En 7 día(s), 2 hora(s) y 49 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Deslignificación de desechos de Rosa sp utilizando el hongo basidiomiceto selectivo ceriporiopsis subvermispora

dc.contributor.advisorVelásquez Lozano, Mario Enriquespa
dc.contributor.advisorNieto Ramírez, Ivonne Jeannettespa
dc.contributor.authorChávez Arias, Nelson Enriquespa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2020-08-22T03:56:17Zspa
dc.date.available2020-08-22T03:56:17Zspa
dc.date.issued2020-02-24spa
dc.description.abstractLa Rosa spp es el principal tipo de flor cultivada en Colombia con aproximadamente 33% de participación en la producción florícola del país. La alta cantidad de desechos vegetales producidos en este cultivo hacen de este material un sustrato interesante para ser explotado en procesos biotecnológicos. En el presente trabajo se utilizó el hongo basidiomiceto Ceriporiopsis subvermispora con el fin de evaluar su potencial para el tratamiento de estos residuos. Se estudió su capacidad para colonizar un sustrato semisólido a base de residuos de Rosa sp, en términos de crecimiento micelial, producción de lacasas y porcentaje de descomposición de lignina para 15 días de tratamiento. Con un modelo logístico se determinó el efecto del pH y la adición de sales, encontrando que el hongo es capaz de crecer eficientemente sobre el sustrato sin la necesidad del uso de nutrientes y reguladores buffer. El efecto de la temperatura y la dilución sobre el método de extracción de lacasas se determinó, observando que la máxima recuperación fue posible con una dilución de 1/60 y 30 °C para este medio de cultivo. Se determinó la actividad lacasa durante este periodo encontrando la máxima producción al día 15 (1,69 U/g ± 020). Finalmente se cuantificó el decaimiento de lignina durante la colonización del hongo, llegando a descomponer 3,54% del total de lignina en comparación al blanco.spa
dc.description.abstractThe Rose spp is the main type of flower planted in Colombia, with approximately 33% stake in the country's production floriculture. The high amount of plant waste produced in this industry, make this material an interesting substrate to be exploited in biotechnological processes. In this paper the fungus basidiomycete Ceriporiopsis subvermispora was used to evaluate its potential for the bio-treatment of this waste. Its ability to colonize a substrate of solid waste-Rose sp was studied, using as response variable the mycelial growth, production of laccase and lignin decay for 15 days. Using a logistic model, the effect of pH and the addition of salts was determined. It was found that the microorganism is able to grow efficiently on the substrate without the need for use of nutrients and buffer. The effect dela temperature and dilution in the extraction process was determined laccases. It was found that maximum recovery was possible with a 1/60 dilution and 30 ° C. It was determined laccase activity during this period, finding the maximum production at day 15 (1.69 U / g ± 020). Finally, the lignin decomposition was quantitated during colonization of the fungus, reaching the maximum rate of delignification at 15 days with 3.54% of degraded lignin.spa
dc.description.additionalLínea de Investigación: Bioprocesos Productos Naturales Vegetalesspa
dc.description.degreelevelMaestríaspa
dc.description.sponsorshipFundación CEIBAspa
dc.format.extent130spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78165
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAguiar, A., & Ferraz, A. (2008). Relevance of extractives and wood transformation products on the biodegradation of Pinus taeda by Ceriporiopsis subvermispora. International Biodeterioration and Biodegradation, 61(2), 182–188.spa
dc.relation.referencesAguiar, A., Mendonça, R., Rodríguez, J., & Ferraz, A. (2010). Behavior of Ceriporiopsis subvermispora during Pinustaedabiotreatment in soybean-oil-amended cultures. International Biodeterioration & Biodegradation, 64, 588–593.spa
dc.relation.referencesAguilar, D. (2011). Producción de etanol a partir de bagazo de caña panelera mediante un sistema híbrido de fermentación y pervaporación (trabajo de grado de Maestría en Ingeniería Química).spa
dc.relation.referencesAkhtar, M. (1994). Biomechanical Pulping of Aspen Wood Chips with Three Strains of Ceriporiopsis subvermispora. Holzforschung, 48, 199–202.spa
dc.relation.referencesAkhtar, M., Blanchette, R. A., & Kirk, T. K. (1997). Fungal deslignification and biomechanical pulping of wood. In Advance in Biomechanical Engineering/ Biotechnology (volumen 57., pp. 159–195). New York: Springer.spa
dc.relation.referencesAkhtar, M., Blanchette, R. A., Myers, G., & Kirk, T. k. (1998). An overview on biomechanical pulping research. Environmentally Friendly Technologies for the Pulp Paper Industry, 309–340.spa
dc.relation.referencesAlderman, D. R. (1998). Assessing the availability of wood residues and residue markets in Virginia. In Wood Science and Forest products. Blacksburg, Virginia.spa
dc.relation.referencesAnder, P., Eriksson, K.-E. L., & Blanchette, R. (1977). Influence of carbohydrates on lignin degradation by the white rot fungus Sporotrichm pulverulentum. Svensk Papperstidn, 78, 643–652.spa
dc.relation.referencesAsocolflores. (2002). Guía Ambiental para la Floricultura. 1–61.spa
dc.relation.referencesAsocolflores. (2010). Global Reporting Initiative (GRI). Tomado de http://cecodes.org.co/reportes/archivos/asocolflores/ReporteGRIAsocolflores.pdfspa
dc.relation.referencesAsocolflores. (2012). Florverde Sustainable Flowers. Tomado de http://florverde.org/spa
dc.relation.referencesAsocolflores. (2012). Florverde Sustainable Flowers. Tomado de http://florverde.org/spa
dc.relation.referencesAsocolflores. (2015b). Floricultura colombiana. Revista de La Asociación Colombiana de Exportadores de Flores, 6.spa
dc.relation.referencesBabič, J., Likozar, B., & Pavko, A. (2012). Optimization of ligninolytic enzyme activity and production rate with Ceriporiopsis subvermispora for application in bioremediation by varying submerged media composition and growth immobilization support. International Journal of Molecular Sciences, 13(9), 11365–11384.spa
dc.relation.referencesBaldrian, P., & Valaskova, V. (2008). Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev, 32, 501–521.spa
dc.relation.referencesBlanchette, R. A. (1995). Degradation of the lignocellulose complex in wood. Canadian Journal of Botany, 73(S1), 999–1010.spa
dc.relation.referencesBlanchette, R. A., Burnes, T. A., Eerdmans, M. M., & Akhtar, M. (1992). Evaluating Isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for Use in Biological Pulping Processes. Holzforschung, 46(2), 109–115. https://doi.org/10.1515/hfsg.1992.46.2.109spa
dc.relation.referencesBoucqué, C. H. V., & Fiems, L. O. (1998). Vegetable by-products of agro-industrial origin. Livest Prod Sci, 19, 97–135.spa
dc.relation.referencesBurdsall, H. S. (1998). Taxonomy of industrially important white rot fungi. In Environmentally Frienly Technologies for the Pulp and Paper Industry. (pp. 259–272). New York: JohnWiley and Sons.spa
dc.relation.referencesCastilho, Leda R., Alves, T. L. M., & Medronho, R. A. (1999). Recovery of pectolytic enzymes produced by solid state culture of Aspergillus niger. Process Biochemistry, 34(2), 181–186.spa
dc.relation.referencesCastilho, Leda R., Medronho, R. A., & Alves, T. L. M. (2000). Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with Aspergillus niger. Bioresource Technology, 71(1), 45–50. https://doi.org/10.1016/S0960-8524(99)00058-9spa
dc.relation.referencesCensat, A. V. C. (2007). Las raíces de las flores las deudas y los impactos de las floricultura en Colombia. Tomado de: https://rosessenseespines.files.wordpress.com/2014/04/documento_5_flores_en_colombia.pdfspa
dc.relation.referencesChang, S. T. (1998). A global strategy for mushroom cultivation – a challenge of a “non-green revolution.” In M. Lu, K. Gao, & H. F. Si (Eds.), ’98 Nanjing International Symposium, Science and Cultivation of Mushrooms. Nanjing.spa
dc.relation.referencesChanliaud, E., Saulnier, L., & Thibault, J. F. (1995). Alkaline extraction and characterization of heteroxylans from maize bran. Journal of Cereal Science, 21, 195–203.spa
dc.relation.referencesChen, H. (2014). Chemical Composition and Structure of Natural Lignocellulose. In Biotechnology of Lignocellulose: Theory and Practice (pp. 25–71). https://doi.org/10.1007/978-94-007-6898-7spa
dc.relation.referencesChen, H. (2014). Chemical Composition and Structure of Natural Lignocellulose. In Biotechnology of Lignocellulose: Theory and Practice (pp. 25–71). https://doi.org/10.1007/978-94-007-6898-7spa
dc.relation.referencesChmelová, D., & Ondrejovi, M. (2013). Optimization of nutrition factors for Ceriporiopsis subvermispora biomass production. Int. J. Curr. Mircrobiol. App. Sci, 2(12), 206–218.spa
dc.relation.referencesChmelová, D., & Ondrejovič, M. (2012). Determination of Enzymes Produced By Ceriporiopsis. Journal of Microbiology, Biotechnology and Food Sciences, 1(4), 1168–1178.spa
dc.relation.referencesChmelová, D., Ondrejovič, M., Ondáš, V., & Šturdík, E. (2011). Influence of cultivation conditions on production of lignocellulolytic enzymes by Ceriporiopsis subvermispora. Biologia, 66(5), 748–754. https://doi.org/10.2478/s11756-011-0103-5spa
dc.relation.referencesCianchetta, S., Di Maggio, B., Burzi, P. L., & Galletti, S. (2014). Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Applied Biochemistry and Biotechnology, 173(2), 609–623. https://doi.org/10.1007/s12010-014-0869-3spa
dc.relation.referencesClaye, S. S., Idouraine, A., & Weber, C. W. (1993). Extraction and fraction of insoluble fiber from five fiber sources. Food Chemistry, 57, 305–310.spa
dc.relation.referencesDe Souza-Cruz, P. B., Freer, J., Siika-Aho, M., & Ferraz, A. (2004). Extraction and determination of enzymes produced by Ceriporiopsis subvermispora during biopulping of Pinus taeda wood chips. Enzyme and Microbial Technology, 34(3–4), 228–234. https://doi.org/10.1016/j.enzmictec.2003.10.005spa
dc.relation.referencesDemir, A., Aytar, P., Gedikli, S., Çabuk, A., & Arisoy, M. (2011). Laccase Production with Submerged and Solid State Fermentation : Benefit and Cost Analysis. Hacettepe Journal of Biology and Chemistry, 39(3), 305–313.spa
dc.relation.referencesDix, N. J., & Webster, J. (1995). Fungal Ecology. Londres: Springer.spa
dc.relation.referencesEffland, M., & Leatham, G. (1987). Assessment of 30 White Rot Basidiomycetes for Selective Lignin Degradation. Holzforschung, 41(6), 343–349. https://doi.org/10.1515/hfsg.1987.41.6.343spa
dc.relation.referencesEnoki, M., Watanabe, T., Nakagame, S., Koller, K., Messner, K., Honda, Y., & Kuwahara, M. (1999). Extracellular lipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora. FEMS Microbiology Letters, 180(2), 205–211. https://doi.org/10.1016/S0378-1097(99)00487-5spa
dc.relation.referencesEriksson, K., Blanchette, R. A., & Ander, P. (1990). Microbial and Enzymatic degradation of wood and wood components. Berlín, Alemania: Springer-Verlag, 407.spa
dc.relation.referencesEriksson, K. E. (1985). Swedish developments in biotechnology related to the pulp and paper industry. Tappi J, 68(7), 46–55.spa
dc.relation.referencesFerraz, A., Córdova, A. M., & Machuca, A. (2003). Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis. Enzyme and Microbial Technology, 32(1), 59–65. https://doi.org/10.1016/S0141-0229(02)00267-3spa
dc.relation.referencesFerraz, A., Guerra, A., Mendonza, R., Masarin, F., Vicentim, M. P., Aguiar, A., & Pavan, P. C. (2008). Technological advances and mechanistic basis for fungal biopulping. Enzyme and Microbial Technology, 43(2), 178–185. https://doi.org/10.1016/j.enzmictec.2007.10.002spa
dc.relation.referencesFerraz, A., Guerra, A., Souza-Cruz, P. B., & Mendonca, R. (2002). Attempts to correlate biopulping benefits with changes in the chemical structure of wood components and enzymes produced during the wood biotreatment with Ceriporiopsis subvermispora. Progress in Biotechnology, 73–80.spa
dc.relation.referencesFerraz, A., Guerra, A., Souza-Cruz, P., & Mendonc¸a, R. (2002). Attempts to correlate biopulping benefits with changes in the chemical structure of wood components and enzymes produced during the wood biotreatment with Ceriporiopsis subvermispora. Progress in Biotechnology, 73–80.spa
dc.relation.referencesFukushima, Y., & Kirk, T. K. (1995). Laccase Component of the Ceriporiopsis-Subvemispora Lignin-Degrading System. Applied and Environmental Microbiology, 61(3), 872–876.spa
dc.relation.referencesGao, J., & Tang, L. G. (1996). Cellulose science. Beijing: Science Press.spa
dc.relation.referencesGarcía-Oduardo, N., Bermúdez-Savón, R. C., Castillo, I. R., Serrano, A. M., & Perraud-Gaime, I. (2015). Evaluación de la producción de lacasa de Pleurotus spp Evaluation of Laccase Production for Pleurotus spp. Centro de Estudios de Biotecnología Industrial, 79–83.spa
dc.relation.referencesGilbertson, R. L., & Ryvarden, L. (1986). North American polypores. Journal of Basic Microbiology, 1.spa
dc.relation.referencesGiles, R. L., Galloway, E. R., Zackeru, J. C., Naithani, V., & Parrow, M. W. (2014). Two stage fungal biopulping solubilizes lignocellulosic carbohydrates without supplemental enzymatic hydrolysis. International Biodeterioration and Biodegradation, 86, 265–271. https://doi.org/10.1016/j.ibiod.2013.09.016spa
dc.relation.referencesGolschimdt, O. (1971). Ultraviolet Spectra. In S. KV & L. CH (Eds.), Lignins: Occurrence, formation, structure and reactions (pp. 241–266). New York: Wiley-Interscience.spa
dc.relation.referencesGomes, E., Aguiar, A. P., Carvalho, C. C., Bonfá, M. R. B., Da Silva, R., & Boscolo, M. (2009). Ligninases production by basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Brazilian Journal of Microbiology, 40(1), 31–39. https://doi.org/10.1590/S1517-83822009000100005spa
dc.relation.referencesGoody, J. (1993). The culture of flowers. Cambridge: Cambridge University Press.spa
dc.relation.referencesGranström, M. (2009). Cellulose Derivatives: Synthesis, Properties and Applications. In H. University (Ed.), (Disertación doctoral). Helsinki Finland: Helsinki University Printing House.spa
dc.relation.referencesGuerra, A., Mendonça, R., & Ferraz, A. (2003). Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzyme Microb. Technol., 33, 12–18.spa
dc.relation.referencesGupta, R., Mehta, G., Khasa, Y. P., & Kuhad, R. C. (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4), 797–804.spa
dc.relation.referencesHatakka, A., & Hammel, K. (2010). Fungal biodegradation of lignocelluloses. In M. Hofrichter (Ed.), The Mycota (2nd ed., pp. 319–340). https://doi.org/10.1007/978-3-642-11458-8_15spa
dc.relation.referencesHeidorne, F. O., Magalhaes, P. O., Ferraz, A. L., & Milagres, A. M. F. (2006). Characterization of hemicellulases and cellulases produced by Ceriporiopsis subvermispora grown on wood under biopulping conditions. Enzyme and Microbial Technology, 38(3–4), 436–442. https://doi.org/10.1016/j.enzmictec.2005.06.015spa
dc.relation.referencesHoward, R. L., Abotsi, E., & Jansen van Rensburg, E. L. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African J Biotechnol, 2(12), 602–619.spa
dc.relation.referencesInternationalOrganization for Plant Information. (2007). Taxon Detail: Rosa. Tomado de www.bgbm.org/IOPI/GPC/PTaxonDetail.asp?NameCache=Rosaspa
dc.relation.referencesIsrael, A. U., Obot, I. B., Umoren, S. A., Mkpenie, V., & Asuquo, J. E. (2008). Production of Cellulosic Polymers from Agricultural Wastes. E-Journal of Chemistry, 5(1), 81–85. https://doi.org/10.1155/2008/436356spa
dc.relation.referencesJensen, K. A., Bao, W., Kawai, S., Srebotnik, E., & Hammel, K. E. (1996). Manganese-Dependent Cleavage of Nonphenolic Lignin Structures by Ceriporiopsis subvermispora in the Absence of Lignin Peroxidase. Appl Environ Microbiol, 10, 3679–3686.spa
dc.relation.referencesJiang, T. D. (2001). Lignin. Beijing: Chemical Industry Press.spa
dc.relation.referencesKapich, A. N., Jensen, K. A., & Hammel, K. E. (1999). Peroxyl radicals are potential agents of lignin biodegradation. FEBS Letters, 461 (1-2), 115–119.spa
dc.relation.referencesKirk, T. Kent, & Moore, W. E. (1972). Removing lignin from wood with white-rot-fungi and digestibility of resulting wood. Wood and Fiber Science, 2, 72–79.spa
dc.relation.referencesKirk, T.K., & Cullen, D. (1998). Enzymology and molecular genetics of wood degradation by white-rot fungi. In Environmentally friendly technologies for the pulp and paper industry (pp. 273–307). New York: Wiley.spa
dc.relation.referencesKoopmans, A., & Koppejan, J. (1997). Agricultural and forest residues – Generation, utilization and availability. Kuala Lumpur, Malaysia.spa
dc.relation.referencesKrishna, C. (2005). Solid-state fermentation systems-an overview. Critic Rev Biotechnol, 25, 1–30.spa
dc.relation.referencesKuhar, F., Castiglia, V., & Levin, L. (2015). Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. International Biodeterioration & Biodegradation, 104, 238–243.spa
dc.relation.referencesKumaran, S., Sastry, C. A., & Vikineswary, S. (1997). Laccase, cellulase and xylanase activities during growth of Pleurotus sajor-caju on sago hampas. World Journal of Microbiology Biotechnology, 13, 43–49.spa
dc.relation.referencesLal, R. (2008). Crop residues as soil amendments and feedstock for bioethanol production. Waste Manag, 28 (4), 747–758.spa
dc.relation.referencesLaufenberg, G., Kunz, B., & Nystroem, M. (2003). Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresource Technology, 87, 167–198.spa
dc.relation.referencesLim, S. H., Lee, Y. H., & Kang, H. W. (2013). Efficient recovery of lignocellulolytic enzymes of spent mushroom compost from oyster mushrooms, Pleurotus spp., and potential use in dye decolorization. Mycobiology, 41(4), 214–220. https://doi.org/10.5941/MYCO.2013.41.4.214spa
dc.relation.referencesLobos, S., Larrain, J., Salas, L., Cullen, D., & Vicuña, R. (1994). Isoenzymes of manganesedependent peroxidase and laccase produced by the lignin degrading basidiomycete Ceriporiopsis subvermispora. Microbiology, 140, 2691–2698.spa
dc.relation.referencesLópez, C. J., Valencia, N. R., & Chang, S. T. (2004). Cultivation of Shiitake on Coffee Waste. In C. P. Romaine, C. B. Keil, & D. L. Rinker (Eds.), Science and Cultivation of Edible and Medicinal Fungi: XVIth International Congress on the Science and Cultivation of Edible and Medicinal Fungi. Pennsylvania: Penn State University.spa
dc.relation.referencesLópez, J., Cuarán, J., Arenas, L., & Flórez, L. (2014). Usos potenciales de la cáscara de banano : elaboración de un bioplástico. Revista Colombiana de Investigaciones Agroindustriales, 1, 7–21.spa
dc.relation.referencesLv, W., Xue, C., Cao, C., & Zhang, Y. (2010). Lignin distribution in wood cell wall and its testing methods. J Beijing Univ, 32(1), 136–41.spa
dc.relation.referencesMabberley, D. (1997). The plant book: A portable dictionary of the vascular plants. Cambridge: Cambridge University Press.spa
dc.relation.referencesMachuca, A., & Ferraz, A. (2001). Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme and Microbial Technology, 29(6–7), 386–391. https://doi.org/10.1016/S0141-0229(01)00417-3spa
dc.relation.referencesMande, S. (2005). Biomass gasifier-based power plants: potential, problems, and research needs for decentralized rural electrification. In B. Lal & M. R. V. P. Reddy (Eds.), Wealth from Waste: Trends and Technologies. New Delhi: Teri Press, The Energy and Resources Institute.spa
dc.relation.referencesManpreet, S., Sawraj, S., & Sachin, D. (2005). Influence of process parameters on the production of metabolites in solid-state fermentation. Mal J Microbiol, 1(2), 1–9.spa
dc.relation.referencesManubens, A., Canessa, P., Folch, C., Avila, M., Salas, L., & Vicuña, R. (2007). Manganese affects the production of laccase in the basidiomycete Ceriporiopsis subvermispora. FEMS Microbiology Letters, 275(1), 139–145. https://doi.org/10.1111/j.1574-6968.2007.00874.xspa
dc.relation.referencesMartínez, D. A., Buglione, M. A., Filippi, M. V., Reynoso, L. C., Rodríguez, G. E., & Agüero, M. S. (2015). Mycelial growth evaluation of Pleurotus ostreatus and Agrocybe aegerita on pear pomaces. Anales de Biología, (37), 1–10. Facultad de Biología. Universidad de Murcia. https://doi.org/10.6018/analesbio.37.1spa
dc.relation.referencesMazumder, S., Basu, S. K., & Mukherjee, M. (2009). Laccase production in solid‐state and submerged fermentation by Pleurotus ostreatus. Engineering in Life Sciences, 9(1), 45–52. https://doi.org/10.1002/elsc.200700039spa
dc.relation.referencesMendonça, R., Jara, J. F., González, V., Elissetche, J. P., & Freer, J. (2008a). Evaluation of the white-rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. Journal of Industrial Microbiology and Biotechnology, 35(11), 1323–1330. https://doi.org/10.1007/s10295-008-0414-xspa
dc.relation.referencesMendonça, R., Jara, J. F., González, V., Elissetche, J. P., & Freer, J. (2008b). Evaluation of the white-rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol, 35, 1323–1330.spa
dc.relation.referencesMenon, V., Rao, M., & Prakash, G. (2010). Value added products from hemicellulose - Biotechnological perspective. Global Journal of Biochemistry, 1(1), 36–67. Tomado de http://ncl.csircentral.net/1138/1/Value_added_products_from_hemicellulose.pdfspa
dc.relation.referencesMills, H. A., & Jones, J. B. (1996). Plant analysis handbook II. Athens, USA: Micromacro Publishing Inc.spa
dc.relation.referencesMoreira-Vilar, F. C., Siqueira-Soares, R. de C., Finger-Teixeira, A., de Oliveira, D. M., Ferro, A. P., da Rocha, G. J., … Ferrarese-Filho, O. (2014). The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PloS One, 9(10), e110000. https://doi.org/10.1371/journal.pone.0110000spa
dc.relation.referencesNieto, I. J., & Chegwin A, C. (2010). The influence of the substrate used for growing edible fungi on their nutraceutic characteristics. Revista Colombiana de Biotecnología, 12(1), 169–178. Tomado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-34752010000100016&lng=en&nrm=iso&tlng=esspa
dc.relation.referencesPandey, A., Soccol, C. R., & Nigam, P. (2000a). Biotechnological potential of agro-industrial residues: I – Sugarcane bagasse. Bioresour Technol, 74, 69–80.spa
dc.relation.referencesPandey, A., Soccol, C. R., & Nigam, P. (2000b). Biotechnological potential of agro-industrial residues: II– Cassava bagasse. Bioresour Technol, 74, 81–87.spa
dc.relation.referencesPandey, Ashok, Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Solid fermentation for the production of industrial enzymes. Current Science, 77, 149–162.spa
dc.relation.referencesPoletto, P., Borsói, C., Zeni, M., & Moura, M. (2015). Downstream processing of pectinase produced by Aspergillus niger in solid state cultivation and its application to fruit juices clarification. Food Science and Technology, 35(2), 391–397.spa
dc.relation.referencesQuevedo, B. (2011). Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos (Tesis de doctorado). Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesQuintero, V. (2009). Evaluación Del Potencial De Producción De Etanol Combustible a Partir De Biomasa Secundaria Disponible En La Agroindustria Azucarera Colombiana. Universidad Industrial de Santander.spa
dc.relation.referencesRaimbault, M. (1998). General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol, 1(3), 1–15.spa
dc.relation.referencesReyes, F., Duque, J. A., Camacho, M. T., & Soto, N. (2015). Desempeño del sector floricultor 2012-2014. Tomado de http://www.supersociedades.gov.co/Paginas/default.aspxspa
dc.relation.referencesRojas, L., Pérez, R., Piñeros, Y., & Velásquez, M. (2011). Production of fermentable sugars from press fiber oil palm pre-treated biologically by Pleurotus ostreatus and Phanerochaete chrysosporium. 24(2), 29–35.spa
dc.relation.referencesRüttimann-Johnson, C., Salas, L., Vicuna, R., & Kirk, T. K. (1993). Extracellular enzyme production and synthetic lignin mineralization by Ceriporiopsis subvermispora. Applied and Environmental Microbiology, 59(6), 1792–1797.spa
dc.relation.referencesSaha, B. C., & Hayashi, H. (2004). Lignocellulose Biodegradation and Applications in Biotechnology. In Lignocellulose Biodegradation (pp. 2–34). Washington DC: American Chemical Society.spa
dc.relation.referencesSanabria, M. (2005). Establecimiento y producción de rosas de corte en la sabana de Bogotá. Universidad Nacional de Colombia.spa
dc.relation.referencesSarikaya, A., & Ladisch, M. (1997). Unstructured Mathematical Model for growth of Pleurotus ostreatus on lignocellulosic material in solid-state fermentation systems. Applied Biochemistry and Biotechnology, 62, 71–85.spa
dc.relation.referencesSarria-Alfonso, V., Sánchez-Sierra, J., Aguirre-Morales, M., Gutiérrez-Rojas, I., Moreno-Sarmiento, N., & Poutou-Piñales, R. A. (2013). Culture media statistical optimization for biomass production of a ligninolytic fungus for future rice straw degradation. Indian Journal of Microbiology. https://doi.org/10.1007/s12088-013-0358-3spa
dc.relation.referencesSaulnier, L., Vigouroux, J., & Thibault, J. F. (1995). Isolation and partial characterization of feruloylated oligosaccharides from maize. Carbohydrate Research, 272, 241–253.spa
dc.relation.referencesScheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual Review Plant Biology, 61, 263–289.spa
dc.relation.referencesSchmidt, O. (2006). Wood and Tree Fungi. Biology, Damage, Protection, and Use. New York: Springer Netherlands.spa
dc.relation.referencesSethuraman, A., Akin, D. E., & Eriksson, K. E. (1998a). Plant cell wall-degrading enzymes produced by the white-rot fungus Ceriporiopsis subvermispora. Biotechnol Appl Biochem, 27, 37–47.spa
dc.relation.referencesSethuraman, A., Akin, D. E., & Eriksson, K. E. L. (1998b). Lant-cell-wall-degrading enzymes produced by the white-rot fungus Ceriporiopsis subvermispora. Biotechnology and Applied Biochemistry, 27(1), 37–47. Tomado de http://www.scopus.com/inward/record.url?eid=2-s2.0-0031983974&partnerID=40&md5=bb903413dc33908ac7df391f85902ab1spa
dc.relation.referencesSetliff, e. c., & Eudy, W. W. (1981). Screening white rot fungi for their capacity to delignify wood. In T. K. Kirk, T. Higuchi, & H.-M. Chang (Eds.), Lignin biodegradation: Microbiology, chemistry and potential application. Boca Raton, Florida: CRC Press.spa
dc.relation.referencesSrebotnik, Ewald, Jensen, K. A., Kawai, S., & Hammel, K. E. (1997). Evidence that Ceriporiopsis subvermispora degrades nonphenolic lignin structures by a one-electron-oxidation mechanism. Applied and Environmental Microbiology, 63(11), 4435–4440.spa
dc.relation.referencesStoilova, I., Krastanov, A., & Stanchev, V. (2010). Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation. Advances in Bioscience and Biotechnology, 01(03), 208–215. https://doi.org/10.4236/abb.2010.13029spa
dc.relation.referencesTanaka, H., Koike, K., Itakura, S., & Enoki, A. (2009). Degradation of wood and enzyme production by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 45(5), 384–390. https://doi.org/10.1016/j.enzmictec.2009.06.003spa
dc.relation.referencesTao, Y. Z., & Guan, Y. T. (2003). Study of chemical composition of lignin and its application. J Cellul Sci Technol, 11(1), 43–55.spa
dc.relation.referencesTapia, J., & Vicuna, R. (1995). Synthetic lignin mineralization by Ceriporiopsis subvermispora is inhibited by an increase in the pH of the cultures resulting from fungal growth. Applied and Environmental Microbiology, 61(7), 2476–2481.spa
dc.relation.referencesThe Editors of Encyclopædia Britannica. (2009). Rose (Plant). In Britannica Online Encyclopedia. Tomado de http://global.britannica.com/plant/rose-plantspa
dc.relation.referencesThomsen, M. H. (2005). Complex media from processing of agricultural crops for microbial fermentation. Appl Microbiol Biotechnol, 68, 598–606.spa
dc.relation.referencesTian, X., Fang, Z., & Guo, F. (2012). Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels, Bioproducts and Biorefining, 6(3), 246–256. https://doi.org/10.1002/bbbspa
dc.relation.referencesToca-Herrera, J., Osma, J., & Couto, S. (2007). Potential of solid-state fermentation for laccase production. … Current Research and …, (2006), 391–400. Tomado de http://www.formatex.org/microbio/pdf/Pages391-400.pdfspa
dc.relation.referencesVicentim, M. P., De Almeida, R., & Ferraz, A.. High yield biokraft pulping of eucalyptus grandis: evaluation of the bioprocess using wood chips biotreated by ceriporiopsis subvermispora in different supplementing conditions.spa
dc.relation.referencesVicentim, M. P., & Ferraz, A. (2007). Enzyme production and chemical alterations of Eucalyptus grandis wood during biodegradation by Ceriporiopsis subvermispora in cultures supplemented with Mn2+, corn steep liquor and glucose. Enzyme and Microbial Technology, 40(4), 645–652. https://doi.org/10.1016/j.enzmictec.2006.05.021spa
dc.relation.referencesVicuña, R., Larraín, J., Lobos, S., Salas, C., & Salas, L. (1996). Culture conditions of Ceriporiopsis subvermispora determine the pattern of MnP isoenzymes. In E Srebotnik & K. Messner (Eds.), Sixth International Conference on Biotechnology in the Pulp and Paper Industry (pp. 345–50). Facultas-Universitatsverlag.spa
dc.relation.referencesVikineswary, S., Abdullah, N., Renuvathani, M., Sekaran, M., Pandey, A., & Jones, E. B. G. (2006). Productivity of laccase in solid substrate fermentation of selected agro-residues by Pycnoporus sanguineus. Bioresource Technology, 97(1), 171–177. https://doi.org/10.1016/j.biortech.2005.02.015spa
dc.relation.referencesVillalba, L. L., Scott, G. M., & Schroeder, L. L. (2004). Degradación selectiva de madera de pino taeda con Ceriporiopsis subvermispora. Argentina. New York.spa
dc.relation.referencesVillalba, L. L., Scott, G. M., & Schroeder, L. R. (2006). Modification of Loblolly Pine Chips with Ceriporiopsis subvermispora Part 1: Effect of Fungal Treatment. Journal of Wood Chemistry and Technology, 26(4), 339–348. https://doi.org/10.1080/02773810601105177spa
dc.relation.referencesWan, C., & Li, Y. (2010). Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme and Microbial Technology, 47(1–2), 31–36. https://doi.org/10.1016/j.enzmictec.2010.04.001spa
dc.relation.referencesWan, C., & Li, Y. (2011). Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresource Technology, 102(16), 7507–7512. https://doi.org/10.1016/j.biortech.2011.05.026spa
dc.relation.referencesWatanabe, T., Katayama, S., Enoki, M., Honda, Y., & Kuwahara, M. (2000). Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. European Journal of Biochemistry, 267(13), 4222–4231. https://doi.org/10.1046/j.1432-1327.2000.01469.xspa
dc.relation.referencesWebb, C., Koutinas, A. A., & Wang, R. (2004). Developing a sustainable bioprocessing strategy based on a generic feedstock. Adv Biochem Eng Biotechnol, 96, 195–268.spa
dc.relation.referencesYang, S. H. (2006). Plant fiber chemistry. Beijing: China Light Industry Press.spa
dc.relation.referencesYavuz, M., Kaya, G., & Aytekin, C. (2014). Using Ceriporiopsis subvermispora CZ-3 laccase for indigo carmine decolourization and denim bleaching. International Biodeterioration and Biodegradation, 88, 199–205. https://doi.org/10.1016/j.ibiod.2013.10.014spa
dc.relation.referencesZervakis, G., Papadopoulou, K., & Ehaliotis, C. (2005). Use of composts deriving from Mediterranean agro-industrial wastes in vegetable crops: effects on disease suppression and plant growth. In C. Kreij & M. Warmenhoven (Eds.), International Symposium on the Use of Composted Organic Wastes in Horticulture. Waweningen.spa
dc.relation.referencesZhan, H. Y. (2005). Fiber chemistry and physics. Beijing: Science Press.spa
dc.relation.referencesZhang, J. Q., Lin, L., Sun, Y., Mitchell, G., & Liu, S. J. (2008). Advance of studies on structure and decrystallization of cellulose. Chem Ind For Prod., 28(6), 109–114.spa
dc.relation.referencesZhang, P., Hu, H. R., & Shi, S. L. (2006). Application of hemicellulose. Tianjin PapMak.spa
dc.relation.referencesZhang, Y. H. P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose bioefineries. J Ind Microbiol Biotechnol, 35, 367–375.spa
dc.relation.referencesZhang, Y. Z., Liu, J., & Gao, P. (1997). Scanning tunneling microscopy of the ultrastructure of native cellulose. Acta Biophys Sin, 13(3), 375–9.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)spa
dc.subject.proposalcrecimiento micelialspa
dc.subject.proposallaccaseeng
dc.subject.proposallignineng
dc.subject.proposallacasaspa
dc.subject.proposalwaste-Rose speng
dc.subject.proposalligninaspa
dc.subject.proposaldesechos de Rosa spspa
dc.subject.proposalceriporiopsis subvermisporaeng
dc.subject.proposalceriporiopsis subvermisporaspa
dc.subject.proposalmycelial growtheng
dc.titleDeslignificación de desechos de Rosa sp utilizando el hongo basidiomiceto selectivo ceriporiopsis subvermisporaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1040942253.2020.pdf
Tamaño:
1.82 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: