Recubrimiento TiSiN sobre acero inoxidable AISI 316 L: comportamiento mecánico, resistencia al desgaste y resistencia a la corrosión
| dc.contributor.advisor | Olaya Flórez, Jhon Jairo | spa |
| dc.contributor.advisor | Jiménez Borrego, Luis Camilo | spa |
| dc.contributor.author | Velasco Velasco, Félix Yesid | spa |
| dc.contributor.researchgroup | GRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES) | spa |
| dc.date.accessioned | 2020-04-20T14:07:30Z | spa |
| dc.date.available | 2020-04-20T14:07:30Z | spa |
| dc.date.issued | 2019-05-14 | spa |
| dc.description.abstract | This paper examines the fabrication and properties of nanostructured composites based on silicon nitride / titanium nitride on AISI 316L substrates obtained by the magnetron reactive sputtering technique in order to test corrosion resistance and wear. The elementary quantification together with the elementary mappings offered by the EDS technique revealed the chemical composition of the coatings. Through the experimental design L9 of Taguchi, the influence of the discharge variables on the final concentration of Si in each coating was determined, revealing that the individual influence of the variables describes the behavior of the model almost in its entirety. The microstructure of the coatings was analyzed by X-ray diffraction using the Bragg-Bretan technique, estimating the behavior of the grain size and the micro-tensions present in the coatings. The electrochemical characterization showed that the silicon-containing coatings decreased the corrosion rate with respect to the substrate and TiN coating. The electrochemical impedance tests were modeled by an analogous electrical circuit, the resistance to corrosion of the obtained coatings shows dependence of the amount of silicon, presenting the best behavior for TiSiN-3. The roughness of the coatings does not show a dependence on the silicon concentration, while the adhesion in the coatings decreases with the silicon content. The tribological behavior estimated by the coefficient of friction and the wear rate present the best results at an intermediate concentration of silicon. The results show that an outstanding behavior was obtained for the TiSiN-3 coating, demonstrating that by means of the control of the discharge variables a coating with an optimum silicon content is obtained that allows to improve its electrochemical and tribological performance. | spa |
| dc.description.abstract | Este documento examina la fabricación y las propiedades de los compuestos nanoestructurados basados en nitruro de silicio / nitruro de titanio en sustratos AISI 316L obtenidos por la técnica de pulverización reactiva de magnetrón para probar la resistencia a la corrosión y el desgaste. La cuantificación elemental junto con los mapeos elementales ofrecidos por la técnica EDS revelaron la composición química de los recubrimientos. A través del diseño experimental L9 de Taguchi, se determinó la influencia de las variables de descarga en la concentración final de Si en cada recubrimiento, revelando que la influencia individual de las variables describe el comportamiento del modelo casi en su totalidad. La microestructura de los recubrimientos se analizó por difracción de rayos X utilizando la técnica de Bragg-Bretan, estimando el comportamiento del tamaño de grano y las microtensiones presentes en los recubrimientos. La caracterización electroquímica mostró que los recubrimientos que contienen silicio disminuyeron la velocidad de corrosión con respecto al sustrato y el recubrimiento de TiN. Las pruebas de impedancia electroquímica fueron modeladas por un circuito eléctrico análogo, la resistencia a la corrosión de los recubrimientos obtenidos muestra dependencia de la cantidad de silicio, presentando el mejor comportamiento para TiSiN-3. La rugosidad de los recubrimientos no muestra una dependencia de la concentración de silicio, mientras que la adhesión en los recubrimientos disminuye con el contenido de silicio. El comportamiento tribológico estimado por el coeficiente de fricción y la tasa de desgaste presentan los mejores resultados a una concentración intermedia de silicio. Los resultados muestran que se obtuvo un comportamiento sobresaliente para el recubrimiento TiSiN-3, lo que demuestra que mediante el control de las variables de descarga se obtiene un recubrimiento con un contenido óptimo de silicio que permite mejorar su rendimiento electroquímico y tribológico. | spa |
| dc.description.additional | Magíster en Ingeniería de Materiales y Procesos. Línea de Investigación: Ingeniería de Superficies. | spa |
| dc.description.degreelevel | Maestría | spa |
| dc.format.extent | 111 | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/77430 | |
| dc.language.iso | spa | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
| dc.relation.references | K. Wasa y M. Kitabatake, Thin Films Material Technology: Sputtering of Compound Materials, Springer-Verlag Berlin Heidelberg, 2004. | spa |
| dc.relation.references | Woodhead Publishing Series in Energy, Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission, A. M. El-Sherik, Ed., ElSevier, 2017, pp. Capitulo 1 3-30. | spa |
| dc.relation.references | K. Holmberg y A. Erdemir, «Inflence of tribology on global energy consumption, cost and emissions,» Friction, vol. 5, nº 3, pp. 263-284, 2017. | spa |
| dc.relation.references | K. V. Chauhan y S. K. Rawal, «A review paper on tribological and mechanical properties of ternary nitride bases coatings,» Procedia Technology , vol. 14, pp. 430-437, 2014. | spa |
| dc.relation.references | J. C. M. Farrar, The Alloy tree (A guide to low-alloy steels, stainless steels and nickel-base alloys, New York: Woodhead Publishing limited, 2004. | spa |
| dc.relation.references | S. Ren-bo, X. Jian-ying y H. Dong-po, «Caracteristics of Mechanical Propertis and Microestructure for 316 L Austenitic Stainless Steel,» Journal of iron and steel research international, vol. 18, nº 11, pp. 53-59, 2011. | spa |
| dc.relation.references | L. G. Winters y J. M. Nutt, Stainless steel for Medical and Surgical Applications, Issue, Illustrated, 2003. | spa |
| dc.relation.references | G. V. Bourrouet, Química descriptiva de los elementos de transicion. Una revision de los compuestos binarios, Editorial Universidad de Costa Rica, 2004. | spa |
| dc.relation.references | S. Grosso, L. Latu-Romain, G. Berthomé, G. Renou, T. LeCoz y M. Mantel, «Titanium and titanium nitride thin films grown by dc reactive magnetron sputtering Physical Vapor Deposition in a continuous mode on stainless steel wires: Chemical, morphological and structural investigations,» Surface & Coatings Technology, 2017. | spa |
| dc.relation.references | E. P. Restrepo, P. A. Arango y S. T. Casanova, «Algunos conceptos sobre nitruro de titanio y el carburo de titanio,» Dyna rev.fac.nac,minas, vol. 72, nº 157, 2009. | spa |
| dc.relation.references | M. J. Estrada, J. Reyes Gasga, R. García García, N. Vargas Becerril, M. Zapata Torres, N. V. Gallardo Rivas, A. M. Mendoza Martínez y U. Paramo García, «Wettability modification of the AISI 304 stainless steel and glass surfaces by titanium nitride coating,» Surface & Coatings Technology, 2017. | spa |
| dc.relation.references | F. EL-Hossary, N. NEgm, A. Abd El-Rahman, A. Seleem y A. Abd El-Moula, «Tribo-mechanical and electrochemical propieties of plasma nitriding titanium,» Surface and Coatings Technology, vol. 276, pp. 658-667, 2015. | spa |
| dc.relation.references | D. Susmit, D. Mitun, V. Krishna Balla, B. Subhadip y V. Murugesan, «Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings,» Surface & Coatings Technology, 2018. | spa |
| dc.relation.references | N. Venugopal, V. S. Gerasomov, A. E. Ershov, S. V. Karpov y S. P. Polyutov, «TItanium nitride as light trapping plasmonic material in silicon solar cell,» Optical Materials, vol. 72, pp. 397-402, 2017. | spa |
| dc.relation.references | V. Merie, M. Pustan, G. Negrea y C. Birleanu, «Research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS aplications,» Applied Surface Science, vol. 358, pp. 525-532, 2015. | spa |
| dc.relation.references | V. C. Kamlesh y K. R. Sushant, «A Review Paér on Tribological and Mechanical Propieties of Ternary Nitride based Coatings,» Procedia Technology, vol. 14, pp. 430-437, 2014. | spa |
| dc.relation.references | P. Silva Neto, F. Freitas, D. Fernandez, R. Carvalho, L. Felix, A. Terto, R. Huble, F. Mendes, A. Silva Junior y E. Tentardini, «Investigation of microestructure and propieties of magnetron sputtered Zr-Si-N thin with diferent Si content,» Surface and Coatings Technology, vol. 353, pp. 355-363, 2018. | spa |
| dc.relation.references | H. Zhao y F. Ye, «Effect of Si-incorporation on the structue, mechanical, tribological and corrosion proprties of WSiN,» Applied surface Science, vol. 356, pp. 958-966, 2015.v | spa |
| dc.relation.references | M. Pour Yazdi, F. Lomello, J. Wang, F. Sanchette, Z. Dong, T. White, Y. Wouters, F. Schuter y B. A., «Propieties of TiSiN coating deposited by hybrid HiPIMS and pulsed-DC magnetron co-sputtering,» Vacuum, vol. 109, pp. 43-51, 2014. | spa |
| dc.relation.references | S. Guha, S. Das, A. Bandyopadhyay, S. Das y P. S. Bibhu, «Investigation os structural network and mechanical propeties of Titanium silicon nitride (TiSiN) thin film,» Journal of Alloys and Compounds, vol. 731, pp. 347-353, 2018. | spa |
| dc.relation.references | I. Endler, M. Höhn, J. Schmidt, S. Scholz, M. Hermann y M. Knaut, «Ternary and quaternary TiSiN and TiSiCN nanocomposite coating obtained by Chemical Vapor Deposition,» Surgs Technologyface and Coati, vol. 215, pp. 133-140, 2013. | spa |
| dc.relation.references | I. Campus, S. Muhl, E. Camps, J. G. Quiñones Galván y M. Flores, «Tribological propieties os TiSiN thin films deposited by laser ablation,» Surface and Coatings Tecnology, vol. 255, pp. 74-78, 2014. | spa |
| dc.relation.references | K. V. Oskomov, A. N. Zakhrov, S. V. Rabotkin y A. A. Solov'ev, «Deposition of Ultrahard Ti-Si-N Coatings by Pulsed High-Current Reactive Magnetron Sputtering,» Physical Science of Materials, vol. 61, nº 2, pp. 59-64, 2016. | spa |
| dc.relation.references | F. Kauffmann, B. Ji, G. Dehm, G. Huajian y E. Arzt, «A quantitative study of the hardness of a superhard nanocrystalline titanium nitride/silicon nitride coating,» Scripta Materalia, vol. 52, pp. 1269-1274, 2005. | spa |
| dc.relation.references | L. Shipeng, D. Jianxin, Y. Guangyuan y C. Hongwei, «Effects of nitrogen flowrates on propieties of TiSiN coatings deposited by arc ion plating combining with medium-frequency,» Int. Journal of Refractory Metals and Hard Materials, vol. 42, pp. 108-115, 2014. | spa |
| dc.relation.references | C. L. Chang, C. T. Lin, P. C. Tsai, W. Y. Ho y D. Y. Wang, «Influence of bias voltages on the structure and wear propieties of TiSiN coating synthesized by cathodic arc plasma evaporation,» Thin Solid Films, vol. 516, nº 16, pp. 5324-5329, 2008. | spa |
| dc.relation.references | C. Wen-Jun, S. Chun-Hsing, Y. Ge-Ping y H. Jia-Hong, «Optimization of the deposition process of ZrN and TiN thin films on Si(1 0 0) using desing od the experiment method,» Materials Chemistry and Physics, vol. 82, pp. 228-236, 2003. | spa |
| dc.relation.references | F. Movassagh-Alangh, A. Abdollah-zadeh, M. Aliofkhazraei y M. Abedi, «Improving the wear and corrosion resistance os Ti-6Al-4V alloy by deposition os TiSiN nanocomposite coating with pulsed-DC PACVD,» Wear, Vols. %1 de %2390-391, pp. 93-103, 2017. | spa |
| dc.relation.references | Y. Xu, L. Chen, Z. Liu, F. Pei y D. Young, «Impoving thermal stability of TiSiN nanocomposite coatings by multilayered epitaxial growth,» Surface and Coatings Technology, vol. 321, pp. 180-185, 2017. | spa |
| dc.relation.references | Y. Yuan, Z. Qin, D. Yu, C. Y. Wang, J. Sui, H. Lin y Q. Wang, «Relatioship of microstructure, mechanical propieties and hardned steel cutting performance of TiSiN-based nanocomposite coated tool,» Journal of Manufacturing Processes, vol. 28, nº 2, pp. 399-409, 2017. | spa |
| dc.relation.references | P. Trivedi, P. gupta, S. Srivastava, R. Jayaganthan y P. R. Ramesh Chandra, «Characterization and in vitro biocompatibility study os Ti-Si-N nanocomposite coating developed by using physical vapor deposition,» Applied Surface Science, vol. 293, pp. 143-150, 2013. | spa |
| dc.relation.references | K. Sadiq, R. A. Black y M. M. Stack, «Bio-tribocorrosion mechanisms in orthopaedic devices: Mapping the micro-abrasion-corrosion behaviour of a simulated CoCrMo hip replacement in calf serum solution,» Wear, vol. 316, nº 1-2, pp. 58-59, 2014. | spa |
| dc.relation.references | M. Zhang, S. Ma, K. Xu, L. Bai y C. Paul K, «Bio-tribological propieties and cytocompatibility of Ti-Si-N coatings,» Vaccum, vol. 115, pp. 50-57, 2015. | spa |
| dc.relation.references | D. C. Montgomery, Diseño y analisis de experimentos, Limusa Wiley, 2005, 2005. | spa |
| dc.relation.references | S. Puneet, V. Amitabh, S. R.K y P. O.P, «Process parameter selection for strotium ferrite sintered magnets using Taguchi L9 orthogonal desing,» Journal of materials Processing Technology, vol. 168, pp. 147-151, 2005. | spa |
| dc.relation.references | D. Ma, S. Ma y K. Xu, «Influence of Si content on Nano-structured Ti-Si-N film coated by pulsed-d.c. plasma enhanced CVD,» Surface and Coatings Technology, vol. 184, pp. 182-187, 2004. | spa |
| dc.relation.references | Y. Yao, J. Li, Y. Wang y L. Z. Yuwei Ye, «Influence of the negative bias in ion plating on the microestructural and tribological performance os TiSiN coating in seawater,» Surface and Coating Technology, vol. 280, pp. 154-162, 2015. | spa |
| dc.relation.references | A. F. Mosavassagh, A. Abdollah Zadeh, M. Asgari y M. Amid Ghaffari, «Influence of Si content on the wettability and corrosion resistence of nanocomposite TiSiN by pulsed.DC PACVD,» Journal of Alloys and Compounds, vol. 739, pp. 780-792, 2018. | spa |
| dc.relation.references | NIST7SEMATECH e-Handbook of statistical Methods, «Enginnering Statistics Handbook,» NIST, 30 10 2013. [En línea]. Available: http://www.itl.nist.gov/div898/handbook. [Último acceso: 23 Marzo 2016]. | spa |
| dc.relation.references | J. I. Goldtein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. Scott y D. C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis, Springer, 2017. | spa |
| dc.relation.references | Addinsoft, «XLSTAT sttatistical and analysis solution,» Addinsoft, 2019. [En línea]. Available: https://www.xlstat.com. | spa |
| dc.relation.references | T. Naes, P. Varela y I. Berget, «Chapter 9- Data Analysis in practice,» de Individual differences in sensory and consumer Science: Experimenarion, Analysis and Interpretation, Woodhead Publishing series in food Science, Technology and Nutrition, 2018, pp. 191-207. | spa |
| dc.relation.references | C. Chung, H. Chang, S. Chang, M. Liao y C. Lai, «Evolution of enhanced crystallinity and mechanicasl property of nanocomposite Ti-Si-N thin films using magnetron reactive co-sputtering,» Journal of Alloys and Compounds, vol. 537, pp. 318-322, 2012. | spa |
| dc.relation.references | K. Vasu, M. Ghanashyam Krishna y K. Padmanabha, «Substrate.temperature dependent structure and composition variations in RF magnetron sputtered titanium nitride thin films,» Applied Surface Science, vol. 257, pp. 3069-3074, 2011. | spa |
| dc.relation.references | F. Zabihi y M. Eslamian, «Effect of the ultrasonic substrate vibration on nucleation and crystallization of PbI2 Crystals and thin films,» Crystals, vol. 8, nº 2, p. 60, 2018. | spa |
| dc.relation.references | Y. H. Cheng, T. Browne, B. Heckerman, P. Gannon, J. C. Jiang, E. L. Meletis, C. Bowman y V. Gorokhovsky, «Influence of Si content on the structure and internal stress of the nanocomposite TiSiN coating deposited by large area filtered arc deposition,» Applied Physics, vol. 42, 2009. | spa |
| dc.relation.references | L. Velasco Estrada, J. J. Olaya Flores y R. Rodriguez Baracaldo, «The corrosion resistance and microestructure of ubm system-deposited NbxSiyNz thin films,» Ingenieria e Investigación, vol. 32, nº 3, pp. 10-13, 2012. | spa |
| dc.relation.references | S. Pugal Mani, A. Srinivasan y N. Rajendran, «Effect of nitride on the corrosion behaviour of 316L SS bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC),» Hydrogen Energy, vol. 40, pp. 3359-3369, 2015. | spa |
| dc.relation.references | G. Shaoning, S. Junsheng y G. Lingyu, «Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel,» Materials and Design, vol. 88, pp. 1-7, 2015. | spa |
| dc.relation.references | M. Largade, A. Billard, J. Creus, X. Feaugas, J. L. Grosseau Poussard, S. Touzain y C. Savall, «Electrochemical behavior of Ni-W obtained by magnetron sputtering,» Surface and Coatings Thecnology, vol. 352, pp. 581-590, 2018. | spa |
| dc.relation.references | K. Shukla, R. Rane, J. Alphonsa, P. Maity y S. Mukherjee, «Structural, mechanical and corrosion resisteance propirties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316 L,» Surface and Coatings Tecnology, vol. 324, pp. 167-174, 2017. | spa |
| dc.relation.references | F. Zhang, C. Li, M. Yan, J. He, Y. Yang y F. Yin, «Microestructure and nanomechanical propieties of co-deposited Ti-Cr films prepared by magnetron sputtering,» Surface and Coatings Technology, vol. 325, pp. 636-642, 2017. | spa |
| dc.relation.references | H. Wang, R. Zhang, Z. Yuan, X. Shu, E. Liu y Z. Han, «A comparative study of the corrosion performance of titanium (Ti), titaniun nitride (TiN), titanium dioxide (TiO2) and nitrogen-doped titanium oxides (N-TiO2), as coatings for biomedical applications,» Ceramics International, vol. 41, pp. 11844-11851, 2015. | spa |
| dc.relation.references | K. C. Mutyala, E. Ghanbari y G. L. Doll, «Effect of deposition method on tribological performance and corrosion resistance characteristics of CrxN coatings deposited by physical vapor deposition,» Thin Solid Films, vol. 636, pp. 232-239, 2017. | spa |
| dc.relation.references | Y. H. Cheng, T. Browne, B. Heckerman y E. I. Meletis, «Mechanical and Tribilogical propieties of nanocomposite TiSiN coatings,» Surface & Coatings Technology, vol. 204, pp. 2123-2129, 2010. | spa |
| dc.relation.references | A. Vereschaka, V. Tabakov, S. Grigoriev, A. Aksenenko, N. Sitnikov, G. Oganyan, A. Seleznev y S. Shevchenko, «Effect of adhesion and ear-resistant layer thickness ratio on mechanical and performance propieties of ZrN- (Zr,Al,Si)N coatings,» Surface & Coatings Technology, vol. 357, pp. 218-234, 2019. | spa |
| dc.relation.references | L. A. Espitia, H. Dong, X.-Y. Li, C. E. Pinedo y A. P. Tschiptschin, «Scratch test of active screen low temperatura plasma nitride AISI 410 martensitic stainless steel,» Wear, Vols. %1 de %2376-377, pp. 30-36, 2017. | spa |
| dc.relation.references | P. Panda, R. Ramaseshan, N. Ravi, G. Mangamma, J. Feby, S. Dash, K. Suzuki y H. Suematsu, «Reduction of residuals stress in AlN thin films synthesized by magnetron sputtering technique,» Materials Chemistry and Physics, vol. 200, pp. 78-84, 2017. | spa |
| dc.relation.references | A. International, «Standar test Method for Adhesion strength and Mechanocal Failure Modes of Ceramic Coating by Quantitative Single Point Scratch testing,» Designation C1624, 2017. | spa |
| dc.relation.references | A. International, Escritor, Standar test method for adhesion strength and mechanical failure Modes of ceramic coatings by quantitative single point scratch testing. [Performance]. ASTM International, 2005. | spa |
| dc.relation.references | S. C. Tung, N. Jiang, Y. G. Shen, L. Li, Y.-W. Mai y T. Chan, «Tribological characteristics of Ti-Si-N films depositeed by unbalance DC magnetron Sputtering,» Tribology Series, vol. 43, pp. 673-687, 2003. | spa |
| dc.relation.references | D. Philoppon, V. Godinho, P. M. Nagy, M. P. Delplancke-Ogletree y A. Fernandez, «Endurance of TiAlSiN coating: Effect of Si and Bias on wear and adhesion,» Wear, vol. 270, pp. 541-549, 2011. | spa |
| dc.relation.references | A. R. Bushroa, H. H. Masjuki, M. R. Muhamad y B. D. Beake, «Optimized scartch adhesion for TiSiN coatings deposited by a combination of DC and RF sputtering,» Surface and Coatings Technology, vol. 206, nº 7, pp. 1837-1844, 2011. | spa |
| dc.relation.references | S. A. Mohammad, Z. Zhi-feng, P. Munroe, L. K. Yan Li y X. Zonghan, «Control of the damage resistende os nanocomposite TiSiN coating on steels: Roles of residual stress,» Thin Solid Films, vol. 519, pp. 5007-5012, 2011. | spa |
| dc.relation.references | S. Saketi y M. Olsson, «Influence of CVD and PVD ciating micro topography on the initial material transfrer of 316L stainless steel sliding contats-A laboratory study,» Wear, Vols. %1 de %2388-389, pp. 29-38, 2017. | spa |
| dc.relation.references | M. Tkadletza, C. Mittererb, B. Sartorya, I. Letofsky Papstc y M. C, «The effect of droples in arc evaporated TiAlTaN hard coating on the wear behavior,» Surface & Coating Technology, vol. 257, pp. 95-101, 2014. | spa |
| dc.relation.references | A. Rieldl, N. Schalk, C. Czettla, B. Sartorya y B. Mitterercet, «Tribological propieties of hard coating modified by mechanical blasting and polishing post-treatment,» Wear, vol. 289, pp. 9-16, 2012. | spa |
| dc.relation.references | A. Baptista, F. J. Silva, J. Porteiro, J. L. Miguez, G. Pinto y L. Fernandes, «On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Application,» Procedia Manufacturing, vol. 17, pp. 746-757, 2018. | spa |
| dc.relation.references | Mattox y M. Donald, «Chapter 4- Phisycaaal Sputtering and Sputter Deposition,» de The Foundations of vacuum Coating Technology, Willian Andrew Applied Science Publishers, 2018, pp. 87-149. | spa |
| dc.relation.references | J. C. Ding, L. Damin, M. Haijuan, F. Z. Teng, C. K. Myung, Q. M. Wang y H. K. Kwang, «Influence of Si addition on structure and propieties of TiB2-Si nanocomposite coatings deposites bay high-power impulse magnetron sputtering,» Ceramics International, vol. 45, pp. 6363-6372, 2019. | spa |
| dc.relation.references | M. Zhang, S. Feng, L. Wang y Y. Zheng, «Lotus effect in wetting and self-cleaning,» Biotribology, vol. 5, pp. 31-43, 2016. | spa |
| dc.relation.references | F. G. Thierry Darmanin, «Superhydrophobic and superoleophobic propieties in nature,» Materialstoday, vol. 18, nº 5, pp. 273-285, 2015. | spa |
| dc.relation.references | G. Barati Darband, M. Aliofkhazraei, S. Khorsand, S. Sokhanvar y A. Kaboli, «Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemicaaal and Mechanical Stability,» Arabian Journal of Chemistry, p. In Press, 2018. | spa |
| dc.relation.references | F. Lofaj, M. Kabatova, M. Klich, D. Vana y J. Dobrovodsky, «The comparison of structure and propieties in DC magnetron sputtering and HiPIMS W-C:H coatings with different hydrogen content,» Ceramics International, 2018. | spa |
| dc.relation.references | M. D. Wolfgang Tillmann, «Influence of Si content on mechanical and tribological propieties of TiAlSiN PVD coatins at elevate temperatures,» Surface & Coatings Technology, vol. 321, pp. 448-454, 2017. | spa |
| dc.relation.references | Copyright, «Standard Test Method for Wear Testing with a Pin-on-dosck Apparatus,» ASTM Intrenational, pp. G99-17, 2017. | spa |
| dc.relation.references | H. Chi, L. Jiang, G. Chen, J. Qiao, X. Lin y G. Wu, «The tribological behavior evolution of TiB2/Al composites from running-in stage to steady stage,» Wear, Vols. %1 de %2368-369, pp. 304-313, 2016. | spa |
| dc.relation.references | H. Chi, L. Jiang, G. Chen, P. Kang, X. Lin y G. Wu, «Dry sliding friction and wear behavior of (TiB2 + h-BN)/2024Al composites,» Material and design, vol. 87, pp. 960-968, 2015. | spa |
| dc.relation.references | D. Linsler, F. Shrockert y M. Scherge, «Influence of subsurface plastic deformation on the running-in behavior of a hypoeutectic AlSi alloy,» Tribology International, vol. 100, pp. 224-230, 2016. | spa |
| dc.relation.references | Y. Y. Chang, H. Chang, L. J. Jhao y C. C. Chuang, «Tribological and mechanical propieties of multilayered TiVN/TiSiN coating synthesized by cathodyc arc evapotarion,» Surface & Coatings Technology, vol. 350, pp. 1071-1079, 2018. | spa |
| dc.relation.references | G. H. Farrihi, V. Kazerani y S. Ghorashi, «Test Methodlogy and Wear Characteristics of Austenitic Stainless Steel AISI Type 316 at Criogenic Environment,» de Proceedings of the world Congress on Engineering, London, 2014. | spa |
| dc.relation.references | F. Fernandes, T. Polcar y A. Cavaleiro, «Tribological propieties of self-lubricating TiSiVN coatings at room temperature,» Surface and Coatings Technology, vol. 267, pp. 8-14, 2015. | spa |
| dc.relation.references | F. Fernandes, J. C. Oliveira y A. Cavaleiro, «Self-libricating TiSi(V)N thin films deposited by deep oscillation magnetron sputtering (DOMS),» Surface and Coatings Technology, vol. 308, pp. 256-263, 2016. | spa |
| dc.relation.references | X. Ge, Y. Xia y Z. Cao, «Tribological propieties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease,» Tribology International, vol. 92, pp. 454-461, 2015. | spa |
| dc.rights | Derechos reservados - Universidad Nacional de Colombia | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.spa | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 660 - Ingeniería química::669 - Metalurgia | spa |
| dc.subject.proposal | TiSiN Coating | eng |
| dc.subject.proposal | Recubrimento TiSiN | spa |
| dc.subject.proposal | Magnetron Sputtering | eng |
| dc.subject.proposal | Sputtering Magnetron | spa |
| dc.subject.proposal | Silicon Content | eng |
| dc.subject.proposal | Contenido de Silício | spa |
| dc.subject.proposal | Corrosion | eng |
| dc.subject.proposal | Corrosión | spa |
| dc.subject.proposal | Wear | eng |
| dc.subject.proposal | Desgaste | spa |
| dc.subject.proposal | Diseño factorial fraccionado | spa |
| dc.subject.proposal | Fractional Factorial Design | eng |
| dc.title | Recubrimiento TiSiN sobre acero inoxidable AISI 316 L: comportamiento mecánico, resistencia al desgaste y resistencia a la corrosión | spa |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |

