Recubrimiento TiSiN sobre acero inoxidable AISI 316 L: comportamiento mecánico, resistencia al desgaste y resistencia a la corrosión

dc.contributor.advisorOlaya Flórez, Jhon Jairospa
dc.contributor.advisorJiménez Borrego, Luis Camilospa
dc.contributor.authorVelasco Velasco, Félix Yesidspa
dc.contributor.researchgroupGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)spa
dc.date.accessioned2020-04-20T14:07:30Zspa
dc.date.available2020-04-20T14:07:30Zspa
dc.date.issued2019-05-14spa
dc.description.abstractThis paper examines the fabrication and properties of nanostructured composites based on silicon nitride / titanium nitride on AISI 316L substrates obtained by the magnetron reactive sputtering technique in order to test corrosion resistance and wear. The elementary quantification together with the elementary mappings offered by the EDS technique revealed the chemical composition of the coatings. Through the experimental design L9 of Taguchi, the influence of the discharge variables on the final concentration of Si in each coating was determined, revealing that the individual influence of the variables describes the behavior of the model almost in its entirety. The microstructure of the coatings was analyzed by X-ray diffraction using the Bragg-Bretan technique, estimating the behavior of the grain size and the micro-tensions present in the coatings. The electrochemical characterization showed that the silicon-containing coatings decreased the corrosion rate with respect to the substrate and TiN coating. The electrochemical impedance tests were modeled by an analogous electrical circuit, the resistance to corrosion of the obtained coatings shows dependence of the amount of silicon, presenting the best behavior for TiSiN-3. The roughness of the coatings does not show a dependence on the silicon concentration, while the adhesion in the coatings decreases with the silicon content. The tribological behavior estimated by the coefficient of friction and the wear rate present the best results at an intermediate concentration of silicon. The results show that an outstanding behavior was obtained for the TiSiN-3 coating, demonstrating that by means of the control of the discharge variables a coating with an optimum silicon content is obtained that allows to improve its electrochemical and tribological performance.spa
dc.description.abstractEste documento examina la fabricación y las propiedades de los compuestos nanoestructurados basados ​​en nitruro de silicio / nitruro de titanio en sustratos AISI 316L obtenidos por la técnica de pulverización reactiva de magnetrón para probar la resistencia a la corrosión y el desgaste. La cuantificación elemental junto con los mapeos elementales ofrecidos por la técnica EDS revelaron la composición química de los recubrimientos. A través del diseño experimental L9 de Taguchi, se determinó la influencia de las variables de descarga en la concentración final de Si en cada recubrimiento, revelando que la influencia individual de las variables describe el comportamiento del modelo casi en su totalidad. La microestructura de los recubrimientos se analizó por difracción de rayos X utilizando la técnica de Bragg-Bretan, estimando el comportamiento del tamaño de grano y las microtensiones presentes en los recubrimientos. La caracterización electroquímica mostró que los recubrimientos que contienen silicio disminuyeron la velocidad de corrosión con respecto al sustrato y el recubrimiento de TiN. Las pruebas de impedancia electroquímica fueron modeladas por un circuito eléctrico análogo, la resistencia a la corrosión de los recubrimientos obtenidos muestra dependencia de la cantidad de silicio, presentando el mejor comportamiento para TiSiN-3. La rugosidad de los recubrimientos no muestra una dependencia de la concentración de silicio, mientras que la adhesión en los recubrimientos disminuye con el contenido de silicio. El comportamiento tribológico estimado por el coeficiente de fricción y la tasa de desgaste presentan los mejores resultados a una concentración intermedia de silicio. Los resultados muestran que se obtuvo un comportamiento sobresaliente para el recubrimiento TiSiN-3, lo que demuestra que mediante el control de las variables de descarga se obtiene un recubrimiento con un contenido óptimo de silicio que permite mejorar su rendimiento electroquímico y tribológico.spa
dc.description.additionalMagíster en Ingeniería de Materiales y Procesos. Línea de Investigación: Ingeniería de Superficies.spa
dc.description.degreelevelMaestríaspa
dc.format.extent111spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77430
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.relation.referencesK. Wasa y M. Kitabatake, Thin Films Material Technology: Sputtering of Compound Materials, Springer-Verlag Berlin Heidelberg, 2004.spa
dc.relation.referencesWoodhead Publishing Series in Energy, Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission, A. M. El-Sherik, Ed., ElSevier, 2017, pp. Capitulo 1 3-30.spa
dc.relation.referencesK. Holmberg y A. Erdemir, «Inflence of tribology on global energy consumption, cost and emissions,» Friction, vol. 5, nº 3, pp. 263-284, 2017.spa
dc.relation.referencesK. V. Chauhan y S. K. Rawal, «A review paper on tribological and mechanical properties of ternary nitride bases coatings,» Procedia Technology , vol. 14, pp. 430-437, 2014.spa
dc.relation.referencesJ. C. M. Farrar, The Alloy tree (A guide to low-alloy steels, stainless steels and nickel-base alloys, New York: Woodhead Publishing limited, 2004.spa
dc.relation.referencesS. Ren-bo, X. Jian-ying y H. Dong-po, «Caracteristics of Mechanical Propertis and Microestructure for 316 L Austenitic Stainless Steel,» Journal of iron and steel research international, vol. 18, nº 11, pp. 53-59, 2011.spa
dc.relation.referencesL. G. Winters y J. M. Nutt, Stainless steel for Medical and Surgical Applications, Issue, Illustrated, 2003.spa
dc.relation.referencesG. V. Bourrouet, Química descriptiva de los elementos de transicion. Una revision de los compuestos binarios, Editorial Universidad de Costa Rica, 2004.spa
dc.relation.referencesS. Grosso, L. Latu-Romain, G. Berthomé, G. Renou, T. LeCoz y M. Mantel, «Titanium and titanium nitride thin films grown by dc reactive magnetron sputtering Physical Vapor Deposition in a continuous mode on stainless steel wires: Chemical, morphological and structural investigations,» Surface & Coatings Technology, 2017.spa
dc.relation.referencesE. P. Restrepo, P. A. Arango y S. T. Casanova, «Algunos conceptos sobre nitruro de titanio y el carburo de titanio,» Dyna rev.fac.nac,minas, vol. 72, nº 157, 2009.spa
dc.relation.referencesM. J. Estrada, J. Reyes Gasga, R. García García, N. Vargas Becerril, M. Zapata Torres, N. V. Gallardo Rivas, A. M. Mendoza Martínez y U. Paramo García, «Wettability modification of the AISI 304 stainless steel and glass surfaces by titanium nitride coating,» Surface & Coatings Technology, 2017.spa
dc.relation.referencesF. EL-Hossary, N. NEgm, A. Abd El-Rahman, A. Seleem y A. Abd El-Moula, «Tribo-mechanical and electrochemical propieties of plasma nitriding titanium,» Surface and Coatings Technology, vol. 276, pp. 658-667, 2015.spa
dc.relation.referencesD. Susmit, D. Mitun, V. Krishna Balla, B. Subhadip y V. Murugesan, «Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings,» Surface & Coatings Technology, 2018.spa
dc.relation.referencesN. Venugopal, V. S. Gerasomov, A. E. Ershov, S. V. Karpov y S. P. Polyutov, «TItanium nitride as light trapping plasmonic material in silicon solar cell,» Optical Materials, vol. 72, pp. 397-402, 2017.spa
dc.relation.referencesV. Merie, M. Pustan, G. Negrea y C. Birleanu, «Research on titanium nitride thin films deposited by reactive magnetron sputtering for MEMS aplications,» Applied Surface Science, vol. 358, pp. 525-532, 2015.spa
dc.relation.referencesV. C. Kamlesh y K. R. Sushant, «A Review Paér on Tribological and Mechanical Propieties of Ternary Nitride based Coatings,» Procedia Technology, vol. 14, pp. 430-437, 2014.spa
dc.relation.referencesP. Silva Neto, F. Freitas, D. Fernandez, R. Carvalho, L. Felix, A. Terto, R. Huble, F. Mendes, A. Silva Junior y E. Tentardini, «Investigation of microestructure and propieties of magnetron sputtered Zr-Si-N thin with diferent Si content,» Surface and Coatings Technology, vol. 353, pp. 355-363, 2018.spa
dc.relation.referencesH. Zhao y F. Ye, «Effect of Si-incorporation on the structue, mechanical, tribological and corrosion proprties of WSiN,» Applied surface Science, vol. 356, pp. 958-966, 2015.vspa
dc.relation.referencesM. Pour Yazdi, F. Lomello, J. Wang, F. Sanchette, Z. Dong, T. White, Y. Wouters, F. Schuter y B. A., «Propieties of TiSiN coating deposited by hybrid HiPIMS and pulsed-DC magnetron co-sputtering,» Vacuum, vol. 109, pp. 43-51, 2014.spa
dc.relation.referencesS. Guha, S. Das, A. Bandyopadhyay, S. Das y P. S. Bibhu, «Investigation os structural network and mechanical propeties of Titanium silicon nitride (TiSiN) thin film,» Journal of Alloys and Compounds, vol. 731, pp. 347-353, 2018.spa
dc.relation.referencesI. Endler, M. Höhn, J. Schmidt, S. Scholz, M. Hermann y M. Knaut, «Ternary and quaternary TiSiN and TiSiCN nanocomposite coating obtained by Chemical Vapor Deposition,» Surgs Technologyface and Coati, vol. 215, pp. 133-140, 2013.spa
dc.relation.referencesI. Campus, S. Muhl, E. Camps, J. G. Quiñones Galván y M. Flores, «Tribological propieties os TiSiN thin films deposited by laser ablation,» Surface and Coatings Tecnology, vol. 255, pp. 74-78, 2014.spa
dc.relation.referencesK. V. Oskomov, A. N. Zakhrov, S. V. Rabotkin y A. A. Solov'ev, «Deposition of Ultrahard Ti-Si-N Coatings by Pulsed High-Current Reactive Magnetron Sputtering,» Physical Science of Materials, vol. 61, nº 2, pp. 59-64, 2016.spa
dc.relation.referencesF. Kauffmann, B. Ji, G. Dehm, G. Huajian y E. Arzt, «A quantitative study of the hardness of a superhard nanocrystalline titanium nitride/silicon nitride coating,» Scripta Materalia, vol. 52, pp. 1269-1274, 2005.spa
dc.relation.referencesL. Shipeng, D. Jianxin, Y. Guangyuan y C. Hongwei, «Effects of nitrogen flowrates on propieties of TiSiN coatings deposited by arc ion plating combining with medium-frequency,» Int. Journal of Refractory Metals and Hard Materials, vol. 42, pp. 108-115, 2014.spa
dc.relation.referencesC. L. Chang, C. T. Lin, P. C. Tsai, W. Y. Ho y D. Y. Wang, «Influence of bias voltages on the structure and wear propieties of TiSiN coating synthesized by cathodic arc plasma evaporation,» Thin Solid Films, vol. 516, nº 16, pp. 5324-5329, 2008.spa
dc.relation.referencesC. Wen-Jun, S. Chun-Hsing, Y. Ge-Ping y H. Jia-Hong, «Optimization of the deposition process of ZrN and TiN thin films on Si(1 0 0) using desing od the experiment method,» Materials Chemistry and Physics, vol. 82, pp. 228-236, 2003.spa
dc.relation.referencesF. Movassagh-Alangh, A. Abdollah-zadeh, M. Aliofkhazraei y M. Abedi, «Improving the wear and corrosion resistance os Ti-6Al-4V alloy by deposition os TiSiN nanocomposite coating with pulsed-DC PACVD,» Wear, Vols. %1 de %2390-391, pp. 93-103, 2017.spa
dc.relation.referencesY. Xu, L. Chen, Z. Liu, F. Pei y D. Young, «Impoving thermal stability of TiSiN nanocomposite coatings by multilayered epitaxial growth,» Surface and Coatings Technology, vol. 321, pp. 180-185, 2017.spa
dc.relation.referencesY. Yuan, Z. Qin, D. Yu, C. Y. Wang, J. Sui, H. Lin y Q. Wang, «Relatioship of microstructure, mechanical propieties and hardned steel cutting performance of TiSiN-based nanocomposite coated tool,» Journal of Manufacturing Processes, vol. 28, nº 2, pp. 399-409, 2017.spa
dc.relation.referencesP. Trivedi, P. gupta, S. Srivastava, R. Jayaganthan y P. R. Ramesh Chandra, «Characterization and in vitro biocompatibility study os Ti-Si-N nanocomposite coating developed by using physical vapor deposition,» Applied Surface Science, vol. 293, pp. 143-150, 2013.spa
dc.relation.referencesK. Sadiq, R. A. Black y M. M. Stack, «Bio-tribocorrosion mechanisms in orthopaedic devices: Mapping the micro-abrasion-corrosion behaviour of a simulated CoCrMo hip replacement in calf serum solution,» Wear, vol. 316, nº 1-2, pp. 58-59, 2014.spa
dc.relation.referencesM. Zhang, S. Ma, K. Xu, L. Bai y C. Paul K, «Bio-tribological propieties and cytocompatibility of Ti-Si-N coatings,» Vaccum, vol. 115, pp. 50-57, 2015.spa
dc.relation.referencesD. C. Montgomery, Diseño y analisis de experimentos, Limusa Wiley, 2005, 2005.spa
dc.relation.referencesS. Puneet, V. Amitabh, S. R.K y P. O.P, «Process parameter selection for strotium ferrite sintered magnets using Taguchi L9 orthogonal desing,» Journal of materials Processing Technology, vol. 168, pp. 147-151, 2005.spa
dc.relation.referencesD. Ma, S. Ma y K. Xu, «Influence of Si content on Nano-structured Ti-Si-N film coated by pulsed-d.c. plasma enhanced CVD,» Surface and Coatings Technology, vol. 184, pp. 182-187, 2004.spa
dc.relation.referencesY. Yao, J. Li, Y. Wang y L. Z. Yuwei Ye, «Influence of the negative bias in ion plating on the microestructural and tribological performance os TiSiN coating in seawater,» Surface and Coating Technology, vol. 280, pp. 154-162, 2015.spa
dc.relation.referencesA. F. Mosavassagh, A. Abdollah Zadeh, M. Asgari y M. Amid Ghaffari, «Influence of Si content on the wettability and corrosion resistence of nanocomposite TiSiN by pulsed.DC PACVD,» Journal of Alloys and Compounds, vol. 739, pp. 780-792, 2018.spa
dc.relation.referencesNIST7SEMATECH e-Handbook of statistical Methods, «Enginnering Statistics Handbook,» NIST, 30 10 2013. [En línea]. Available: http://www.itl.nist.gov/div898/handbook. [Último acceso: 23 Marzo 2016].spa
dc.relation.referencesJ. I. Goldtein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. Scott y D. C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis, Springer, 2017.spa
dc.relation.referencesAddinsoft, «XLSTAT sttatistical and analysis solution,» Addinsoft, 2019. [En línea]. Available: https://www.xlstat.com.spa
dc.relation.referencesT. Naes, P. Varela y I. Berget, «Chapter 9- Data Analysis in practice,» de Individual differences in sensory and consumer Science: Experimenarion, Analysis and Interpretation, Woodhead Publishing series in food Science, Technology and Nutrition, 2018, pp. 191-207.spa
dc.relation.referencesC. Chung, H. Chang, S. Chang, M. Liao y C. Lai, «Evolution of enhanced crystallinity and mechanicasl property of nanocomposite Ti-Si-N thin films using magnetron reactive co-sputtering,» Journal of Alloys and Compounds, vol. 537, pp. 318-322, 2012.spa
dc.relation.referencesK. Vasu, M. Ghanashyam Krishna y K. Padmanabha, «Substrate.temperature dependent structure and composition variations in RF magnetron sputtered titanium nitride thin films,» Applied Surface Science, vol. 257, pp. 3069-3074, 2011.spa
dc.relation.referencesF. Zabihi y M. Eslamian, «Effect of the ultrasonic substrate vibration on nucleation and crystallization of PbI2 Crystals and thin films,» Crystals, vol. 8, nº 2, p. 60, 2018.spa
dc.relation.referencesY. H. Cheng, T. Browne, B. Heckerman, P. Gannon, J. C. Jiang, E. L. Meletis, C. Bowman y V. Gorokhovsky, «Influence of Si content on the structure and internal stress of the nanocomposite TiSiN coating deposited by large area filtered arc deposition,» Applied Physics, vol. 42, 2009.spa
dc.relation.referencesL. Velasco Estrada, J. J. Olaya Flores y R. Rodriguez Baracaldo, «The corrosion resistance and microestructure of ubm system-deposited NbxSiyNz thin films,» Ingenieria e Investigación, vol. 32, nº 3, pp. 10-13, 2012.spa
dc.relation.referencesS. Pugal Mani, A. Srinivasan y N. Rajendran, «Effect of nitride on the corrosion behaviour of 316L SS bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC),» Hydrogen Energy, vol. 40, pp. 3359-3369, 2015.spa
dc.relation.referencesG. Shaoning, S. Junsheng y G. Lingyu, «Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel,» Materials and Design, vol. 88, pp. 1-7, 2015.spa
dc.relation.referencesM. Largade, A. Billard, J. Creus, X. Feaugas, J. L. Grosseau Poussard, S. Touzain y C. Savall, «Electrochemical behavior of Ni-W obtained by magnetron sputtering,» Surface and Coatings Thecnology, vol. 352, pp. 581-590, 2018.spa
dc.relation.referencesK. Shukla, R. Rane, J. Alphonsa, P. Maity y S. Mukherjee, «Structural, mechanical and corrosion resisteance propirties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316 L,» Surface and Coatings Tecnology, vol. 324, pp. 167-174, 2017.spa
dc.relation.referencesF. Zhang, C. Li, M. Yan, J. He, Y. Yang y F. Yin, «Microestructure and nanomechanical propieties of co-deposited Ti-Cr films prepared by magnetron sputtering,» Surface and Coatings Technology, vol. 325, pp. 636-642, 2017.spa
dc.relation.referencesH. Wang, R. Zhang, Z. Yuan, X. Shu, E. Liu y Z. Han, «A comparative study of the corrosion performance of titanium (Ti), titaniun nitride (TiN), titanium dioxide (TiO2) and nitrogen-doped titanium oxides (N-TiO2), as coatings for biomedical applications,» Ceramics International, vol. 41, pp. 11844-11851, 2015.spa
dc.relation.referencesK. C. Mutyala, E. Ghanbari y G. L. Doll, «Effect of deposition method on tribological performance and corrosion resistance characteristics of CrxN coatings deposited by physical vapor deposition,» Thin Solid Films, vol. 636, pp. 232-239, 2017.spa
dc.relation.referencesY. H. Cheng, T. Browne, B. Heckerman y E. I. Meletis, «Mechanical and Tribilogical propieties of nanocomposite TiSiN coatings,» Surface & Coatings Technology, vol. 204, pp. 2123-2129, 2010.spa
dc.relation.referencesA. Vereschaka, V. Tabakov, S. Grigoriev, A. Aksenenko, N. Sitnikov, G. Oganyan, A. Seleznev y S. Shevchenko, «Effect of adhesion and ear-resistant layer thickness ratio on mechanical and performance propieties of ZrN- (Zr,Al,Si)N coatings,» Surface & Coatings Technology, vol. 357, pp. 218-234, 2019.spa
dc.relation.referencesL. A. Espitia, H. Dong, X.-Y. Li, C. E. Pinedo y A. P. Tschiptschin, «Scratch test of active screen low temperatura plasma nitride AISI 410 martensitic stainless steel,» Wear, Vols. %1 de %2376-377, pp. 30-36, 2017.spa
dc.relation.referencesP. Panda, R. Ramaseshan, N. Ravi, G. Mangamma, J. Feby, S. Dash, K. Suzuki y H. Suematsu, «Reduction of residuals stress in AlN thin films synthesized by magnetron sputtering technique,» Materials Chemistry and Physics, vol. 200, pp. 78-84, 2017.spa
dc.relation.referencesA. International, «Standar test Method for Adhesion strength and Mechanocal Failure Modes of Ceramic Coating by Quantitative Single Point Scratch testing,» Designation C1624, 2017.spa
dc.relation.referencesA. International, Escritor, Standar test method for adhesion strength and mechanical failure Modes of ceramic coatings by quantitative single point scratch testing. [Performance]. ASTM International, 2005.spa
dc.relation.referencesS. C. Tung, N. Jiang, Y. G. Shen, L. Li, Y.-W. Mai y T. Chan, «Tribological characteristics of Ti-Si-N films depositeed by unbalance DC magnetron Sputtering,» Tribology Series, vol. 43, pp. 673-687, 2003.spa
dc.relation.referencesD. Philoppon, V. Godinho, P. M. Nagy, M. P. Delplancke-Ogletree y A. Fernandez, «Endurance of TiAlSiN coating: Effect of Si and Bias on wear and adhesion,» Wear, vol. 270, pp. 541-549, 2011.spa
dc.relation.referencesA. R. Bushroa, H. H. Masjuki, M. R. Muhamad y B. D. Beake, «Optimized scartch adhesion for TiSiN coatings deposited by a combination of DC and RF sputtering,» Surface and Coatings Technology, vol. 206, nº 7, pp. 1837-1844, 2011.spa
dc.relation.referencesS. A. Mohammad, Z. Zhi-feng, P. Munroe, L. K. Yan Li y X. Zonghan, «Control of the damage resistende os nanocomposite TiSiN coating on steels: Roles of residual stress,» Thin Solid Films, vol. 519, pp. 5007-5012, 2011.spa
dc.relation.referencesS. Saketi y M. Olsson, «Influence of CVD and PVD ciating micro topography on the initial material transfrer of 316L stainless steel sliding contats-A laboratory study,» Wear, Vols. %1 de %2388-389, pp. 29-38, 2017.spa
dc.relation.referencesM. Tkadletza, C. Mittererb, B. Sartorya, I. Letofsky Papstc y M. C, «The effect of droples in arc evaporated TiAlTaN hard coating on the wear behavior,» Surface & Coating Technology, vol. 257, pp. 95-101, 2014.spa
dc.relation.referencesA. Rieldl, N. Schalk, C. Czettla, B. Sartorya y B. Mitterercet, «Tribological propieties of hard coating modified by mechanical blasting and polishing post-treatment,» Wear, vol. 289, pp. 9-16, 2012.spa
dc.relation.referencesA. Baptista, F. J. Silva, J. Porteiro, J. L. Miguez, G. Pinto y L. Fernandes, «On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Application,» Procedia Manufacturing, vol. 17, pp. 746-757, 2018.spa
dc.relation.referencesMattox y M. Donald, «Chapter 4- Phisycaaal Sputtering and Sputter Deposition,» de The Foundations of vacuum Coating Technology, Willian Andrew Applied Science Publishers, 2018, pp. 87-149.spa
dc.relation.referencesJ. C. Ding, L. Damin, M. Haijuan, F. Z. Teng, C. K. Myung, Q. M. Wang y H. K. Kwang, «Influence of Si addition on structure and propieties of TiB2-Si nanocomposite coatings deposites bay high-power impulse magnetron sputtering,» Ceramics International, vol. 45, pp. 6363-6372, 2019.spa
dc.relation.referencesM. Zhang, S. Feng, L. Wang y Y. Zheng, «Lotus effect in wetting and self-cleaning,» Biotribology, vol. 5, pp. 31-43, 2016.spa
dc.relation.referencesF. G. Thierry Darmanin, «Superhydrophobic and superoleophobic propieties in nature,» Materialstoday, vol. 18, nº 5, pp. 273-285, 2015.spa
dc.relation.referencesG. Barati Darband, M. Aliofkhazraei, S. Khorsand, S. Sokhanvar y A. Kaboli, «Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemicaaal and Mechanical Stability,» Arabian Journal of Chemistry, p. In Press, 2018.spa
dc.relation.referencesF. Lofaj, M. Kabatova, M. Klich, D. Vana y J. Dobrovodsky, «The comparison of structure and propieties in DC magnetron sputtering and HiPIMS W-C:H coatings with different hydrogen content,» Ceramics International, 2018.spa
dc.relation.referencesM. D. Wolfgang Tillmann, «Influence of Si content on mechanical and tribological propieties of TiAlSiN PVD coatins at elevate temperatures,» Surface & Coatings Technology, vol. 321, pp. 448-454, 2017.spa
dc.relation.referencesCopyright, «Standard Test Method for Wear Testing with a Pin-on-dosck Apparatus,» ASTM Intrenational, pp. G99-17, 2017.spa
dc.relation.referencesH. Chi, L. Jiang, G. Chen, J. Qiao, X. Lin y G. Wu, «The tribological behavior evolution of TiB2/Al composites from running-in stage to steady stage,» Wear, Vols. %1 de %2368-369, pp. 304-313, 2016.spa
dc.relation.referencesH. Chi, L. Jiang, G. Chen, P. Kang, X. Lin y G. Wu, «Dry sliding friction and wear behavior of (TiB2 + h-BN)/2024Al composites,» Material and design, vol. 87, pp. 960-968, 2015.spa
dc.relation.referencesD. Linsler, F. Shrockert y M. Scherge, «Influence of subsurface plastic deformation on the running-in behavior of a hypoeutectic AlSi alloy,» Tribology International, vol. 100, pp. 224-230, 2016.spa
dc.relation.referencesY. Y. Chang, H. Chang, L. J. Jhao y C. C. Chuang, «Tribological and mechanical propieties of multilayered TiVN/TiSiN coating synthesized by cathodyc arc evapotarion,» Surface & Coatings Technology, vol. 350, pp. 1071-1079, 2018.spa
dc.relation.referencesG. H. Farrihi, V. Kazerani y S. Ghorashi, «Test Methodlogy and Wear Characteristics of Austenitic Stainless Steel AISI Type 316 at Criogenic Environment,» de Proceedings of the world Congress on Engineering, London, 2014.spa
dc.relation.referencesF. Fernandes, T. Polcar y A. Cavaleiro, «Tribological propieties of self-lubricating TiSiVN coatings at room temperature,» Surface and Coatings Technology, vol. 267, pp. 8-14, 2015.spa
dc.relation.referencesF. Fernandes, J. C. Oliveira y A. Cavaleiro, «Self-libricating TiSi(V)N thin films deposited by deep oscillation magnetron sputtering (DOMS),» Surface and Coatings Technology, vol. 308, pp. 256-263, 2016.spa
dc.relation.referencesX. Ge, Y. Xia y Z. Cao, «Tribological propieties and insulation effect of nanometer TiO2 and nanometer SiO2 as additives in grease,» Tribology International, vol. 92, pp. 454-461, 2015.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::669 - Metalurgiaspa
dc.subject.proposalTiSiN Coatingeng
dc.subject.proposalRecubrimento TiSiNspa
dc.subject.proposalMagnetron Sputteringeng
dc.subject.proposalSputtering Magnetronspa
dc.subject.proposalSilicon Contenteng
dc.subject.proposalContenido de Silíciospa
dc.subject.proposalCorrosioneng
dc.subject.proposalCorrosiónspa
dc.subject.proposalWeareng
dc.subject.proposalDesgastespa
dc.subject.proposalDiseño factorial fraccionadospa
dc.subject.proposalFractional Factorial Designeng
dc.titleRecubrimiento TiSiN sobre acero inoxidable AISI 316 L: comportamiento mecánico, resistencia al desgaste y resistencia a la corrosiónspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010173762.2019.pdf
Tamaño:
2.33 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: