 10.1016/S0142-0615(00)00064-8.spa
dc.relation.referencesL. Nastac and A. A. Thatte, “A heuristic approach for predicting fault locations in distribution power systems,” 2006. doi: 10.1109/NAPS.2006.360136.spa
dc.relation.referencesA. Mahmoudian and M. Niasati, “A novel approach for optimal allocation of fault current limiter in distribution system via combination of particle swarm optimization algorithm and genetic algorithm (PSOGA),” 2016. doi: 10.1109/EPDC.2016.7514786.spa
dc.relation.referencesW. Tao, G. Yang, and J. Zhang, “Fault section locating for distribution network with DG based on improved ant colony algorithm,” 2016. doi: 10.1109/IPEMC.2016.7512600.spa
dc.relation.referencesT. Jin, S. Lu, Y. Zhang, and R. C. Costa Flesch, “A novel fault section location method based on binary global-best harmony search algorithm for electric power distribution systems,” 2019. doi: 10.1109/ISGT-Asia.2019.8881615.spa
dc.relation.referencesS. Jamali, A. Bahmanyar, and H. Borhani-Bahabadi, “A fast and accurate fault location method for distribution networks with DG using genetic algorithms,” 2017. doi: 10.1109/SGC.2015.7857419.spa
dc.relation.referencesM. H. J. Bollen, I. Y. H. Gu, P. G. V. Axelberg, and E. Styvaktakis, “Classification of underlying causes of power quality disturbances: Deterministic versus statistical methods,” Eurasip Journal on Advances in Signal Processing, vol. 2007, 2007, doi: 10.1155/2007/79747.spa
dc.relation.referencesV. B. Núñez, I. Y. H. Gu, M. H. J. Bollen, and J. Meléndez, “Feature characterization of power quality events according to their underlying causes,” 2010. doi: 10.1109/ICHQP.2010.5625496.spa
dc.relation.referencesR. Hongdilokkul and C. Banmongkol, “Classification of transmission line faults with waveform characterization,” 2016. doi: 10.1109/ECTICon.2016.7561433.spa
dc.relation.referencesJ. A. Wischkaemper, C. L. Benner, and B. D. Russell, “Electrical characterization of vegetation contacts with distribution conductors - Investigation of progressive fault behavior,” 2008. doi: 10.1109/TDC.2008.4517149.spa
dc.relation.referencesP. J. Diggle and J. Serra, “Image Analysis and Mathematical Morphology.,” Biometrics, vol. 39, no. 2, 1983, doi: 10.2307/2531038.spa
dc.relation.referencesR. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image Analysis Using Mathematical Morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 4, 1987, doi: 10.1109/TPAMI.1987.4767941.spa
dc.relation.referencesP. P. Bedekar and P. N. Korde, “Optimum coordination of overcurrent relays using the modified Jaya algorithm,” 2017. doi: 10.1109/UPCON.2016.7894701.spa
dc.relation.referencesA. Wadood, S. G. Farkoush, T. Khurshaid, J. T. Yu, C. H. Kim, and S. B. Rhee, “Application of the JAYA Algorithm in Solving the Problem of the Optimal Coordination of Overcurrent Relays in Single- And Multi-Loop Distribution Systems,” Complexity, vol. 2019, 2019, doi: 10.1155/2019/5876318.spa
dc.relation.referencesP. A. Bangar and A. A. Kalage, “Optimum coordination of overcurrent and distance relays using JAYA optimization algorithm,” 2017. doi: 10.1109/ICNTE.2017.7947924.spa
dc.relation.referencesF. Berrouk, H. R. E. H. Bouchekara, A. E. Chaib, M. A. Abido, K. Bounaya, and M. S. Javaid, “A new multi-objective Jaya algorithm for solving the optimal power flow problem,” Journal of Electrical Systems, vol. 14, no. 3, 2018.spa
dc.relation.referencesW. Warid, H. Hizam, N. Mariun, and N. I. Abdul-Wahab, “Optimal power flow using the Jaya algorithm,” Energies, vol. 9, no. 9, 2016, doi: 10.3390/en9090678.spa
dc.relation.referencesR. Venkata Rao, “Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems,” International Journal of Industrial Engineering Computations, vol. 7, no. 1, 2016, doi: 10.5267/j.ijiec.2015.8.004.spa
dc.relation.referencesP. Phonrattanasak and N. Leeprechanon, “Optimal Location of Fast Charging Station on Residential Distribution Grid,” International Journal of Innovation, Management and Technology, vol. 3, no. 6, 2012.spa
dc.relation.referencesM. H. J. Bollen and L. D. Zhang, “Analysis of voltage tolerance of AC adjustable-speed drives for three-phase balanced and unbalanced sags,” IEEE Transactions on Industry Applications, vol. 36, no. 3, 2000, doi: 10.1109/28.845069.spa
dc.relation.referencesT. K. Ho, “The random subspace method for constructing decision forests,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, 1998, doi: 10.1109/34.709601.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.lembDISTRIBUCION DE ENERGIA ELECTRICAspa
dc.subject.lembElectric power distributioneng
dc.subject.lembLOCALIZACION DE FALLAS ELECTRICASspa
dc.subject.lembElectric fault locationeng
dc.subject.proposalLocalización de fallasspa
dc.subject.proposalSistemas de distribuciónspa
dc.subject.proposalFault locationeng
dc.subject.proposalWaveform segmentationeng
dc.subject.proposalMetaheuristicasspa
dc.titleMetodología para la localización de fallas en sistemas de distribuciónspa
dc.title.translatedFault location methodology in distribution systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098607872.2022.pdf
Tamaño:
4.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: