Estudio de las coinfecciones virales presentes en el complejo reproductivo porcino (SMEDI) en cerdas de reemplazo en granjas tecnificadas de Cundinamarca y otras regiones de Colombia
dc.contributor.advisor | Mogollón, José Darío | spa |
dc.contributor.author | Vargas Bermúdez, Diana Susana | spa |
dc.contributor.orcid | Vargas Bermúdez, Diana Susana [0000000192011759] | spa |
dc.contributor.researchgroup | Centro de Investigación en Infectología e Inmunología Veterinaria (Ci3V) | spa |
dc.coverage.country | Colombia | spa |
dc.coverage.region | Cundinamarca | spa |
dc.date.accessioned | 2025-06-09T12:55:09Z | |
dc.date.available | 2025-06-09T12:55:09Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas (algunos a color) | spa |
dc.description.abstract | En el presente estudio se investigó la prevalencia y los patrones de coinfección de virus primarios (PCV2, PPV1 y PRRSV) y emergentes (PCV3, PCV4 y nPPVs) asociados al fallo reproductivo porcino (PRF) en cerdas de cría en Colombia. La investigación se desarrolló en dos partes consecutivas: la primera constituyó un estudio transversal sobre cerdas de reemplazo y la segunda fue un seguimiento longitudinal sobre cerdas primíparas y multíparas. En la primera parte (estudio transversal) fueron colectadas y analizadas 234 muestras de suero de cerdas de reemplazo provenientes de 40 granjas tecnificadas de las cinco regiones con mayor producción porcina en Colombia. Los resultados revelaron una circulación predominante de PCV2 y PRRSV, junto con una presencia significativa de los nPPVs. Se identificaron asociaciones estadísticamente significativas entre PPV6 con PCV3 y entre PPV5 con PRRSV. Además, se estableció una correlación positiva entre la presencia de PCV3 y una mayor probabilidad del parámetro tasa de parto. Los análisis filogenéticos y filo-evolutivos de las secuencias virales obtenidas en esta fase, mostraron que las cepas de PPV1 se segregaron en el clado PPV1-II, junto con cepas hipervirulentas. (27a). Los nPPVs presentaron tasas de sustitución nucleotídica de 10-4 por año, con orígenes geográficos diversos y una circulación estimada en Colombia desde comienzos del siglo XXI. En la segunda parte (estudio longitudinal) fueron monitoreadas 40 cerdas en cuatro granjas a lo largo de las fases de preñez, parto y lactancia, junto con seguimiento por tres semanas de sus progenies. Se analizaron muestras de suero, calostro y tejidos mediante PCR para detectar los virus primarios y emergentes, así como sus coinfecciones. Adicionalmente, se realizaron pruebas serológicas para detectar anticuerpos anti- PCV2, PCV3, PPV1 y PRRSV, junto con evaluación histopatológica y análisis filogenéticos. Se estableció la presencia de PCV2, PCV3 y PPV1 en todas las granjas, PRRSV en una sola granja, mientras que algunos nPPVs se detectaron de forma esporádica. En esta segunda fase del estudio, se identificaron diversas coinfecciones que involucraban principalmente a los virus primarios, siendo la coinfección PCV2/PPV1 la más prevalente. Notablemente, esta coinfección se asoció con cargas virales de PCV2 significativamente más elevadas tanto en las cerdas al momento del parto como en los fetos. Adicionalmente, se observó que los títulos de anticuerpos anti-PCV2 eran considerablemente menores en presencia de coinfecciones PCV2/PRRSV y PCV3/PRRSV. Los análisis filogenéticos determinaron que las cepas circulantes correspondían a PCV2d, PCV3a y PRRSV-2 linaje 1, sublinaje A. Todos los virus fueron detectados en bajas cargas virales sin signos clínicos evidentes (animales asintomáticos) y las evidencias histopatológicas no revelaron lesiones características; estos resultados, en su conjunto, sugirieren una presentación subclínica de FRP. Asimismo, se desarrollaron y aplicaron sondas de hibridación in situ para PCV2 y PRRSV, detectándose genomas virales de forma localizada y en baja cantidad en tejidos fetales sin lesiones aparentes. Es importante destacar que todas las muestras analizadas en este estudio resultaron negativas para PCV4 y PPV8. Esta investigación proporciona un análisis exhaustivo de la circulación viral en cerdas de cría en Colombia, ofreciendo nuevas perspectivas sobre la dinámica de infección y coinfección en el contexto del FRP (Texto tomado de la fuente). | spa |
dc.description.abstract | In the present study, we investigated the prevalence and coinfection patterns of primary viruses (PCV2, PPV1, and PRRSV) and emerging viruses (PCV3, PCV4, and nPPVs) associated with porcine reproductive failure (PRF) in breeding sows in Colombia. The research was performed in two consecutive parts: the first was a cross-sectional study on replacement sows, and the second was a longitudinal follow-up of primiparous and multiparous sows. In the first part (cross-sectional study), we collected and analyzed 234 serum samples from replacement gilts from 40 high-production farms in Colombia's five major pig production regions. The results revealed a predominant circulation of PCV2 and PRRSV and a significant presence of nPPVs. Statistically significant associations were identified between PPV6 and PCV3 and between PPV5 and PRRSV. In addition, a positive correlation was established between the presence of PCV3 and a higher probability of the farrowing rate parameter. Phylogenetic and phyloevolutionary analyses of the viral sequences obtained showed that PPV1 strains were segregated in the PPV1-II clade, including hypervirulent strains (27a). The nPPVs presented nucleotide substitution rates of 10-4 per year, with diverse geographic origins and an estimated circulation in Colombia since the beginning of the 21st century. In the second part (longitudinal study), 40 sows in four farms were monitored throughout the pregnancy, delivery, and lactation phases, along with a three-week follow-up of their progeny. Serum, colostrum, and tissue samples were analyzed by PCR to detect primary and emerging viruses and their coinfections. Additionally, serological tests were performed to detect anti-PCV2, PCV3, PPV1, and PRRSV antibodies, along with histopathological evaluation and phylogenetic analysis. PCV2, PCV3, and PPV1 were identified in all farms, PRRSV was detected in only one farm, and some nPPVs sporadically. In this second phase of the study, various coinfections were identified, primarily involving the primary viruses, with the PCV2/PPV1 coinfection emerging as the most prevalent. Notably, this coinfection was associated with significantly higher PCV2 viral loads in both sows at farrowing and in their fetuses. Furthermore, it was observed that anti-PCV2 antibody titers were considerably lower in the presence of PCV2/PRRSV and PCV3/PRRSV coinfections.Phylogenetic analyses determined that circulating strains corresponded to PCV2d, PCV3a, and PRRSV-2 lineage 1, sublineage A. All viruses were detected in low viral loads without evident clinical signs (asymptomatic animals), and histopathological evidence did not reveal characteristic lesions; these results, taken together, suggested a subclinical presentation of FRP. Likewise, in situ hybridization probes for PCV2 and PRRSV were developed and applied, detecting viral genomes in a localized manner and low quantities in fetal tissues without apparent lesions. It is essential to highlight that all samples analyzed in this study were negative for PCV4 and PPV8. This research provides a comprehensive analysis of viral circulation in breeding sows in Colombia, offering new insights into infection and coinfection dynamics in the context of FRP. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Biotecnología | spa |
dc.format.extent | xix, 185 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88206 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Biotecnología | spa |
dc.relation.references | Madson DM, Opriessnig T. Effect of porcine circovirus type 2 (PCV2) infection on reproduction: disease, vertical transmission, diagnostics and vaccination. Anim Health Res Rev. 2011 Jun;12(1):47–65. | spa |
dc.relation.references | Mengeling WL, Lager KM, Vorwald AC. The effect of porcine parvovirus and porcine reproductive and respiratory syndrome virus on porcine reproductive performance. Anim Reprod Sci. 2000 Jul 2;60–61:199–210. | spa |
dc.relation.references | Saporiti V, Valls L, Maldonado J, Perez M, Correa-Fiz F, Segalés J, et al. Porcine Circovirus 3 Detection in Aborted Fetuses and Stillborn Piglets from Swine Reproductive Failure Cases. Viruses. 2021 Feb 9;13(2). | spa |
dc.relation.references | Hou C-Y, Zhang L-H, Zhang Y-H, Cui J-T, Zhao L, Zheng L-L, et al. Phylogenetic analysis of porcine circovirus 4 in Henan Province of China: A retrospective study from 2011 to 2021. Transbound Emerg Dis. 2022 Jul;69(4):1890–901. | spa |
dc.relation.references | Garcia-Camacho LA, Vargas-Ruiz A, Marin-Flamand E, Ramírez-Álvarez H, Brown C. A retrospective study of DNA prevalence of porcine parvoviruses in Mexico and its relationship with porcine circovirus associated disease. Microbiol Immunol. 2020 May;64(5):366-376. | spa |
dc.relation.references | Segalés J. Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res. 2012 Mar;164(1–2):10–9 | spa |
dc.relation.references | Saporiti V, Franzo G, Sibila M, Segalés J. Porcine circovirus 3 (PCV-3) as a causal agent of disease in swine and a proposal of PCV-3 associated disease case definition. Transbound Emerg Dis. 2021 Nov;68(6):2936–48. | spa |
dc.relation.references | Shen H, Wang C, Madson DM, Opriessnig T. High prevalence of porcine circovirus viremia in newborn piglets in five clinically normal swine breeding herds in North America. Prev Vet Med. 2010 Dec 1;97(3–4):228–36. | spa |
dc.relation.references | Dvorak CMT, Yang Y, Haley C, Sharma N, Murtaugh MP. National reduction in porcine circovirus type 2 prevalence following introduction of vaccination. Vet Microbiol. 2016 Jun 30;189:86–90 | spa |
dc.relation.references | Allan GM, Kennedy S, McNeilly F, Foster JC, Ellis JA, Krakowka SJ, et al. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol. 1999 Jul;121(1):1–11 | spa |
dc.relation.references | Zhang W, Fu Z, Yin H, Han Q, Fan W, Wang F, et al. Macrophage polarization modulated by porcine circovirus type 2 facilitates bacterial coinfection. Front Immunol. 2021 Jul 28;12:688294 | spa |
dc.relation.references | Kim J, Jung K, Chae C. Prevalence of porcine circovirus type 2 in aborted fetuses and stillborn piglets. Vet Rec. 2004 Oct 16;155(16):489–92 | spa |
dc.relation.references | Salogni C, Lazzaro M, Giacomini E, Giovannini S, Zanoni M, Giuliani M, et al. Infectious agents identified in aborted swine fetuses in a high-density breeding area: a three-year study. J Vet Diagn Invest. 2016 Sep;28(5):550–4 | spa |
dc.relation.references | Tang Q, Ge L, Tan S, Zhang H, Yang Y, Zhang L, et al. Epidemiological Survey of Four Reproductive Disorder Associated Viruses of Sows in Hunan Province during 2019-2021. Veterinary Sciences. 2022 Aug 11;9(8) | spa |
dc.relation.references | Opriessnig T, Fenaux M, Yu S, Evans RB, Cavanaugh D, Gallup JM, et al. Effect of porcine parvovirus vaccination on the development of PMWS in segregated early weaned pigs coinfected with type 2 porcine circovirus and porcine parvovirus. Vet Microbiol. 2004 Mar 5;98(3–4):209–20 | spa |
dc.relation.references | Saporiti V, Martorell S, Cruz TF, Klaumann F, Correa-Fiz F, Balasch M, et al. Frequency of Detection and Phylogenetic Analysis of Porcine circovirus3 (PCV-3) in Healthy Primiparous and Multiparous Sows and Their Mummified Fetuses and Stillborn. Pathogens. 2020 Jul 2;9(7) | spa |
dc.relation.references | Vargas-Bermúdez DS, Vargas-Pinto MA, Mogollón JD, Jaime J. Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3). BMC Vet Res. 2021 Apr 8;17(1):150 | spa |
dc.relation.references | Liu Y, Zhang S, Song X, Hou B, Gu X, Zhao B, et al. The prevalence of novel porcine circovirus type 3 (PCV3) isolates in pig farms in china. Transbound Emerg Dis. 2019 Jun 8 | spa |
dc.relation.references | Kroeger M, Temeeyasen G, Piñeyro PE. Five years of porcine circovirus 3: What have we learned about the clinical disease, immune pathogenesis, and diagnosis. Virus Res. 2022 Jun;314:198764 | spa |
dc.relation.references | Zheng S, Wu X, Zhang L, Xin C, Liu Y, Shi J, et al. The occurrence of porcine circovirus 3 without clinical infection signs in Shandong Province. Transbound Emerg Dis. 2017 Oct;64(5):1337–41. | spa |
dc.relation.references | Eddicks M, Gründl J, Seifert A, Eddicks L, Reese S, Tabeling R, et al. Examination on the occurrence of coinfections in diagnostic transmittals in cases of stillbirth, mummification, embryonic death, and infertility (SMEDI) syndrome in germany. Microorganisms. 2023 Jun 27;11(7) | spa |
dc.relation.references | Nodelijk G. Porcine reproductive and respiratory syndrome (PRRS) with special reference to clinical aspects and diagnosis. A review. Vet Q. 2002 Jun;24(2):95–100 | spa |
dc.relation.references | Nathues H, Alarcon P, Rushton J, Jolie R, Fiebig K, Jimenez M, et al. Cost of porcine reproductive and respiratory syndrome virus at individual farm level - An economic disease model. Prev Vet Med. 2017 Jul 1;142:16–29 | spa |
dc.relation.references | Holtkamp DJ, Polson DD, Torremorell M, Morrison B, Classen DM, Becton L, et al. [Terminology for classifying the porcine reproductive and respiratory syndrome virus (PRRSV) status of swine herds]. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2011;39(2):101–1 | spa |
dc.relation.references | Alkhamis MA, Perez AM, Murtaugh MP, Wang X, Morrison RB. Applications of bayesian phylodynamic methods in a recent U.S. porcine reproductive and respiratory syndrome virus outbreak. Front Microbiol. 2016 Feb 2;7:67 | spa |
dc.relation.references | van Geelen AGM, Anderson TK, Lager KM, Das PB, Otis NJ, Montiel NA, et al. Porcine reproductive and respiratory disease virus: Evolution and recombination yields distinct ORF5 RFLP 1-7-4 viruses with individual pathogenicity. Virology. 2018 Jan 1;513:168–79 | spa |
dc.relation.references | Zhang J, Wang P, Xie C, Ha Z, Shi N, Zhang H, et al. Synergistic Pathogenicity by Coinfection and Sequential Infection with NADC30-like PRRSV and PCV2 in Post-Weaned Pigs. Viruses. 2022 Jan 20;14(2) | spa |
dc.relation.references | Ndze VN, Cadar D, Cságola A, Kisfali P, Kovács E, Farkas S, et al. Detection of novel porcine bocaviruses in fecal samples of asymptomatic pigs in Cameroon. Infect Genet Evol. 2013 Jul;17:277–82 | spa |
dc.relation.references | Streck AF, Truyen U. Porcine Parvovirus. Curr Issues Mol Biol. 2020;37:33–46. | spa |
dc.relation.references | Oravainen J, Heinonen M, Tast A, Virolainen J, Peltoniemi O. High porcine parvovirus antibodies in sow herds: prevalence and associated factors. Reprod Domest Anim. 2005 Feb;40(1):57–61. | spa |
dc.relation.references | Zimmermann P, Ritzmann M, Selbitz HJ, Heinritzi K, Truyen U. VP1 sequences of German porcine parvovirus isolates define two genetic lineages. J Gen Virol. 2006 Feb;87(Pt 2):295–301 | spa |
dc.relation.references | Zeeuw EJL, Leinecker N, Herwig V, Selbitz HJ, Truyen U. Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. J Gen Virol. 2007 Feb;88(Pt 2):420–7 | spa |
dc.relation.references | Opriessnig T, McKeown NE, Harmon KL, Meng XJ, Halbur PG. Porcine circovirus type 2 infection decreases the efficacy of a modified live porcine reproductive and respiratory syndrome virus vaccine. Clin Vaccine Immunol. 2006 Aug;13(8):923–9 | spa |
dc.relation.references | Kim S-C, Kim J-H, Kim J-Y, Park G-S, Jeong C-G, Kim W-I. Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC Vet Res. 2022 Apr 9;18(1):133 | spa |
dc.relation.references | Faustini G, Tucciarone CM, Franzo G, Donneschi A, Boniotti MB, Alborali GL, et al. Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses. 2024 Jan 21;16(1). | spa |
dc.relation.references | Ouh I-O, Lee J-Y, Choi H, Moon SY, Song JY, Hyun B-H, et al. Prevalence of Porcine Parvoviruses 1 to 6 and Porcine Circovirus 3 Infections and of Their Co-infections With Porcine Circovirus 2 in the Republic of Korea. 2023 May 16 | spa |
dc.relation.references | Kedkovid R, Woonwong Y, Arunorat J, Sirisereewan C, Sangpratum N, Kesdangsakonwut S, et al. Porcine circovirus type 3 (PCV3) shedding in sow colostrum. Vet Microbiol. 2018 Jul;220:12–7. | spa |
dc.relation.references | O’Connor B, Gauvreau H, West K, Bogdan J, Ayroud M, Clark EG, et al. Multiple porcine circovirus 2-associated abortions and reproductive failure in a multisite swine production unit. Can Vet J. 2001 Jul;42(7):551–3 | spa |
dc.relation.references | van Leengoed LA, Vos J, Gruys E, Rondhuis P, Brand A. Porcine Parvovirus infection: review and diagnosis in a sow herd with reproductive failure. Vet Q. 1983 Jul;5(3):131–41 | spa |
dc.relation.references | Chase C, Lunney JK. Immune System. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J, editors. Diseases of Swine. Wiley; 2019. p. 264–91 | spa |
dc.relation.references | Oravainen J, Hakala M, Rautiainen E, Veijalainen P, Heinonen M, Tast A, et al. Parvovirus antibodies in vaccinated gilts in field conditions--results with HI and ELISA tests. Reprod Domest Anim. 2006 Feb;41(1):91–3 | spa |
dc.relation.references | Zimmerman JJ, Yoon KJ, Wills RW, Swenson SL. General overview of PRRSV: a perspective from the United States. Vet Microbiol. 1997 Apr;55(1–4):187–96 | spa |
dc.relation.references | De Vries A, Reneau JK. Application of statistical process control charts to monitor changes in animal production systems. J Anim Sci. 2010 Apr;88(13 Suppl):E11-24 | spa |
dc.relation.references | Silva GS, Schwartz M, Morrison RB, Linhares DCL. Monitoring breeding herd production data to detect PRRSV outbreaks. Prev Vet Med. 2017 Dec 1;148:89–93 | spa |
dc.relation.references | Lin C-M, Jeng C-R, Hsiao S-H, Chang C-C, Liu C-H, Tsai Y-C, et al. Development and evaluation of an indirect in situ polymerase chain reaction for the detection of porcine circovirus type 2 in formalin-fixed and paraffin-embedded tissue specimens. Vet Microbiol. 2009 Sep 18;138(3–4):225–34 | spa |
dc.relation.references | Palinski R, Piñeyro P, Shang P, Yuan F, Guo R, Fang Y, et al. A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. J Virol. 2017 Jan 1;91(1) | spa |
dc.relation.references | Hansen MS, Hjulsager CK, Bille-Hansen V, Haugegaard S, Dupont K, Høgedal P, et al. Selection of method is crucial for the diagnosis of porcine circovirus type 2 associated reproductive failures. Vet Microbiol. 2010 Jul 29;144(1–2):203–9 | spa |
dc.relation.references | Cheon DS, Chae C. Comparison of virus isolation, reverse transcription-polymerase chain reaction, immunohistochemistry, and in situ hybridization for the detection of porcine reproductive and respiratory syndrome virus from naturally aborted fetuses and stillborn piglets. J Vet Diagn Invest. 2000 Nov;12(6):582–7 | spa |
dc.relation.references | Christianson WT. Stillbirths, mummies, abortions, and early embryonic death. Vet Clin North Am Food Anim Pract. 1992 Nov;8(3):623–39. | spa |
dc.relation.references | Mote BE, Mabry JW, Stalder KJ, Rothschild MF. Evaluation of Current Reasons for Removal of Sows from Commercial Farms. The Professional Animal Scientist. 2009 Feb;25(1):1–7. | spa |
dc.relation.references | Dunne HW, Gobble JL, Hokanson JF, Kradel DC, Bubash GR. Porcine reproductive failure associated with a newly identified “SMEDI” group of picorna viruses. Am J Vet Res. 1965 Nov;26(115):1284–97. | spa |
dc.relation.references | Streck AF, Truyen U. Porcine Parvovirus. Curr Issues Mol Biol. 2020;37:33–46. | spa |
dc.relation.references | Madson DM, Opriessnig T. Effect of porcine circovirus type 2 (PCV2) infection on reproduction: disease, vertical transmission, diagnostics and vaccination. Anim Health Res Rev. 2011 Jun;12(1):47–65. | spa |
dc.relation.references | Rossow KD. Porcine reproductive and respiratory syndrome. Vet Pathol. 1998 Jan;35(1):1–20. | spa |
dc.relation.references | Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J. 2003 Jan;165(1):11–20. | spa |
dc.relation.references | Nauwynck HJ, Pensaert MB. Abortion induced by cell-associated pseudorabies virus in vaccinated sows. Am J Vet Res. 1992 Apr;53(4):489–93. | spa |
dc.relation.references | Forman AJ, Pass DA, Connaughton ID. The characterisation and pathogenicity of porcine enteroviruses isolated in Victoria. Aust Vet J. 1982 Apr;58(4):136–42 | spa |
dc.relation.references | Kim HS, Christianson WT, Joo HS. Characterization of encephalomyocarditis virus isolated from aborted swine fetuses. Am J Vet Res. 1991 Oct;52(10):1649–52. | spa |
dc.relation.references | Faccini S, Barbieri I, Gilioli A, Sala G, Gibelli LR, Moreno A, et al. Detection and genetic characterization of Porcine circovirus type 3 in Italy. Transbound Emerg Dis. 2017 Dec;64(6):1661–4. | spa |
dc.relation.references | Ruiz A, Saporiti V, Huerta E, Balasch M, Segalés J, Sibila M. Exploratory Study of the Frequency of Detection and Tissue Distribution of Porcine Circovirus 3 (PCV-3) in Pig Fetuses at Different Gestational Ages. Pathogens. 2022 Jan 20;11(2) | spa |
dc.relation.references | Dal Santo AC, Cezario KC, Bennemann PE, Machado SA, Martins M. Full-genome sequences of porcine circovirus 3 (PCV3) and high prevalence in mummified fetuses from commercial farms in Brazil. Microb Pathog. 2020 Apr;141:104027 | spa |
dc.relation.references | Nguyen V-G, Do H-Q, Huynh T-M-L, Park Y-H, Park B-K, Chung H-C. Molecular-based detection, genetic characterization and phylogenetic analysis of porcine circovirus 4 from Korean domestic swine farms. Transbound Emerg Dis. 2022 Mar;69(2):538–48. | spa |
dc.relation.references | Faustini G, Tucciarone CM, Franzo G, Donneschi A, Boniotti MB, Alborali GL, et al. Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses. 2024 Jan 21;16(1). | spa |
dc.relation.references | Schautteet K, Vanrompay D. Chlamydiaceae infections in pig. Vet Res. 2011 Feb 7;42(1):29. | spa |
dc.relation.references | Hoffmann CW, Bilkei G. Case study: chronic erysipelas of the sow--a subclinical manifestation of reproductive problems. Reprod Domest Anim. 2002 Apr;37(2):119–20. | spa |
dc.relation.references | Eddicks M, Gründl J, Seifert A, Eddicks L, Reese S, Tabeling R, et al. Examination on the occurrence of coinfections in diagnostic transmittals in cases of stillbirth, mummification, embryonic death, and infertility (SMEDI) syndrome in germany. Microorganisms. 2023 Jun 27;11(7). | spa |
dc.relation.references | Rebollada-Merino A, García-Seco T, Pérez-Sancho M, Domínguez L, Rodríguez-Bertos A. Histopathologic and immunohistochemical findings in the placentas and fetuses of domestic swine naturally infected with Brucella suis biovar 2. J Vet Diagn Invest. 2023 May;35(3):258–65. | spa |
dc.relation.references | Kim J, Jung K, Chae C. Prevalence of porcine circovirus type 2 in aborted fetuses and stillborn piglets. Vet Rec. 2004 Oct 16;155(16):489–92. | spa |
dc.relation.references | Zeng Z, Liu Z, Wang W, Tang D, Liang H, Liu Z. Establishment and application of a multiplex PCR for rapid and simultaneous detection of six viruses in swine. J Virol Methods. 2014 Nov;208:102–6 | spa |
dc.relation.references | Sharma R, Saikumar G. Porcine parvovirus- and porcine circovirus 2-associated reproductive failure and neonatal mortality in crossbred Indian pigs. Trop Anim Health Prod. 2010 Mar;42(3):515–22. | spa |
dc.relation.references | Garcia-Camacho LA, Vargas-Ruiz A, Marin-Flamand E, Ramírez-Álvarez H, Brown C. A retrospective study of DNA prevalence of porcine parvoviruses in Mexico and its relationship with porcine circovirus associated disease. Microbiol Immunol. 2020 May;64(5):366–76. | spa |
dc.relation.references | Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT. Virological and immunological outcomes of coinfections. Clin Microbiol Rev. 2018 Oct;31(4). | spa |
dc.relation.references | Salogni C, Lazzaro M, Giacomini E, Giovannini S, Zanoni M, Giuliani M, et al. Infectious agents identified in aborted swine fetuses in a high-density breeding area: a three-year study. J Vet Diagn Invest. 2016 Sep;28(5):550–4 | spa |
dc.relation.references | Maldonado J, Segalés J, Martínez-Puig D, Calsamiglia M, Riera P, Domingo M, et al. Identification of viral pathogens in aborted fetuses and stillborn piglets from cases of swine reproductive failure in Spain. Vet J. 2005 May;169(3):454–6 | spa |
dc.relation.references | Olvera A, Sibila M, Calsamiglia M, Segalés J, Domingo M. Comparison of porcine circovirus type 2 load in serum quantified by a real time PCR in postweaning multisystemic wasting syndrome and porcine dermatitis and nephropathy syndrome naturally affected pigs. J Virol Methods. 2004 Apr;117(1):75–80 | spa |
dc.relation.references | Franzo G, Tucciarone CM, Drigo M, Cecchinato M, Martini M, Mondin A, et al. First report of wild boar susceptibility to Porcine circovirus type 3: High prevalence in the Colli Euganei Regional Park (Italy) in the absence of clinical signs. Transbound Emerg Dis. 2018 Aug;65(4):957–62 | spa |
dc.relation.references | Drigo M, Franzo G, Belfanti I, Martini M, Mondin A, Ceglie L. Validation and comparison of different end point and real time RT-PCR assays for detection and genotyping of porcine reproductive and respiratory syndrome virus. J Virol Methods. 2014 Jun;201:79–85. | spa |
dc.relation.references | Pfankuche VM, Hahn K, Bodewes R, Hansmann F, Habierski A, Haverkamp A-K, et al. Comparison of different in situ hybridization techniques for the detection of various RNA and DNA viruses. Viruses. 2018 Jul 20;10(7). | spa |
dc.relation.references | Maes RK, Langohr IM, Wise AG, Smedley RC, Thaiwong T, Kiupel M. Beyond H&E: integration of nucleic acid-based analyses into diagnostic pathology. Vet Pathol. 2014 Jan;51(1):238–56. | spa |
dc.relation.references | Pittman JS. Reproductive failure associated with porcine circovirus type 2 in gilts. Journal of Swine Health and Production. 2008; | spa |
dc.relation.references | Mengeling WL, Lager KM, Vorwald AC. The effect of porcine parvovirus and porcine reproductive and respiratory syndrome virus on porcine reproductive performance. Anim Reprod Sci. 2000 Jul 2;60–61:199–210. | spa |
dc.relation.references | Chase C, Lunney JK. Immune System. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J, editors. Diseases of Swine. Wiley; 2019. p. 264–91. | spa |
dc.relation.references | Vargas-Bermudez DS, Díaz A, Mogollón JD, Jaime J. Longitudinal comparison of the humoral immune response and viral load of Porcine Circovirus Type 2 in pigs with different vaccination schemes under field conditions. [version 2; peer review: 2 approved, 1 approved with reservations]. F1000Res. 2018 Jan 10;7:42. | spa |
dc.relation.references | Batista L, Pijoan C, Dee S, Olin M, Molitor T, Joo HS, et al. Virological and immunological responses to porcine reproductive and respiratory syndrome virus in a large population of gilts. Can J Vet Res. 2004 Oct;68(4):267–73. | spa |
dc.relation.references | Corzo CA, Mondaca E, Wayne S, Torremorell M, Dee S, Davies P, et al. Control and elimination of porcine reproductive and respiratory syndrome virus. Virus Res. 2010 Dec;154(1–2):185–92. | spa |
dc.relation.references | Vargas-Bermúdez DS, Vargas-Pinto MA, Mogollón JD, Jaime J. Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3). BMC Vet Res. 2021 Apr 8;17(1):150 | spa |
dc.relation.references | Vargas-Bermudez DS, Campos FS, Bonil L, Mogollon D, Jaime J. First detection of porcine circovirus type 3 in Colombia and the complete genome sequence demonstrates the circulation of PCV3a1 and PCV3a2. Vet Med Sci. 2019 May;5(2):182–8. | spa |
dc.relation.references | Vargas-Bermudez DS, Mogollón JD, Jaime J. The Prevalence and Genetic Diversity of PCV3 and PCV2 in Colombia and PCV4 Survey during 2015-2016 and 2018-2019. Pathogens. 2022 May 31;11(6). | spa |
dc.relation.references | Vargas-Bermudez DS, Mainenti M, Naranjo-Ortiz MF, Mogollon JD, Piñeyro P, Jaime J. First Report of Porcine Parvovirus 2 (PPV2) in Pigs from Colombia Associated with Porcine Reproductive Failure (PRF) and Porcine Respiratory Disease Complex (PRDC). Transbound Emerg Dis. 2024 May 16;2024:1–11. | spa |
dc.relation.references | Christianson WT. Stillbirths, mummies, abortions, and early embryonic death. Vet Clin North Am Food Anim Pract. 1992 Nov;8(3):623–39 | spa |
dc.relation.references | Maes D, Peltoniemi O, Malik M. Abortion and fetal death in sows. Reprod Domest Anim. 2023 Sep;58 Suppl 2:125–36 | spa |
dc.relation.references | Streck AF, Truyen U. Porcine Parvovirus. Curr Issues Mol Biol. 2020;37:33–46 | spa |
dc.relation.references | Madson DM, Opriessnig T. Effect of porcine circovirus type 2 (PCV2) infection on reproduction: disease, vertical transmission, diagnostics and vaccination. Anim Health Res Rev. 2011 Jun;12(1):47–65 | spa |
dc.relation.references | Rossow KD. Porcine reproductive and respiratory syndrome. Vet Pathol. 1998 Jan;35(1):1–20 | spa |
dc.relation.references | Vannier P, Vedeau F, Allemeersch C. Eradication and control programmes against Aujeszky’s disease (pseudorabies) in France. Vet Microbiol. 1997 Apr;55(1–4):167–73 | spa |
dc.relation.references | Edwards S, Fukusho A, Lefèvre PC, Lipowski A, Pejsak Z, Roehe P, et al. Classical swine fever: the global situation. Vet Microbiol. 2000 Apr 13;73(2–3):103–19. | spa |
dc.relation.references | Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J. 2003 Jan;165(1):11–20 | spa |
dc.relation.references | Nauwynck HJ, Pensaert MB. Abortion induced by cell-associated pseudorabies virus in vaccinated sows. Am J Vet Res. 1992 Apr;53(4):489–93 | spa |
dc.relation.references | Forman AJ, Pass DA, Connaughton ID. The characterisation and pathogenicity of porcine enteroviruses isolated in Victoria. Aust Vet J. 1982 Apr;58(4):136–42 | spa |
dc.relation.references | Kim HS, Christianson WT, Joo HS. Characterization of encephalomyocarditis virus isolated from aborted swine fetuses. Am J Vet Res. 1991 Oct;52(10):1649–52 | spa |
dc.relation.references | Kwit K, Pomorska-Mól M, Markowska-Daniel I. Pregnancy outcome and clinical status of gilts following experimental infection by H1N2, H3N2 and H1N1pdm09 influenza A viruses during the last month of gestation. Arch Virol. 2015 Oct;160(10):2415–25 | spa |
dc.relation.references | Passler T, Walz PH. Bovine viral diarrhea virus infections in heterologous species. Anim Health Res Rev. 2010 Dec;11(2):191–205 | spa |
dc.relation.references | Olanratmanee E-O, Kunavongkrit A, Tummaruk P. Impact of porcine epidemic diarrhea virus infection at different periods of pregnancy on subsequent reproductive performance in gilts and sows. Anim Reprod Sci. 2010 Oct;122(1–2):42–51 | spa |
dc.relation.references | Schlafer DH, Mebus CA. Abortion in sows experimentally infected with African swine fever virus: pathogenesis studies. Am J Vet Res. 1987 Feb;48(2):246–54 | spa |
dc.relation.references | Faccini S, Barbieri I, Gilioli A, Sala G, Gibelli LR, Moreno A, et al. Detection and genetic characterization of Porcine circovirus type 3 in Italy. Transbound Emerg Dis. 2017 Dec;64(6):1661–4 | spa |
dc.relation.references | Ruiz A, Saporiti V, Huerta E, Balasch M, Segalés J, Sibila M. Exploratory Study of the Frequency of Detection and Tissue Distribution of Porcine Circovirus 3 (PCV-3) in Pig Fetuses at Different Gestational Ages. Pathogens. 2022 Jan 20;11(2 | spa |
dc.relation.references | Dal Santo AC, Cezario KC, Bennemann PE, Machado SA, Martins M. Full-genome sequences of porcine circovirus 3 (PCV3) and high prevalence in mummified fetuses from commercial farms in Brazil. Microb Pathog. 2020 Apr;141:104027. | spa |
dc.relation.references | Nguyen V-G, Do H-Q, Huynh T-M-L, Park Y-H, Park B-K, Chung H-C. Molecular-based detection, genetic characterization and phylogenetic analysis of porcine circovirus 4 from Korean domestic swine farms. Transbound Emerg Dis. 2022 Mar;69(2):538–48 | spa |
dc.relation.references | Faustini G, Tucciarone CM, Franzo G, Donneschi A, Boniotti MB, Alborali GL, et al. Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses. 2024 Jan 21;16(1) | spa |
dc.relation.references | Arruda B, Shen H, Zheng Y, Li G. Novel Morbillivirus as Putative Cause of Fetal Death and Encephalitis among Swine. Emerging Infect Dis. 2021 Jul;27(7):1858–66. | spa |
dc.relation.references | Schautteet K, Vanrompay D. Chlamydiaceae infections in pig. Vet Res. 2011 Feb 7;42(1):29 | spa |
dc.relation.references | Hoffmann CW, Bilkei G. Case study: chronic erysipelas of the sow--a subclinical manifestation of reproductive problems. Reprod Domest Anim. 2002 Apr;37(2):119–20. | spa |
dc.relation.references | Eddicks M, Gründl J, Seifert A, Eddicks L, Reese S, Tabeling R, et al. Examination on the occurrence of coinfections in diagnostic transmittals in cases of stillbirth, mummification, embryonic death, and infertility (SMEDI) syndrome in germany. Microorganisms. 2023 Jun 27;11(7) | spa |
dc.relation.references | Rebollada-Merino A, García-Seco T, Pérez-Sancho M, Domínguez L, Rodríguez-Bertos A. Histopathologic and immunohistochemical findings in the placentas and fetuses of domestic swine naturally infected with Brucella suis biovar 2. J Vet Diagn Invest. 2023 May;35(3):258–65 | spa |
dc.relation.references | Zhang N, Huang D, Wu W, Liu J, Liang F, Zhou B, et al. Animal brucellosis control or eradication programs worldwide: A systematic review of experiences and lessons learned. Prev Vet Med. 2018 Nov 15;160:105–15 | spa |
dc.relation.references | Moreno LZ, Matajira CEC, Poor AP, Mesquita RE, Gomes VTM, Silva APS, et al. Identification through MALDI-TOF mass spectrometry and antimicrobial susceptibility profiling of bacterial pathogens isolated from sow urinary tract infection. Vet Q. 2018 Dec;38(1):1–8 | spa |
dc.relation.references | Donneschi A, Recchia M, Romeo C, Pozzi P, Salogni C, Maisano AM, et al. Infectious Agents Associated with Abortion Outbreaks in Italian Pig Farms from 2011 to 2021. Veterinary Sciences. 2024 Oct 12;11(10). | spa |
dc.relation.references | Kim J, Jung K, Chae C. Prevalence of porcine circovirus type 2 in aborted fetuses and stillborn piglets. Vet Rec. 2004 Oct 16;155(16):489–92 | spa |
dc.relation.references | Zeng Z, Liu Z, Wang W, Tang D, Liang H, Liu Z. Establishment and application of a multiplex PCR for rapid and simultaneous detection of six viruses in swine. J Virol Methods. 2014 Nov;208:102–6 | spa |
dc.relation.references | Sharma R, Saikumar G. Porcine parvovirus- and porcine circovirus 2-associated reproductive failure and neonatal mortality in crossbred Indian pigs. Trop Anim Health Prod. 2010 Mar;42(3):515–22 | spa |
dc.relation.references | Garcia-Camacho LA, Vargas-Ruiz A, Marin-Flamand E, Ramírez-Álvarez H, Brown C. A retrospective study of DNA prevalence of porcine parvoviruses in Mexico and its relationship with porcine circovirus associated disease. Microbiol Immunol. 2020 May;64(5):366–76 | spa |
dc.relation.references | Varsani A, Harrach B, Roumagnac P, Benkő M, Breitbart M, Delwart E, et al. 2024 taxonomy update for the family Circoviridae. Arch Virol. 2024 Aug 14;169(9):176 | spa |
dc.relation.references | Tischer I, Gelderblom H, Vettermann W, Koch MA. A very small porcine virus with circular single-stranded DNA. Nature. 1982 Jan 7;295(5844):64–6 | spa |
dc.relation.references | Fenaux M, Halbur PG, Gill M, Toth TE, Meng XJ. Genetic characterization of type 2 porcine circovirus (PCV-2) from pigs with postweaning multisystemic wasting syndrome in different geographic regions of North America and development of a differential PCR-restriction fragment length polymorphism assay to detect and differentiate between infections with PCV-1 and PCV-2. J Clin Microbiol. 2000 Jul;38(7):2494–503. | spa |
dc.relation.references | Palinski R, Piñeyro P, Shang P, Yuan F, Guo R, Fang Y, et al. A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. J Virol. 2017 Jan 1;91(1). | spa |
dc.relation.references | Tian R-B, Zhao Y, Cui J-T, Zheng H-H, Xu T, Hou C-Y, et al. Molecular detection and phylogenetic analysis of Porcine circovirus 4 in Henan and Shanxi Provinces of China. Transbound Emerg Dis. 2021 Mar;68(2):276–82 | spa |
dc.relation.references | Breitbart M, Delwart E, Rosario K, Segalés J, Varsani A, Ictv Report Consortium. ICTV virus taxonomy profile: circoviridae. J Gen Virol. 2017 Aug 8;98(8):1997–8. | spa |
dc.relation.references | Hamel AL, Lin LL, Nayar GP. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J Virol. 1998 Jun;72(6):5262–7. | spa |
dc.relation.references | Tischer I, Mields W, Wolff D, Vagt M, Griem W. Studies on epidemiology and pathogenicity of porcine circovirus. Arch Virol. 1986;91(3–4):271–6 | spa |
dc.relation.references | Ellis J, Hassard L, Clark E, Harding J, Allan G, Willson P, et al. Isolation of circovirus from lesions of pigs with postweaning multisystemic wasting syndrome. Can Vet J. 1998 Jan;39(1):44–51. | spa |
dc.relation.references | Segalés J. Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res. 2012 Mar;164(1–2):10–9. | spa |
dc.relation.references | Wang Y, Noll L, Lu N, Porter E, Stoy C, Zheng W, et al. Genetic diversity and prevalence of porcine circovirus type 3 (PCV3) and type 2 (PCV2) in the Midwest of the USA during 2016-2018. Transbound Emerg Dis. 2020 May;67(3):1284–94 | spa |
dc.relation.references | Franzo G, Segalés J. Porcine circovirus 2 (PCV-2) genotype update and proposal of a new genotyping methodology. PLoS ONE. 2018 Dec 6;13(12):e0208585. | spa |
dc.relation.references | Franzo G, Delwart E, Fux R, Hause B, Su S, Zhou J, et al. Genotyping Porcine Circovirus 3 (PCV-3) Nowadays: Does It Make Sense? Viruses. 2020 Feb 28;12(3) | spa |
dc.relation.references | Zhang H-H, Hu W-Q, Li J-Y, Liu T-N, Zhou J-Y, Opriessnig T, et al. Novel circovirus species identified in farmed pigs designated as Porcine circovirus 4, Hunan province, China. Transbound Emerg Dis. 2020 May;67(3):1057–61. | spa |
dc.relation.references | Hou C-Y, Zhang L-H, Zhang Y-H, Cui J-T, Zhao L, Zheng L-L, et al. Phylogenetic analysis of porcine circovirus 4 in Henan Province of China: A retrospective study from 2011 to 2021. Transbound Emerg Dis. 2022 Jul;69(4):1890–901 | spa |
dc.relation.references | Holgado-Martín R, Arnal JL, Sibila M, Franzo G, Martín-Jurado D, Risco D, et al. First detection of porcine circovirus 4 (PCV-4) in Europe. Virol J. 2023 Oct 10;20(1):230 | spa |
dc.relation.references | Kroeger M, Vargas-Bermudez DS, Jaime J, Parada J, Groeltz J, Gauger P, et al. First detection of PCV4 in swine in the United States: codetection with PCV2 and PCV3 and direct detection within tissues. Sci Rep. 2024 Jul 5;14(1):15535 | spa |
dc.relation.references | Xu T, Hou C-Y, Zhang Y-H, Li H-X, Chen X-M, Pan J-J, et al. Simultaneous detection and genetic characterization of porcine circovirus 2 and 4 in Henan province of China. Gene. 2022 Jan 15;808:145991. | spa |
dc.relation.references | Klaumann F, Correa-Fiz F, Franzo G, Sibila M, Núñez JI, Segalés J. Current Knowledge on Porcine circovirus 3 (PCV-3): A Novel Virus With a Yet Unknown Impact on the Swine Industry. Front Vet Sci. 2018 Dec 12;5:315. | spa |
dc.relation.references | Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol. 2021 Jun 25;38(7):3022–7. | spa |
dc.relation.references | Vargas-Bermudez DS, Mogollon JD, Franco-Rodriguez C, Jaime J. The novel porcine parvoviruses: current state of knowledge and their possible implications in clinical syndromes in pigs. Viruses. 2023 Dec 9;15(12). | spa |
dc.relation.references | Pénzes JJ, de Souza WM, Agbandje-McKenna M, Gifford RJ. An Ancient Lineage of Highly Divergent Parvoviruses Infects both Vertebrate and Invertebrate Hosts. Viruses. 2019 Jun 6;11(6). | spa |
dc.relation.references | Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger A-M, Hughes J, et al. ICTV virus taxonomy profile: parvoviridae. J Gen Virol. 2019 Mar;100(3):367–8. | spa |
dc.relation.references | Sol N, Le Junter J, Vassias I, Freyssinier JM, Thomas A, Prigent AF, et al. Possible interactions between the NS-1 protein and tumor necrosis factor alpha pathways in erythroid cell apoptosis induced by human parvovirus B19. J Virol. 1999 Oct;73(10):8762–70. | spa |
dc.relation.references | Mietzsch M, Pénzes JJ, Agbandje-McKenna M. Twenty-Five Years of Structural Parvovirology. Viruses. 2019 Apr 20;11(4). | spa |
dc.relation.references | Cadar D, Dán Á, Tombácz K, Lőrincz M, Kiss T, Becskei Z, et al. Phylogeny and evolutionary genetics of porcine parvovirus in wild boars. Infect Genet Evol. 2012 Aug;12(6):1163–71. | spa |
dc.relation.references | Vereecke N, Kvisgaard LK, Baele G, Boone C, Kunze M, Larsen LE, et al. Molecular epidemiology of Porcine Parvovirus Type 1 (PPV1) and the reactivity of vaccine-induced antisera against historical and current PPV1 strains. Virus Evol. 2022 Jun 16;8(1):veac053. | spa |
dc.relation.references | Hijikata M, Abe K, Win KM, Shimizu YK, Keicho N, Yoshikura H. Identification of new parvovirus DNA sequence in swine sera from Myanmar. Jpn J Infect Dis. 2001 Dec;54(6):244–5. | spa |
dc.relation.references | Saekhow P, Mawatari T, Ikeda H. Coexistence of multiple strains of porcine parvovirus 2 in pig farms. Microbiol Immunol. 2014 Jul;58(7):382–7. | spa |
dc.relation.references | Cadar D, Lőrincz M, Kiss T, Novosel D, Podgorska K, Becskei Z, et al. Emerging novel porcine parvoviruses in Europe: origin, evolution, phylodynamics and phylogeography. J Gen Virol. 2013 Oct;94(Pt 10):2330–7. | spa |
dc.relation.references | Afolabi KO, Iweriebor BC, Obi LC, Okoh AI. Prevalence of porcine parvoviruses in some South African swine herds with background of porcine circovirus type 2 infection. Acta Trop. 2019 Feb;190:37–44 | spa |
dc.relation.references | Xiao C-T, Gerber PF, Giménez-Lirola LG, Halbur PG, Opriessnig T. Characterization of porcine parvovirus type 2 (PPV2) which is highly prevalent in the USA. Vet Microbiol. 2013 Jan 25;161(3–4):325–30 | spa |
dc.relation.references | Vargas-Bermudez DS, Prandi BA, Souza UJB de, Durães-Carvalho R, Mogollón JD, Campos FS, et al. Molecular Epidemiology and Phyloevolutionary Analysis of Porcine Parvoviruses (PPV1 through PPV7) Detected in Replacement Gilts from Colombia. ijms. 2024 Sep 26;25(19):10354. | spa |
dc.relation.references | Lau SKP, Woo PCY, Tse H, Fu CTY, Au W-K, Chen X-C, et al. Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. J Gen Virol. 2008 Aug;89(Pt 8):1840–8. | spa |
dc.relation.references | Li S, Wei Y, Liu J, Tang Q, Liu C. Prevalence of porcine hokovirus and its co-infection with porcine circovirus 2 in China. Arch Virol. 2013 Sep;158(9):1987–91. | spa |
dc.relation.references | Xiao C-T, Giménez-Lirola LG, Halbur PG, Opriessnig T. Increasing porcine PARV4 prevalence with pig age in the U.S. pig population. Vet Microbiol. 2012 Dec 7;160(3–4):290–6. | spa |
dc.relation.references | Souza CK, Streck AF, Gonçalves KR, Pinto LD, Ravazzolo AP, de Barcellos DEDSN, et al. Phylogenetic characterization of the first Ungulate tetraparvovirus 2 detected in pigs in Brazil. Braz J Microbiol. 2016 Mar 2;47(2):513–7 | spa |
dc.relation.references | Adlhoch C, Kaiser M, Kingsley MT, Schwarz NG, Ulrich M, de Paula VS, et al. Porcine hokovirus in domestic pigs, Cameroon. Emerging Infect Dis. 2013 Dec;19(12):2060–2. | spa |
dc.relation.references | Cheung AK, Wu G, Wang D, Bayles DO, Lager KM, Vincent AL. Identification and molecular cloning of a novel porcine parvovirus. Arch Virol. 2010 May;155(5):801–6. | spa |
dc.relation.references | Cságola A, Lőrincz M, Cadar D, Tombácz K, Biksi I, Tuboly T. Detection, prevalence and analysis of emerging porcine parvovirus infections. Arch Virol. 2012 Jun;157(6):1003–10 | spa |
dc.relation.references | Kim S-C, Kim J-H, Kim J-Y, Park G-S, Jeong C-G, Kim W-I. Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC Vet Res. 2022 Apr 9;18(1):133 | spa |
dc.relation.references | Gava D, Souza CK, Schaefer R, Vincent AL, Cantão ME, Coldebella A, et al. A TaqMan-based real-time PCR for detection and quantification of porcine parvovirus 4. J Virol Methods. 2015 Jul;219:14–7. | spa |
dc.relation.references | Xiao C-T, Halbur PG, Opriessnig T. Complete genome sequence of a novel porcine parvovirus (PPV) provisionally designated PPV5. Genome Announc. 2013 Jan 15;1(1). | spa |
dc.relation.references | Xiao C-T, Giménez-Lirola LG, Jiang Y-H, Halbur PG, Opriessnig T. Characterization of a novel porcine parvovirus tentatively designated PPV5. PLoS ONE. 2013 Jun 7;8(6):e65312 | spa |
dc.relation.references | Wu R, Wen Y, Huang X, Wen X, Yan Q, Huang Y, et al. First complete genomic characterization of a porcine parvovirus 5 isolate from China. Arch Virol. 2014 Jun;159(6):1533–6 | spa |
dc.relation.references | Cibulski S, Alves de Lima D, Fernandes Dos Santos H, Teixeira TF, Tochetto C, Mayer FQ, et al. A plate of viruses: Viral metagenomics of supermarket chicken, pork and beef from Brazil. Virology. 2021 Jan 2;552:1–9 | spa |
dc.relation.references | Ni J, Qiao C, Han X, Han T, Kang W, Zi Z, et al. Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China. Virol J. 2014 Dec 2;11:203 | spa |
dc.relation.references | Schirtzinger EE, Suddith AW, Hause BM, Hesse RA. First identification of porcine parvovirus 6 in North America by viral metagenomic sequencing of serum from pigs infected with porcine reproductive and respiratory syndrome virus. Virol J. 2015 Oct 16;12:170 | spa |
dc.relation.references | Cui J, Fan J, Gerber PF, Biernacka K, Stadejek T, Xiao C-T, et al. First identification of porcine parvovirus 6 in Poland. Virus Genes. 2017 Feb;53(1):100–4 | spa |
dc.relation.references | Miłek D, Woźniak A, Guzowska M, Stadejek T. Detection Patterns of Porcine Parvovirus (PPV) and Novel Porcine Parvoviruses 2 through 6 (PPV2-PPV6) in Polish Swine Farms. Viruses. 2019 May 24;11(5) | spa |
dc.relation.references | Palinski RM, Mitra N, Hause BM. Discovery of a novel Parvovirinae virus, porcine parvovirus 7, by metagenomic sequencing of porcine rectal swabs. Virus Genes. 2016 Aug;52(4):564–7 | spa |
dc.relation.references | Xing X, Zhou H, Tong L, Chen Y, Sun Y, Wang H, et al. First identification of porcine parvovirus 7 in China. Arch Virol. 2018 Jan;163(1):209–13 | spa |
dc.relation.references | Miłek D, Woźniak A, Stadejek T. The detection and genetic diversity of novel porcine parvovirus 7 (PPV7) on Polish pig farms. Res Vet Sci. 2018 Oct;120:28–32 | spa |
dc.relation.references | Park G-N, Song S, Cha RM, Choe S, Shin J, Kim S-Y, et al. Genetic analysis of porcine parvoviruses detected in South Korean wild boars. Arch Virol. 2021 Aug;166(8):2249–54 | spa |
dc.relation.references | Li J, Xiao Y, Qiu M, Li X, Li S, Lin H, et al. A Systematic Investigation Unveils High Coinfection Status of Porcine Parvovirus Types 1 through 7 in China from 2016 to 2020. Microbiol Spectr. 2021 Dec 22;9(3):e0129421 | spa |
dc.relation.references | Guo Y, Yan G, Chen S, Han H, Li J, Zhang H, et al. Identification and genomic characterization of a novel porcine parvovirus in China. Front Vet Sci. 2022 Sep 20;9:1009103 | spa |
dc.relation.references | Igriczi B, Dénes L, Schönhardt K, Balka G. First report of porcine parvovirus 8 in europe: widespread detection and genetic characterization on commercial pig farms in hungary and slovakia. 2024 May 31 | spa |
dc.relation.references | Vargas-Bermudez DS, Jaime J. The first report of porcine parvovirus 8 (PPV8) on the American continent is associated with pigs in Colombia with porcine respiratory disease. Arch Virol. 2024 Aug 16;169(9):179 | spa |
dc.relation.references | Brinton MA, Gulyaeva AA, Balasuriya UBR, Dunowska M, Faaberg KS, Goldberg T, et al. ICTV virus taxonomy profile: arteriviridae 2021. J Gen Virol. 2021 Aug;102(8) | spa |
dc.relation.references | Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, et al. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J Vet Diagn Invest. 1992 Apr;4(2):127–33 | spa |
dc.relation.references | Conzelmann KK, Visser N, Van Woensel P, Thiel HJ. Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology. 1993 Mar;193(1):329–39. | spa |
dc.relation.references | Music N, Gagnon CA. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis. Anim Health Res Rev. 2010 Dec;11(2):135–63 | spa |
dc.relation.references | Shi M, Lam TT-Y, Hon C-C, Murtaugh MP, Davies PR, Hui RK-H, et al. Phylogeny-based evolutionary, demographical, and geographical dissection of North American type 2 porcine reproductive and respiratory syndrome viruses. J Virol. 2010 Sep;84(17):8700–11. | spa |
dc.relation.references | Kim W-I, Kim J-J, Cha S-H, Wu W-H, Cooper V, Evans R, et al. Significance of genetic variation of PRRSV ORF5 in virus neutralization and molecular determinants corresponding to cross neutralization among PRRS viruses. Vet Microbiol. 2013 Feb 22;162(1):10–22. | spa |
dc.relation.references | Stadejek T, Stankevicius A, Murtaugh MP, Oleksiewicz MB. Molecular evolution of PRRSV in Europe: current state of play. Vet Microbiol. 2013 Jul 26;165(1–2):21–8. | spa |
dc.relation.references | Kapur V, Elam MR, Pawlovich TM, Murtaugh MP. Genetic variation in porcine reproductive and respiratory syndrome virus isolates in the midwestern United States. J Gen Virol. 1996 Jun;77 ( Pt 6):1271–6 | spa |
dc.relation.references | Wesley RD, Mengeling WL, Lager KM, Clouser DF, Landgraf JG, Frey ML. Differentiation of a porcine reproductive and respiratory syndrome virus vaccine strain from North American field strains by restriction fragment length polymorphism analysis of ORF 5. J Vet Diagn Invest. 1998 Apr;10(2):140–4. | spa |
dc.relation.references | Paploski IAD, Corzo C, Rovira A, Murtaugh MP, Sanhueza JM, Vilalta C, et al. Temporal Dynamics of Co-circulating Lineages of Porcine Reproductive and Respiratory Syndrome Virus. Front Microbiol. 2019 Nov 1;10:2486 | spa |
dc.relation.references | Kikuti M, Paploski IAD, Pamornchainavakul N, Picasso-Risso C, Schwartz M, Yeske P, et al. Emergence of a new lineage 1C variant of porcine reproductive and respiratory syndrome virus 2 in the united states. Front Vet Sci. 2021 Oct 18;8:752938 | spa |
dc.relation.references | Cha S-H, Chang C-C, Yoon K-J. Instability of the restriction fragment length polymorphism pattern of open reading frame 5 of porcine reproductive and respiratory syndrome virus during sequential pig-to-pig passages. J Clin Microbiol. 2004 Oct;42(10):4462–7. | spa |
dc.relation.references | Murtaugh MP, Stadejek T, Abrahante JE, Lam TTY, Leung FC-C. The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res. 2010 Dec;154(1–2):18–30 | spa |
dc.relation.references | Wang A, Chen Q, Wang L, Madson D, Harmon K, Gauger P, et al. Recombination between Vaccine and Field Strains of Porcine Reproductive and Respiratory Syndrome Virus. Emerging Infect Dis. 2019 Dec;25(12):2335–7 | spa |
dc.relation.references | Wang X, Marthaler D, Rovira A, Rossow S, Murtaugh MP. Emergence of a virulent porcine reproductive and respiratory syndrome virus in vaccinated herds in the United States. Virus Res. 2015 Dec 2;210:34–41. | spa |
dc.relation.references | Karniychuk UU, Saha D, Geldhof M, Vanhee M, Cornillie P, Van den Broeck W, et al. Porcine reproductive and respiratory syndrome virus (PRRSV) causes apoptosis during its replication in fetal implantation sites. Microb Pathog. 2011 Sep;51(3):194–202. | spa |
dc.relation.references | Mengeling WL, Lager KM, Vorwald AC. The effect of porcine parvovirus and porcine reproductive and respiratory syndrome virus on porcine reproductive performance. Anim Reprod Sci. 2000 Jul 2;60–61:199–210. | spa |
dc.relation.references | Zhao H, Zhao G, Wang W. Susceptibility of porcine preimplantation embryos to viruses associated with reproductive failure. Theriogenology. 2016 Oct 15;86(7):1631–6 | spa |
dc.relation.references | Choi CS, Molitor TW, Joo HS, Gunther R. Pathogenicity of a skin isolate of porcine parvovirus in swine fetuses. Vet Microbiol. 1987 Oct;15(1–2):19–29 | spa |
dc.relation.references | Sanchez RE, Nauwynck HJ, McNeilly F, Allan GM, Pensaert MB. Porcine circovirus 2 infection in swine foetuses inoculated at different stages of gestation. Vet Microbiol. 2001 Nov 8;83(2):169–76 | spa |
dc.relation.references | O’Connor B, Gauvreau H, West K, Bogdan J, Ayroud M, Clark EG, et al. Multiple porcine circovirus 2-associated abortions and reproductive failure in a multisite swine production unit. Can Vet J. 2001 Jul;42(7):551–3 | spa |
dc.relation.references | Mateusen B, Maes DGD, Van Soom A, Lefebvre D, Nauwynck HJ. Effect of a porcine circovirus type 2 infection on embryos during early pregnancy. Theriogenology. 2007 Oct 1;68(6):896–901 | spa |
dc.relation.references | Johnson CS, Joo HS, Direksin K, Yoon K-J, Choi YK. Experimental in utero inoculation of late-term swine fetuses with porcine circovirus type 2. J Vet Diagn Invest. 2002 Nov;14(6):507–12 | spa |
dc.relation.references | Pensaert MB, Sanchez RE, Ladekjaer-Mikkelsen AS, Allan GM, Nauwynck HJ. Viremia and effect of fetal infection with porcine viruses with special reference to porcine circovirus 2 infection. Vet Microbiol. 2004 Feb 4;98(2):175–83 | spa |
dc.relation.references | Gerber PF, Garrocho FM, Lana AMQ, Lobato ZIP. Fetal infections and antibody profiles in pigs naturally infected with porcine circovirus type 2 (PCV2). Can J Vet Res. 2012 Jan;76(1):38–44 | spa |
dc.relation.references | Madson DM, Patterson AR, Ramamoorthy S, Pal N, Meng XJ, Opriessnig T. Reproductive failure experimentally induced in sows via artificial insemination with semen spiked with porcine circovirus type 2. Vet Pathol. 2009 Jul;46(4):707–16. | spa |
dc.relation.references | Hernández J, Henao-Díaz A, Reséndiz-Sandoval M, Ramírez-Morán J, Cota-Valdez A, Mata-Haro V, et al. Evaluation of IgM, IgA, and IgG Antibody Responses Against PCV3 and PCV2 in Tissues of Aborted Fetuses from Late-Term Co-Infected Sows. Pathogens. 2025 Feb 16;14(2):198. | spa |
dc.relation.references | Calsamiglia M, Fraile L, Espinal A, Cuxart A, Seminati C, Martín M, et al. Sow porcine circovirus type 2 (PCV2) status effect on litter mortality in postweaning multisystemic wasting syndrome (PMWS). Res Vet Sci. 2007 Jun;82(3):299–304 | spa |
dc.relation.references | Ladekjaer-Mikkelsen AS, Nielsen J, Storgaard T, Bøtner A, Allan G, McNeilly F. Transplacental infection with PCV-2 associated with reproductive failure in a gilt. Vet Rec. 2001 Jun 16;148(24):759–60 | spa |
dc.relation.references | Pittman JS. Reproductive failure associated with porcine circovirus type 2 in gilts. Journal of Swine Health and Production. 2008; | spa |
dc.relation.references | Eddicks M, Koeppen M, Willi S, Fux R, Reese S, Sutter G, et al. Low prevalence of porcine circovirus type 2 infections in farrowing sows and corresponding pre-suckling piglets in southern German pig farms. Vet Microbiol. 2016 May 1;187:70–4. | spa |
dc.relation.references | Opriessnig T, Meng X-J, Halbur PG. Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J Vet Diagn Invest. 2007 Nov;19(6):591–615. | spa |
dc.relation.references | Dvorak CMT, Payne BJ, Seate JL, Murtaugh MP. Effect of maternal antibody transfer on antibody dynamics and control of porcine circovirus type 2 infection in offspring. Viral Immunol. 2018;31(1):40–6 | spa |
dc.relation.references | Gerber PF, Garrocho FM, Lana AMQ, Lobato ZIP. Serum antibodies and shedding of infectious porcine circovirus 2 into colostrum and milk of vaccinated and unvaccinated naturally infected sows. Vet J. 2011 May;188(2):240–2 | spa |
dc.relation.references | Hansen MS, Hjulsager CK, Bille-Hansen V, Haugegaard S, Dupont K, Høgedal P, et al. Selection of method is crucial for the diagnosis of porcine circovirus type 2 associated reproductive failures. Vet Microbiol. 2010 Jul 29;144(1–2):203–9. | spa |
dc.relation.references | Segalés J, Sibila M. Revisiting porcine circovirus disease diagnostic criteria in the current porcine circovirus 2 epidemiological context. Veterinary Sciences. 2022 Mar 2;9(3). | spa |
dc.relation.references | Kim S-C, Nazki S, Kwon S, Juhng J-H, Mun K-H, Jeon D-Y, et al. The prevalence and genetic characteristics of porcine circovirus type 2 and 3 in Korea. BMC Vet Res. 2018 Sep 26;14(1):294 | spa |
dc.relation.references | Igriczi B, Dénes L, Biksi I, Albert E, Révész T, Balka G. High prevalence of porcine circovirus 3 in hungarian pig herds: results of a systematic sampling protocol. Viruses. 2022 Jun 3;14(6) | spa |
dc.relation.references | Guo Z, Li X, Deng R, Zhang G. Detection and genetic characteristics of porcine circovirus 3 based on oral fluids from asymptomatic pigs in central China. BMC Vet Res. 2019 Jun 13;15(1):200 | spa |
dc.relation.references | Tochetto C, Lima DA, Varela APM, Loiko MR, Paim WP, Scheffer CM, et al. Full-Genome Sequence of Porcine Circovirus type 3 recovered from serum of sows with stillbirths in Brazil. Transbound Emerg Dis. 2018 Feb;65(1):5–9 | spa |
dc.relation.references | Zou Y, Zhang N, Zhang J, Zhang S, Jiang Y, Wang D, et al. Molecular detection and sequence analysis of porcine circovirus type 3 in sow sera from farms with prolonged histories of reproductive problems in Hunan, China. Arch Virol. 2018 Oct;163(10):2841–7. | spa |
dc.relation.references | Vargas-Bermúdez DS, Vargas-Pinto MA, Mogollón JD, Jaime J. Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3). BMC Vet Res. 2021 Apr 8;17(1):150. | spa |
dc.relation.references | Deim Z, Dencső L, Erdélyi I, Valappil SK, Varga C, Pósa A, et al. Porcine circovirus type 3 detection in a Hungarian pig farm experiencing reproductive failures. Vet Rec. 2019 Jul 20;185(3):84. | spa |
dc.relation.references | Reséndiz-Sandoval M, Vázquez-García VA, Contreras-Vega K, Melgoza-González EA, Mata-Haro V, Gimenez-Lirola L, et al. A Retrospective Analysis of Porcine Circovirus Type 3 in Samples Collected from 2008 to 2021 in Mexico. Viruses. 2023 Nov 8;15(11). | spa |
dc.relation.references | Saporiti V, Franzo G, Sibila M, Segalés J. Porcine circovirus 3 (PCV-3) as a causal agent of disease in swine and a proposal of PCV-3 associated disease case definition. Transbound Emerg Dis. 2021 Nov;68(6):2936–48 | spa |
dc.relation.references | Cobos À, Ruiz A, Pérez M, Llorens A, Huerta E, Correa-Fiz F, et al. Experimental Inoculation of Porcine Circovirus 3 (PCV-3) in Pregnant Gilts Causes PCV-3-Associated Lesions in Newborn Piglets that Persist until Weaning. Transbound Emerg Dis. 2023 Oct 20;2023:1–14. | spa |
dc.relation.references | Kedkovid R, Woonwong Y, Arunorat J, Sirisereewan C, Sangpratum N, Kesdangsakonwut S, et al. Porcine circovirus type 3 (PCV3) shedding in sow colostrum. Vet Microbiol. 2018 Jul;220:12–7. | spa |
dc.relation.references | Ku X, Chen F, Li P, Wang Y, Yu X, Fan S, et al. Identification and genetic characterization of porcine circovirus type 3 in China. Transbound Emerg Dis. 2017 Jun;64(3):703–8. | spa |
dc.relation.references | Kroeger M, Temeeyasen G, Dilberger-Lawson S, Nelson E, Magtoto R, Gimenez-Lirola L, et al. The porcine circovirus 3 humoral response: characterization of maternally derived antibodies and dynamic following experimental infection. Microbiol Spectr. 2024 Aug 6;12(8):e0087024 | spa |
dc.relation.references | Ge M, Hu W-Q, Ning K-M, Li S-Y, Xiao C-T. The seroprevalence of the newly identified porcine circovirus type 4 in China investigated by an enzymed-linked immunosorbent assay. Transbound Emerg Dis. 2021 Nov;68(6):2910–4. | spa |
dc.relation.references | Opriessnig T, Fenaux M, Yu S, Evans RB, Cavanaugh D, Gallup JM, et al. Effect of porcine parvovirus vaccination on the development of PMWS in segregated early weaned pigs coinfected with type 2 porcine circovirus and porcine parvovirus. Vet Microbiol. 2004 Mar 5;98(3–4):209–20. | spa |
dc.relation.references | Franzo G, Zerbo HL, Ouoba BL, Dji-Tombo AD, Kindo MG, Sawadogo R, et al. A phylogeographic analysis of porcine parvovirus 1 in africa. Viruses. 2023 Jan 11;15(1). | spa |
dc.relation.references | Mészáros I, Olasz F, Cságola A, Tijssen P, Zádori Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses. 2017 Dec 20;9(12). | spa |
dc.relation.references | Gava D, Souza CK, Mores TJ, Argenti LE, Streck AF, Canal CW, et al. Dynamics of vanishing of maternally derived antibodies of Ungulate protoparvovirus 1 suggests an optimal age for gilts vaccination. Trop Anim Health Prod. 2017 Jun;49(5):1085–8. | spa |
dc.relation.references | Joo HS, Donaldson-Wood CR, Johnson RH. Observations on the pathogenesis of porcine parvovirus infection. Arch Virol. 1976;51(1–2):123–9. | spa |
dc.relation.references | Zeeuw EJL, Leinecker N, Herwig V, Selbitz HJ, Truyen U. Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. J Gen Virol. 2007 Feb;88(Pt 2):420–7. | spa |
dc.relation.references | Zimmermann P, Ritzmann M, Selbitz HJ, Heinritzi K, Truyen U. VP1 sequences of German porcine parvovirus isolates define two genetic lineages. J Gen Virol. 2006 Feb;87(Pt 2):295–301 | spa |
dc.relation.references | van Leengoed LA, Vos J, Gruys E, Rondhuis P, Brand A. Porcine Parvovirus infection: review and diagnosis in a sow herd with reproductive failure. Vet Q. 1983 Jul;5(3):131–41 | spa |
dc.relation.references | Ouh I-O, Lee J-Y, Choi H, Moon SY, Song JY, Hyun B-H, et al. Prevalence of Porcine Parvoviruses 1 to 6 and Porcine Circovirus 3 Infections and of Their Co-infections With Porcine Circovirus 2 in the Republic of Korea. 2023 May 16; | spa |
dc.relation.references | Vargas-Bermudez DS, Mainenti M, Naranjo-Ortiz MF, Mogollon JD, Piñeyro P, Jaime J. First Report of Porcine Parvovirus 2 (PPV2) in Pigs from Colombia Associated with Porcine Reproductive Failure (PRF) and Porcine Respiratory Disease Complex (PRDC). Transbound Emerg Dis. 2024 May 16;2024:1–11 | spa |
dc.relation.references | Ouh I-O, Park S, Lee J-Y, Song JY, Cho I-S, Kim H-R, et al. First detection and genetic characterization of porcine parvovirus 7 from Korean domestic pig farms. J Vet Sci. 2018 Nov 30;19(6):855–7. | spa |
dc.relation.references | Zhang X, Zheng C, Lv Z, Xue S, Chen Y, Liu Y, et al. Genetic and epidemic characteristics of porcine parvovirus 7 in the Fujian and Guangdong regions of southern China. Front Vet Sci. 2022 Aug 17;9:949764. | spa |
dc.relation.references | Karniychuk UU, Nauwynck HJ. Pathogenesis and prevention of placental and transplacental porcine reproductive and respiratory syndrome virus infection. Vet Res. 2013 Oct 7;44:95. | spa |
dc.relation.references | Unterweger C, Kreutzmann H, Buenger M, Klingler E, Auer A, Rümenapf T, et al. Litters of Various-Sized Mummies (LVSM) and Stillborns after Porcine Reproductive and Respiratory Syndrome Virus Type 1 Infection-A Case Report. Veterinary Sciences. 2023 Aug 1;10(8). | spa |
dc.relation.references | Christianson WT, Choi CS, Collins JE, Molitor TW, Morrison RB, Joo HS. Pathogenesis of porcine reproductive and respiratory syndrome virus infection in mid-gestation sows and fetuses. Can J Vet Res. 1993 Oct;57(4):262–8. | spa |
dc.relation.references | Karniychuk UU, Van Breedam W, Van Roy N, Rogel-Gaillard C, Nauwynck HJ. Demonstration of microchimerism in pregnant sows and effects of congenital PRRSV infection. Vet Res. 2012 Mar 16;43(1):19 | spa |
dc.relation.references | Ladinig A, Ashley C, Detmer SE, Wilkinson JM, Lunney JK, Plastow G, et al. Maternal and fetal predictors of fetal viral load and death in third trimester, type 2 porcine reproductive and respiratory syndrome virus infected pregnant gilts. Vet Res. 2015 Sep 25;46:107. | spa |
dc.relation.references | Ladinig A, Wilkinson J, Ashley C, Detmer SE, Lunney JK, Plastow G, et al. Variation in fetal outcome, viral load and ORF5 sequence mutations in a large scale study of phenotypic responses to late gestation exposure to type 2 porcine reproductive and respiratory syndrome virus. PLoS ONE. 2014 Apr 22;9(4):e96104 | spa |
dc.relation.references | Lager KM, Halbur PG. Gross and microscopic lesions in porcine fetuses infected with porcine reproductive and respiratory syndrome virus. J Vet Diagn Invest. 1996 Jul;8(3):275–82. | spa |
dc.relation.references | Rowland RRR, Lawson S, Rossow K, Benfield DA. Lymphoid tissue tropism of porcine reproductive and respiratory syndrome virus replication during persistent infection of pigs originally exposed to virus in utero. Vet Microbiol. 2003 Oct 30;96(3):219–35. | spa |
dc.relation.references | Malgarin CM, Nosach R, Novakovic P, Suleman M, Ladinig A, Detmer SE, et al. Classification of fetal resilience to porcine reproductive and respiratory syndrome (PRRS) based on temporal viral load in late gestation maternal tissues and fetuses. Virus Res. 2019 Jan 15;260:151–62 | spa |
dc.relation.references | Bishop SC, Woolliams JA. Genomics and disease resistance studies in livestock. Livest Sci. 2014 Aug;166:190–8. | spa |
dc.relation.references | Tochetto C, Alves de Lima D, Muterle Varela AP, Ortiz LC, Loiko MR, Scheffer CM, et al. Investigation on porcine circovirus type 3 in serum of farrowing sows with stillbirths. Microb Pathog. 2020 Jun 9;104316. | spa |
dc.relation.references | Prieto C, Suárez P, Simarro I, García C, Fernández A, Castro JM. Transplacental infection following exposure of gilts to porcine reproductive and respiratory syndrome virus at the onset of gestation. Vet Microbiol. 1997 Oct 16;57(4):301–11 | spa |
dc.relation.references | Joo HS. Infectious reproductive diseases in swine: Etiology and clinical sIgns. 1999; | spa |
dc.relation.references | Saporiti V, Valls L, Maldonado J, Perez M, Correa-Fiz F, Segalés J, et al. Porcine Circovirus 3 Detection in Aborted Fetuses and Stillborn Piglets from Swine Reproductive Failure Cases. Viruses. 2021 Feb 9;13(2). | spa |
dc.relation.references | Kaur A, Mahajan V, Leishangthem GD, Singh ND, Bhat P, Banga HS, et al. Epidemiological and immunopathological studies on Porcine parvovirus infection in Punjab. Vet World. 2016 Aug 8;9(8):827–31. | spa |
dc.relation.references | Novakovic P, Harding JCS, Al-Dissi AN, Ladinig A, Detmer SE. Pathologic Evaluation of Type 2 Porcine Reproductive and Respiratory Syndrome Virus Infection at the Maternal-Fetal Interface of Late Gestation Pregnant Gilts. PLoS ONE. 2016 Mar 10;11(3):e0151198 | spa |
dc.relation.references | Madson DM, Patterson AR, Ramamoorthy S, Pal N, Meng XJ, Opriessnig T. Effect of porcine circovirus type 2 (PCV2) vaccination of the dam on PCV2 replication in utero. Clin Vaccine Immunol. 2009 Jun;16(6):830–4. | spa |
dc.relation.references | Arruda B, Piñeyro P, Derscheid R, Hause B, Byers E, Dion K, et al. PCV3-associated disease in the United States swine herd. Emerg Microbes Infect. 2019;8(1):684–98. | spa |
dc.relation.references | Oraveerakul K, Choi CS, Molitor TW. Tissue tropisms of porcine parvovirus in swine. Arch Virol. 1993;130(3–4):377–89. | spa |
dc.relation.references | Hogg GG, Lenghaus C, Forman AJ. Experimental porcine parvovirus infection of foetal pigs resulting in abortion, histological lesions and antibody formation. J Comp Pathol. 1977 Oct;87(4):539–49. | spa |
dc.relation.references | Christianson WT, Collins JE, Benfield DA, Harris L, Gorcyca DE, Chladek DW, et al. Experimental reproduction of swine infertility and respiratory syndrome in pregnant sows. Am J Vet Res. 1992 Apr;53(4):485–8. | spa |
dc.relation.references | Brunborg IM, Jonassen CM, Moldal T, Bratberg B, Lium B, Koenen F, et al. Association of myocarditis with high viral load of porcine circovirus type 2 in several tissues in cases of fetal death and high mortality in piglets. A case study. J Vet Diagn Invest. 2007 Jul;19(4):368–75. | spa |
dc.relation.references | Kranker S, Nielsen J, Bille-Hansen V, Bøtner A. Experimental inoculation of swine at various stages of gestation with a Danish isolate of porcine reproductive and respiratory syndrome virus (PRRSV). Vet Microbiol. 1998 Mar 15;61(1–2):21–31. | spa |
dc.relation.references | Dvorak CMT, Yang Y, Haley C, Sharma N, Murtaugh MP. National reduction in porcine circovirus type 2 prevalence following introduction of vaccination. Vet Microbiol. 2016 Jun 30;189:86–90. | spa |
dc.relation.references | Opriessnig T, McKeown NE, Harmon KL, Meng XJ, Halbur PG. Porcine circovirus type 2 infection decreases the efficacy of a modified live porcine reproductive and respiratory syndrome virus vaccine. Clin Vaccine Immunol. 2006 Aug;13(8):923–9. | spa |
dc.relation.references | Zimmerman JJ, Yoon KJ, Wills RW, Swenson SL. General overview of PRRSV: a perspective from the United States. Vet Microbiol. 1997 Apr;55(1–4):187–96 | spa |
dc.relation.references | Saporiti V, Martorell S, Cruz TF, Klaumann F, Correa-Fiz F, Balasch M, et al. Frequency of Detection and Phylogenetic Analysis of Porcine circovirus3 (PCV-3) in Healthy Primiparous and Multiparous Sows and Their Mummified Fetuses and Stillborn. Pathogens. 2020 Jul 2;9(7). | spa |
dc.relation.references | Afghah Z, Webb B, Meng X-J, Ramamoorthy S. Ten years of PCV2 vaccines and vaccination: Is eradication a possibility? Vet Microbiol. 2017 Jul;206:21–8. | spa |
dc.relation.references | Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT. Virological and immunological outcomes of coinfections. Clin Microbiol Rev. 2018 Oct;31(4) | spa |
dc.relation.references | Salogni C, Lazzaro M, Giacomini E, Giovannini S, Zanoni M, Giuliani M, et al. Infectious agents identified in aborted swine fetuses in a high-density breeding area: a three-year study. J Vet Diagn Invest. 2016 Sep;28(5):550–4. | spa |
dc.relation.references | Serena MS, Dibárbora M, Olivera V, Metz GE, Aspitia CG, Pereda A, et al. Evidence of porcine circovirus type 2 and co-infection with ungulate protoparvovirus 1 (porcine parvovirus) in mummies and stillborn piglets in subclinically infected farm. Infect Genet Evol. 2021 Jan 29;89:104735 | spa |
dc.relation.references | Ferrara G, Piscopo N, Pagnini U, Esposito L, Montagnaro S. Detection of selected pathogens in reproductive tissues of wild boars in the Campania region, southern Italy. Acta Vet Scand. 2024 Mar 5;66(1):9. | spa |
dc.relation.references | Yue F, Cui S, Zhang C, Yoon K-J. A multiplex PCR for rapid and simultaneous detection of porcine circovirus type 2, porcine parvovirus, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. Virus Genes. 2009 Jun;38(3):392–7 | spa |
dc.relation.references | Jiang Y, Shang H, Xu H, Zhu L, Chen W, Zhao L, et al. Simultaneous detection of porcine circovirus type 2, classical swine fever virus, porcine parvovirus and porcine reproductive and respiratory syndrome virus in pigs by multiplex polymerase chain reaction. Vet J. 2010 Feb;183(2):172–5. | spa |
dc.relation.references | Tang Q, Ge L, Tan S, Zhang H, Yang Y, Zhang L, et al. Epidemiological Survey of Four Reproductive Disorder Associated Viruses of Sows in Hunan Province during 2019-2021. Veterinary Sciences. 2022 Aug 11;9(8). | spa |
dc.relation.references | Dei Giudici S, Franzoni G, Bonelli P, Angioi PP, Zinellu S, Deriu V, et al. Genetic characterization of porcine circovirus 3 strains circulating in sardinian pigs and wild boars. Pathogens. 2020 May 2;9(5) | spa |
dc.relation.references | Zheng S, Wu X, Zhang L, Xin C, Liu Y, Shi J, et al. The occurrence of porcine circovirus 3 without clinical infection signs in Shandong Province. Transbound Emerg Dis. 2017 Oct;64(5):1337–41. | spa |
dc.relation.references | Vargas-Bermudez DS, Diaz A, Polo G, Mogollon JD, Jaime J. Infection and Coinfection of Porcine-Selected Viruses (PPV1 to PPV8, PCV2 to PCV4, and PRRSV) in Gilts and Their Associations with Reproductive Performance. Veterinary Sciences. 2024 Apr 24;11(5). | spa |
dc.relation.references | Maldonado J, Segalés J, Martínez-Puig D, Calsamiglia M, Riera P, Domingo M, et al. Identification of viral pathogens in aborted fetuses and stillborn piglets from cases of swine reproductive failure in Spain. Vet J. 2005 May;169(3):454–6. | spa |
dc.relation.references | Serena MS, Cappuccio JA, Barrales H, Metz GE, Aspitia CG, Lozada I, et al. First detection and genetic characterization of porcine circovirus type 3 (PCV3) in Argentina and its association with reproductive failure. Transbound Emerg Dis. 2020 Oct 27; | spa |
dc.relation.references | Mai J, Wang D, Zou Y, Zhang S, Meng C, Wang A, et al. High Co-infection Status of Novel Porcine Parvovirus 7 With Porcine Circovirus 3 in Sows That Experienced Reproductive Failure. Front Vet Sci. 2021 Jul 29;8:695553. | spa |
dc.relation.references | Sirisereewan C, Nguyen TC, Piewbang C, Jittimanee S, Kedkovid R, Thanawongnuwech R. Molecular detection and genetic characterization of porcine circovirus 4 (PCV4) in Thailand during 2019-2020. Sci Rep. 2023 Mar 30;13(1):5168. | spa |
dc.relation.references | Pescador CA, Bandarra PM, Castro LA, Antoniassi NAB, Ravazzolo AP, Sonne L, et al. Co-infection by porcine circovirus type 2 and porcine parvovirus in aborted fetuses and stillborn piglets in southern Brazil. Pesq Vet Bras. 2007 Oct;27(10):425–9. | spa |
dc.relation.references | Mak CK, Yang C, Jeng C-R, Pang VF, Yeh K-S. Reproductive failure associated with coinfection of porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus. Can Vet J. 2018 May;59(5):525–30 | spa |
dc.relation.references | Chen GH, Mai KJ, Zhou L, Wu RT, Tang XY, Wu JL, et al. Detection and genome sequencing of porcine circovirus 3 in neonatal pigs with congenital tremors in South China. Transbound Emerg Dis. 2017 Dec;64(6):1650–4. | spa |
dc.relation.references | Ritzmann M, Wilhelm S, Zimmermann P, Etschmann B, Bogner KH, Selbitz HJ, et al. [Prevalence and association of porcine circovirus type 2 (PCV2), porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus (PRRSV) in aborted fetuses, mummified fetuses, stillborn and nonviable neonatal piglets]. DTW Dtsch Tierarztl Wochenschr. 2005 Sep;112(9):348–51 | spa |
dc.relation.references | Christianson WT. Stillbirths, mummies, abortions, and early embryonic death. Vet Clin North Am Food Anim Pract. 1992 Nov;8(3):623–39. | spa |
dc.relation.references | Nathues H, Alarcon P, Rushton J, Jolie R, Fiebig K, Jimenez M, et al. Cost of porcine reproductive and respiratory syndrome virus at individual farm level - An economic disease model. Prev Vet Med. 2017 Jul 1;142:16–29. | spa |
dc.relation.references | Dunne HW, Gobble JL, Hokanson JF, Kradel DC, Bubash GR. Porcine reproductive failure associated with a newly identified “SMEDI” group of picorna viruses. Am J Vet Res. 1965 Nov;26(115):1284–97. | spa |
dc.relation.references | Streck AF, Truyen U. Porcine Parvovirus. Curr Issues Mol Biol. 2020;37:33–46. | spa |
dc.relation.references | Madson DM, Opriessnig T. Effect of porcine circovirus type 2 (PCV2) infection on reproduction: disease, vertical transmission, diagnostics and vaccination. Anim Health Res Rev. 2011 Jun;12(1):47–65 | spa |
dc.relation.references | Rossow KD. Porcine reproductive and respiratory syndrome. Vet Pathol. 1998 Jan;35(1):1–20. | spa |
dc.relation.references | Faustini G, Tucciarone CM, Franzo G, Donneschi A, Boniotti MB, Alborali GL, et al. Molecular Survey on Porcine Parvoviruses (PPV1-7) and Their Association with Major Pathogens in Reproductive Failure Outbreaks in Northern Italy. Viruses. 2024 Jan 21;16(1). | spa |
dc.relation.references | Vargas-Bermudez DS, Mogollon JD, Franco-Rodriguez C, Jaime J. The novel porcine parvoviruses: current state of knowledge and their possible implications in clinical syndromes in pigs. Viruses. 2023 Dec 9;15(12) | spa |
dc.relation.references | Kim J, Jung K, Chae C. Prevalence of porcine circovirus type 2 in aborted fetuses and stillborn piglets. Vet Rec. 2004 Oct 16;155(16):489–92. | spa |
dc.relation.references | Zeng Z, Liu Z, Wang W, Tang D, Liang H, Liu Z. Establishment and application of a multiplex PCR for rapid and simultaneous detection of six viruses in swine. J Virol Methods. 2014 Nov;208:102–6 | spa |
dc.relation.references | Sharma R, Saikumar G. Porcine parvovirus- and porcine circovirus 2-associated reproductive failure and neonatal mortality in crossbred Indian pigs. Trop Anim Health Prod. 2010 Mar;42(3):515–22 | spa |
dc.relation.references | Eddicks M, Gründl J, Seifert A, Eddicks L, Reese S, Tabeling R, et al. Examination on the occurrence of coinfections in diagnostic transmittals in cases of stillbirth, mummification, embryonic death, and infertility (SMEDI) syndrome in germany. Microorganisms. 2023 Jun 27;11(7) | spa |
dc.relation.references | Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT. Virological and immunological outcomes of coinfections. Clin Microbiol Rev. 2018 Oct;31(4) | spa |
dc.relation.references | Vargas-Bermudez DS, Diaz A, Polo G, Mogollon JD, Jaime J. Infection and Coinfection of Porcine-Selected Viruses (PPV1 to PPV8, PCV2 to PCV4, and PRRSV) in Gilts and Their Associations with Reproductive Performance. Veterinary Sciences. 2024 Apr 24;11(5) | spa |
dc.relation.references | Vargas-Bermudez DS, Prandi BA, Souza UJB de, Durães-Carvalho R, Mogollón JD, Campos FS, et al. Molecular Epidemiology and Phyloevolutionary Analysis of Porcine Parvoviruses (PPV1 through PPV7) Detected in Replacement Gilts from Colombia. ijms. 2024 Sep 26;25(19):10354 | spa |
dc.relation.references | Oliver-Ferrando S, Segalés J, López-Soria S, Callén A, Merdy O, Joisel F, et al. Evaluation of natural porcine circovirus type 2 (PCV2) subclinical infection and seroconversion dynamics in piglets vaccinated at different ages. Vet Res. 2016 Dec 3;47(1):121 | spa |
dc.relation.references | Palinski R, Piñeyro P, Shang P, Yuan F, Guo R, Fang Y, et al. A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. J Virol. 2017 Jan 1;91(1) | spa |
dc.relation.references | Gerber PF, O’Neill K, Owolodun O, Wang C, Harmon K, Zhang J, et al. Comparison of commercial real-time reverse transcription-PCR assays for reliable, early, and rapid detection of heterologous strains of porcine reproductive and respiratory syndrome virus in experimentally infected or noninfected boars by use of different sample types. J Clin Microbiol. 2013 Feb;51(2):547–56 | spa |
dc.relation.references | Ahmed M, Kim DR. pcr: an R package for quality assessment, analysis and testing of qPCR data. PeerJ. 2018 Mar 16;6:e4473 | spa |
dc.relation.references | Segalés J, Sibila M. Revisiting porcine circovirus disease diagnostic criteria in the current porcine circovirus 2 epidemiological context. Veterinary Sciences. 2022 Mar 2;9(3). | spa |
dc.relation.references | Saporiti V, Franzo G, Sibila M, Segalés J. Porcine circovirus 3 (PCV-3) as a causal agent of disease in swine and a proposal of PCV-3 associated disease case definition. Transbound Emerg Dis. 2021 Nov;68(6):2936–48. | spa |
dc.relation.references | Ladinig A, Wilkinson J, Ashley C, Detmer SE, Lunney JK, Plastow G, et al. Variation in fetal outcome, viral load and ORF5 sequence mutations in a large scale study of phenotypic responses to late gestation exposure to type 2 porcine reproductive and respiratory syndrome virus. PLoS ONE. 2014 Apr 22;9(4):e96104 | spa |
dc.relation.references | Oropeza-Moe M, Oropeza Delgado AJ, Framstad T. Porcine circovirus type 2 associated reproductive failure in a specific pathogen free (SPF) piglet producing herd in Norway: a case report. Porcine Health Manag. 2017 Oct 24;3:25 | spa |
dc.relation.references | Eddicks M, Beuter B, Stuhldreier R, Nolte T, Reese S, Sutter G, et al. Cross-sectional study on viraemia and shedding of porcine circovirus type 2 in a subclinically infected multiplier sow herd. Vet Rec. 2019 Feb 9;184(6):189 | spa |
dc.relation.references | West KH, Bystrom JM, Wojnarowicz C, Shantz N, Jacobson M, Allan GM, et al. Myocarditis and abortion associated with intrauterine infection of sows with porcine circovirus 2. J Vet Diagn Invest. 1999 Nov;11(6):530–2 | spa |
dc.relation.references | Mak CK, Yang C, Jeng C-R, Pang VF, Yeh K-S. Reproductive failure associated with coinfection of porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus. Can Vet J. 2018 May;59(5):525–30 | spa |
dc.relation.references | Dias AS, Gerber PF, Araújo AS, Auler PA, Gallinari GC, Lobato ZIP. Lack of antibody protection against Porcine circovirus 2 and Porcine parvovirus in naturally infected dams and their offspring. Res Vet Sci. 2013 Apr;94(2):341–5 | spa |
dc.relation.references | Oliver-Ferrando S, Segalés J, Sibila M, Díaz I. Comparison of cytokine profiles in peripheral blood mononuclear cells between piglets born from Porcine circovirus 2 vaccinated and non-vaccinated sows. Vet Microbiol. 2018 Feb;214:148–53 | spa |
dc.relation.references | Dvorak CMT, Yang Y, Haley C, Sharma N, Murtaugh MP. National reduction in porcine circovirus type 2 prevalence following introduction of vaccination. Vet Microbiol. 2016 Jun 30;189:86–90 | spa |
dc.relation.references | Gerber PF, Garrocho FM, Lana AMQ, Lobato ZIP. Serum antibodies and shedding of infectious porcine circovirus 2 into colostrum and milk of vaccinated and unvaccinated naturally infected sows. Vet J. 2011 May;188(2):240–2 | spa |
dc.relation.references | Madson DM, Patterson AR, Ramamoorthy S, Pal N, Meng XJ, Opriessnig T. Effect of porcine circovirus type 2 (PCV2) vaccination of the dam on PCV2 replication in utero. Clin Vaccine Immunol. 2009 Jun;16(6):830–4 | spa |
dc.relation.references | Franzo G, Segalés J. Porcine circovirus 2 genotypes, immunity and vaccines: multiple genotypes but one single serotype. Pathogens. 2020 Dec 14;9(12) | spa |
dc.relation.references | Saporiti V, Martorell S, Cruz TF, Klaumann F, Correa-Fiz F, Balasch M, et al. Frequency of Detection and Phylogenetic Analysis of Porcine circovirus3 (PCV-3) in Healthy Primiparous and Multiparous Sows and Their Mummified Fetuses and Stillborn. Pathogens. 2020 Jul 2;9(7) | spa |
dc.relation.references | Vargas-Bermúdez DS, Vargas-Pinto MA, Mogollón JD, Jaime J. Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3). BMC Vet Res. 2021 Apr 8;17(1):150. | spa |
dc.relation.references | Klaumann F, Correa-Fiz F, Sibila M, Núñez JI, Segalés J. Infection dynamics of porcine circovirus type 3 in longitudinally sampled pigs from four Spanish farms. Vet Rec. 2019 May 18;184(20):619 | spa |
dc.relation.references | Kedkovid R, Woonwong Y, Arunorat J, Sirisereewan C, Sangpratum N, Lumyai M, et al. Porcine circovirus type 3 (PCV3) infection in grower pigs from a Thai farm suffering from porcine respiratory disease complex (PRDC). Vet Microbiol. 2018 Feb;215:71–6. | spa |
dc.relation.references | Yao L, Li C, Wang J, Cheng Y, Ghonaim AH, Sun Q, et al. Development of an indirect immunofluorescence assay for PCV3 antibody detection based on capsid protein. Animal Diseases. 2021 Dec;1(1):11 | spa |
dc.relation.references | Cobos À, Ruiz A, Pérez M, Llorens A, Huerta E, Correa-Fiz F, et al. Experimental Inoculation of Porcine Circovirus 3 (PCV-3) in Pregnant Gilts Causes PCV-3-Associated Lesions in Newborn Piglets that Persist until Weaning. Transbound Emerg Dis. 2023 Oct 20;2023:1–14 | spa |
dc.relation.references | Sanchez RE, Nauwynck HJ, McNeilly F, Allan GM, Pensaert MB. Porcine circovirus 2 infection in swine foetuses inoculated at different stages of gestation. Vet Microbiol. 2001 Nov 8;83(2):169–76 | spa |
dc.relation.references | Zhai S-L, Zhou X, Zhang H, Hause BM, Lin T, Liu R, et al. Comparative epidemiology of porcine circovirus type 3 in pigs with different clinical presentations. Virol J. 2017 Nov 13;14(1):222 | spa |
dc.relation.references | Vargas-Bermudez DS, Campos FS, Bonil L, Mogollon D, Jaime J. First detection of porcine circovirus type 3 in Colombia and the complete genome sequence demonstrates the circulation of PCV3a1 and PCV3a2. Vet Med Sci. 2019 May;5(2):182–8 | spa |
dc.relation.references | Vargas-Bermudez DS, Mogollón JD, Jaime J. The Prevalence and Genetic Diversity of PCV3 and PCV2 in Colombia and PCV4 Survey during 2015-2016 and 2018-2019. Pathogens. 2022 May 31;11(6). | spa |
dc.relation.references | Vargas-Bermudez DS, Gil-Silva AC, Naranjo-Ortíz MF, Mogollón JD, Gómez-Betancur JF, Estrada JF, et al. Detection of PCV2d in Vaccinated Pigs in Colombia and Prediction of Vaccine T Cell Epitope Coverage against Circulating Strains Using EpiCC Analysis. Vaccines (Basel). 2024 Sep 29;12(10):1119 | spa |
dc.relation.references | Hou C-Y, Zhang L-H, Zhang Y-H, Cui J-T, Zhao L, Zheng L-L, et al. Phylogenetic analysis of porcine circovirus 4 in Henan Province of China: A retrospective study from 2011 to 2021. Transbound Emerg Dis. 2022 Jul;69(4):1890–901. | spa |
dc.relation.references | Nguyen V-G, Do H-Q, Huynh T-M-L, Park Y-H, Park B-K, Chung H-C. Molecular-based detection, genetic characterization and phylogenetic analysis of porcine circovirus 4 from Korean domestic swine farms. Transbound Emerg Dis. 2022 Mar;69(2):538–48 | spa |
dc.relation.references | Tian R-B, Zhao Y, Cui J-T, Zheng H-H, Xu T, Hou C-Y, et al. Molecular detection and phylogenetic analysis of Porcine circovirus 4 in Henan and Shanxi Provinces of China. Transbound Emerg Dis. 2021 Mar;68(2):276–82 | spa |
dc.relation.references | Saporiti V, Valls L, Maldonado J, Perez M, Correa-Fiz F, Segalés J, et al. Porcine Circovirus 3 Detection in Aborted Fetuses and Stillborn Piglets from Swine Reproductive Failure Cases. Viruses. 2021 Feb 9;13(2) | spa |
dc.relation.references | Maldonado J, Segalés J, Martínez-Puig D, Calsamiglia M, Riera P, Domingo M, et al. Identification of viral pathogens in aborted fetuses and stillborn piglets from cases of swine reproductive failure in Spain. Vet J. 2005 May;169(3):454–6 | spa |
dc.relation.references | Noguera M, Vela A, Kraft C, Chevalier M, Goutebroze S, de Paz X, et al. Effects of three commercial vaccines against porcine parvovirus 1 in pregnant gilts. Vaccine. 2021 Jun 29;39(29):3997–4005 | spa |
dc.relation.references | Oravainen J, Hakala M, Rautiainen E, Veijalainen P, Heinonen M, Tast A, et al. Parvovirus antibodies in vaccinated gilts in field conditions--results with HI and ELISA tests. Reprod Domest Anim. 2006 Feb;41(1):91–3 | spa |
dc.relation.references | Gava D, Souza CK, Mores TJ, Argenti LE, Streck AF, Canal CW, et al. Dynamics of vanishing of maternally derived antibodies of Ungulate protoparvovirus 1 suggests an optimal age for gilts vaccination. Trop Anim Health Prod. 2017 Jun;49(5):1085–8 | spa |
dc.relation.references | Damm BI, Friggens NC, Nielsen J, Ingvartsen KL, Pedersen LJ. Factors affecting the transfer of porcine parvovirus antibodies from sow to piglets. J Vet Med A Physiol Pathol Clin Med. 2002 Nov;49(9):487–95 | spa |
dc.relation.references | Zeeuw EJL, Leinecker N, Herwig V, Selbitz HJ, Truyen U. Study of the virulence and cross-neutralization capability of recent porcine parvovirus field isolates and vaccine viruses in experimentally infected pregnant gilts. J Gen Virol. 2007 Feb;88(Pt 2):420–7 | spa |
dc.relation.references | Holtkamp DJ, Polson DD, Torremorell M, Morrison B, Classen DM, Becton L, et al. [Terminology for classifying the porcine reproductive and respiratory syndrome virus (PRRSV) status of swine herds]. Tierarztl Prax Ausg G Grosstiere Nutztiere. 2011;39(2):101–12 | spa |
dc.relation.references | Karniychuk UU, Nauwynck HJ. Pathogenesis and prevention of placental and transplacental porcine reproductive and respiratory syndrome virus infection. Vet Res. 2013 Oct 7;44:95 | spa |
dc.relation.references | Unterweger C, Kreutzmann H, Buenger M, Klingler E, Auer A, Rümenapf T, et al. Litters of Various-Sized Mummies (LVSM) and Stillborns after Porcine Reproductive and Respiratory Syndrome Virus Type 1 Infection-A Case Report. Veterinary Sciences. 2023 Aug 1;10(8 | spa |
dc.relation.references | Olanratmanee E, Wongyanin P, Thanawongnuwech R, Tummaruk P. Prevalence of porcine reproductive and respiratory syndrome virus detection in aborted fetuses, mummified fetuses and stillborn piglets using quantitative polymerase chain reaction. J Vet Med Sci. 2015 Sep;77(9):1071–7 | spa |
dc.relation.references | Alkhamis MA, Perez AM, Murtaugh MP, Wang X, Morrison RB. Applications of bayesian phylodynamic methods in a recent U.S. porcine reproductive and respiratory syndrome virus outbreak. Front Microbiol. 2016 Feb 2;7:67 | spa |
dc.relation.references | Osorio FA, Galeota JA, Nelson E, Brodersen B, Doster A, Wills R, et al. Passive transfer of virus-specific antibodies confers protection against reproductive failure induced by a virulent strain of porcine reproductive and respiratory syndrome virus and establishes sterilizing immunity. Virology. 2002 Oct 10;302(1):9–20 | spa |
dc.relation.references | Garcia‐Camacho LA, Vargas‐Ruiz A. A retrospective study of DNA prevalence of porcine parvoviruses in Mexico and its relationship with porcine circovirus associated disease. Microbiology and …. 2020 | spa |
dc.relation.references | Kim S-C, Kim J-H, Kim J-Y, Park G-S, Jeong C-G, Kim W-I. Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC Vet Res. 2022 Apr 9;18(1):133 | spa |
dc.relation.references | Ellis JA, Bratanich A, Clark EG, Allan G, Meehan B, Haines DM, et al. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome. J Vet Diagn Invest. 2000 Jan;12(1):21–7 | spa |
dc.relation.references | Salogni C, Lazzaro M, Giacomini E, Giovannini S, Zanoni M, Giuliani M, et al. Infectious agents identified in aborted swine fetuses in a high-density breeding area: a three-year study. J Vet Diagn Invest. 2016 Sep;28(5):550–4 | spa |
dc.relation.references | Serena MS, Dibárbora M, Olivera V, Metz GE, Aspitia CG, Pereda A, et al. Evidence of porcine circovirus type 2 and co-infection with ungulate protoparvovirus 1 (porcine parvovirus) in mummies and stillborn piglets in subclinically infected farm. Infect Genet Evol. 2021 Jan 29;89:104735 | spa |
dc.relation.references | Ferrara G, Piscopo N, Pagnini U, Esposito L, Montagnaro S. Detection of selected pathogens in reproductive tissues of wild boars in the Campania region, southern Italy. Acta Vet Scand. 2024 Mar 5;66(1):9 | spa |
dc.relation.references | Pescador CA, Bandarra PM, Castro LA, Antoniassi NAB, Ravazzolo AP, Sonne L, et al. Co-infection by porcine circovirus type 2 and porcine parvovirus in aborted fetuses and stillborn piglets in southern Brazil. Pesq Vet Bras. 2007 Oct;27(10):425–9 | spa |
dc.relation.references | Yue F, Cui S, Zhang C, Yoon K-J. A multiplex PCR for rapid and simultaneous detection of porcine circovirus type 2, porcine parvovirus, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus in clinical specimens. Virus Genes. 2009 Jun;38(3):392–7 | spa |
dc.relation.references | Butler JE, Lager KM, Golde W, Faaberg KS, Sinkora M, Loving C, et al. Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic. Immunol Res. 2014 Aug;59(1–3):81–108 | spa |
dc.relation.references | Meng X-J. Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system. Annu Rev Anim Biosci. 2013 Jan 3;1:43–64 | spa |
dc.relation.references | Poonsuk K, Zimmerman J. Historical and contemporary aspects of maternal immunity in swine. Anim Health Res Rev. 2018 Jun;19(1):31–45 | spa |
dc.relation.references | Figueras-Gourgues S, Fraile L, Segalés J, Hernández-Caravaca I, López-Úbeda R, García-Vázquez FA, et al. Effect of Porcine circovirus 2 (PCV-2) maternally derived antibodies on performance and PCV-2 viremia in vaccinated piglets under field conditions. Porcine Health Manag. 2019 Sep 5;5:21 | spa |
dc.relation.references | Mészáros I, Olasz F, Cságola A, Tijssen P, Zádori Z. Biology of Porcine Parvovirus (Ungulate parvovirus 1). Viruses. 2017 Dec 20;9(12) | spa |
dc.relation.references | Lopez OJ, Oliveira MF, Garcia EA, Kwon BJ, Doster A, Osorio FA. Protection against porcine reproductive and respiratory syndrome virus (PRRSV) infection through passive transfer of PRRSV-neutralizing antibodies is dose dependent. Clin Vaccine Immunol. 2007 Mar;14(3):269–75 | spa |
dc.relation.references | Alarcon P, Rushton J, Wieland B. Cost of post-weaning multi-systemic wasting syndrome and porcine circovirus type-2 subclinical infection in England - an economic disease model. Prev Vet Med. 2013 Jun 1;110(2):88–102 | spa |
dc.relation.references | Neumann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc. 2005 Aug 1;227(3):385–92 | spa |
dc.relation.references | Rossow KD. Porcine reproductive and respiratory syndrome. Vet Pathol. 1998 Jan;35(1):1–20 | spa |
dc.relation.references | Segalés J. Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res. 2012 Mar;164(1–2):10–9. | spa |
dc.relation.references | Mengeling WL, Lager KM, Vorwald AC. The effect of porcine parvovirus and porcine reproductive and respiratory syndrome virus on porcine reproductive performance. Anim Reprod Sci. 2000 Jul 2;60–61:199–210 | spa |
dc.relation.references | Sanchez RE, Nauwynck HJ, McNeilly F, Allan GM, Pensaert MB. Porcine circovirus 2 infection in swine foetuses inoculated at different stages of gestation. Vet Microbiol. 2001 Nov 8;83(2):169–76 | spa |
dc.relation.references | Palinski R, Piñeyro P, Shang P, Yuan F, Guo R, Fang Y, et al. A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. J Virol. 2017 Jan 1;91(1). | spa |
dc.relation.references | Zhai S-L, Zhou X, Zhang H, Hause BM, Lin T, Liu R, et al. Comparative epidemiology of porcine circovirus type 3 in pigs with different clinical presentations. Virol J. 2017 Nov 13;14(1):222 | spa |
dc.relation.references | Saporiti V, Franzo G, Sibila M, Segalés J. Porcine circovirus 3 (PCV-3) as a causal agent of disease in swine and a proposal of PCV-3 associated disease case definition. Transbound Emerg Dis. 2021 Nov;68(6):2936–48. | spa |
dc.relation.references | Saporiti V, Valls L, Maldonado J, Perez M, Correa-Fiz F, Segalés J, et al. Porcine Circovirus 3 Detection in Aborted Fetuses and Stillborn Piglets from Swine Reproductive Failure Cases. Viruses. 2021 Feb 9;13(2). | spa |
dc.relation.references | Vargas-Bermudez DS, Mogollón JD, Jaime J. The Prevalence and Genetic Diversity of PCV3 and PCV2 in Colombia and PCV4 Survey during 2015-2016 and 2018-2019. Pathogens. 2022 May 31;11(6) | spa |
dc.relation.references | Warford A. In situ hybridisation: Technologies and their application to understanding disease. Prog Histochem Cytochem. 2016 Jan;50(4):37–48. | spa |
dc.relation.references | Gall JG, Pardue ML. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA. 1969 Jun;63(2):378–83 | spa |
dc.relation.references | Maes RK, Langohr IM, Wise AG, Smedley RC, Thaiwong T, Kiupel M. Beyond H&E: integration of nucleic acid-based analyses into diagnostic pathology. Vet Pathol. 2014 Jan;51(1):238–56. | spa |
dc.relation.references | Baechlein C, Baron AL, Meyer D, Gorriz-Martin L, Pfankuche VM, Baumgärtner W, et al. Further characterization of bovine hepacivirus: Antibody response, course of infection, and host tropism. Transbound Emerg Dis. 2018 Aug 20; | spa |
dc.relation.references | Cheon DS, Chae C. Distribution of porcine reproductive and respiratory syndrome virus in stillborn and liveborn piglets from experimentally infected sows. J Comp Pathol. 2001 May;124(4):231–7 | spa |
dc.relation.references | Rossow KD, Laube KL, Goyal SM, Collins JE. Fetal microscopic lesions in porcine reproductive and respiratory syndrome virus-induced abortion. Vet Pathol. 1996 Jan;33(1):95–9 | spa |
dc.relation.references | Park JS, Kim J, Ha Y, Jung K, Choi C, Lim JK, et al. Birth abnormalities in pregnant sows infected intranasally with porcine circovirus 2. J Comp Pathol. 2005 Apr;132(2–3):139–44. | spa |
dc.relation.references | Unterweger C, Brunthaler R, Auer A, Fux R, Weissenbacher-Lang C, Ladinig A. Reconsideration of the diagnostic criteria required for PCV2 reproductive disease. Vet J. 2021 Jun;272:105660 | spa |
dc.relation.references | Cobos À, Ruiz A, Pérez M, Llorens A, Huerta E, Correa-Fiz F, et al. Experimental Inoculation of Porcine Circovirus 3 (PCV-3) in Pregnant Gilts Causes PCV-3-Associated Lesions in Newborn Piglets that Persist until Weaning. Transbound Emerg Dis. 2023 Oct 20;2023:1–14 | spa |
dc.relation.references | Sur JH, Cooper VL, Galeota JA, Hesse RA, Doster AR, Osorio FA. In vivo detection of porcine reproductive and respiratory syndrome virus RNA by in situ hybridization at different times postinfection. J Clin Microbiol. 1996 Sep;34(9):2280–6 | spa |
dc.relation.references | Maldonado J, Segalés J, Martínez-Puig D, Calsamiglia M, Riera P, Domingo M, et al. Identification of viral pathogens in aborted fetuses and stillborn piglets from cases of swine reproductive failure in Spain. Vet J. 2005 May;169(3):454–6. | spa |
dc.relation.references | Olanratmanee E, Wongyanin P, Thanawongnuwech R, Tummaruk P. Prevalence of porcine reproductive and respiratory syndrome virus detection in aborted fetuses, mummified fetuses and stillborn piglets using quantitative polymerase chain reaction. J Vet Med Sci. 2015 Sep;77(9):1071–7 | spa |
dc.relation.references | Shin G-E, Lee K-K, Ku B-K, Oh SH, Jang S-H, Kang B, et al. Prevalence of viral agents causing swine reproductive failure in Korea and the development of multiplex real-time PCR and RT-PCR assays. Biologicals. 2024 May;86:101763. | spa |
dc.relation.references | Drigo M, Franzo G, Belfanti I, Martini M, Mondin A, Ceglie L. Validation and comparison of different end point and real time RT-PCR assays for detection and genotyping of porcine reproductive and respiratory syndrome virus. J Virol Methods. 2014 Jun;201:79–85. | spa |
dc.relation.references | Franzo G, Legnardi M, Tucciarone CM, Drigo M, Klaumann F, Sohrmann M, et al. Porcine circovirus type 3: a threat to the pig industry? Vet Rec. 2018 Jan 20;182(3):83 | spa |
dc.relation.references | Olvera A, Sibila M, Calsamiglia M, Segalés J, Domingo M. Comparison of porcine circovirus type 2 load in serum quantified by a real time PCR in postweaning multisystemic wasting syndrome and porcine dermatitis and nephropathy syndrome naturally affected pigs. J Virol Methods. 2004 Apr;117(1):75–80 | spa |
dc.relation.references | Fang Y, Schneider P, Zhang WP, Faaberg KS, Nelson EA, Rowland RRR. Diversity and evolution of a newly emerged North American Type 1 porcine arterivirus: analysis of isolates collected between 1999 and 2004. Arch Virol. 2007 Feb 26;152(5):1009–17 | spa |
dc.relation.references | Szczotka A, Stadejek T, Pejsak Z. A comparison of immunohistochemistry and in situ hybridization for the detection of porcine circovirus type 2 in pigs. Pol J Vet Sci. 2011;14(4):565–71 | spa |
dc.relation.references | Wang F, Flanagan J, Su N, Wang L-C, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012 Jan;14(1):22–9 | spa |
dc.relation.references | Higo S, Ishii H, Ozawa H. Recent Advances in High-sensitivity In Situ Hybridization and Costs and Benefits to Consider When Employing These Methods. Acta Histochem Cytochem. 2023 Jun 27;56(3):49–5 | spa |
dc.relation.references | Tan CY, Lee KC, Chiou M-T, Lin C-N, Ooi PT. Chromogenic in situ hybridization technique for detecting porcine circovirus 3 in lung and lymphoid tissues. Vet World. 2023 Jul 9;16(7):1444–50 | spa |
dc.relation.references | Lin C-M, Jeng C-R, Hsiao S-H, Chang C-C, Liu C-H, Tsai Y-C, et al. Development and evaluation of an indirect in situ polymerase chain reaction for the detection of porcine circovirus type 2 in formalin-fixed and paraffin-embedded tissue specimens. Vet Microbiol. 2009 Sep 18;138(3–4):225–34 | spa |
dc.relation.references | Han K, Seo HW, Park C, Kang I, Youn SK, Lee SY, et al. Comparative virulence of reproductive diseases caused by type 1 (European-like) and type 2 (North American-like) porcine reproductive and respiratory syndrome virus in experimentally infected pregnant gilts. J Comp Pathol. 2014;150(2–3):297–305 | spa |
dc.relation.references | Han K, Seo HW, Oh Y, Kang I, Park C, Ha BC, et al. Pathogenesis of Korean type 1 (European genotype) porcine reproductive and respiratory syndrome virus in experimentally infected pregnant gilts. J Comp Pathol. 2013 May;148(4):396–404 | spa |
dc.relation.references | Benson JE, Yaeger MJ, Christopher-Hennings J, Lager K, Yoon K-J. A comparison of virus isolation, immunohistochemistry, fetal serology, and reverse-transcription polymerase chain reaction assay for the identification of porcine reproductive and respiratory syndrome virus transplacental infection in the fetus. J Vet Diagn Invest. 2002 Jan;14(1):8–14 | spa |
dc.relation.references | West KH, Bystrom JM, Wojnarowicz C, Shantz N, Jacobson M, Allan GM, et al. Myocarditis and abortion associated with intrauterine infection of sows with porcine circovirus 2. J Vet Diagn Invest. 1999 Nov;11(6):530–2. | spa |
dc.relation.references | Sarli G, Morandi F, Panarese S, Bacci B, Ferrara D, Bianco C, et al. Reproduction in porcine circovirus type 2 (PCV2) seropositive gilts inseminated with PCV2b spiked semen. Acta Vet Scand. 2012 Aug 31;54(1):51 | spa |
dc.relation.references | Segalés J, Sibila M. Revisiting porcine circovirus disease diagnostic criteria in the current porcine circovirus 2 epidemiological context. Veterinary Sciences. 2022 Mar 2;9(3) | spa |
dc.relation.references | Deim Z, Dencső L, Erdélyi I, Valappil SK, Varga C, Pósa A, et al. Porcine circovirus type 3 detection in a Hungarian pig farm experiencing reproductive failures. Vet Rec. 2019 Jul 20;185(3):84 | spa |
dc.relation.references | Kaur A, Mahajan V, Leishangthem GD, Singh ND, Bhat P, Banga HS, et al. Epidemiological and immunopathological studies on Porcine parvovirus infection in Punjab. Vet World. 2016 Aug 8;9(8):827–31 | spa |
dc.relation.references | Novakovic P, Harding JCS, Al-Dissi AN, Ladinig A, Detmer SE. Pathologic Evaluation of Type 2 Porcine Reproductive and Respiratory Syndrome Virus Infection at the Maternal-Fetal Interface of Late Gestation Pregnant Gilts. PLoS ONE. 2016 Mar 10;11(3):e0151198. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 590 - Animales::599 - Mamíferos | spa |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.lemb | VIROSIS PORCINA | spa |
dc.subject.lemb | Swine virus diseases | eng |
dc.subject.lemb | MECANIZACION AGRICOLA | spa |
dc.subject.lemb | Farm mechanization | eng |
dc.subject.lemb | CERDOS-FERTILIDAD | spa |
dc.subject.lemb | Swine - fertility | eng |
dc.subject.lemb | CERDOS-REPRODUCCION | spa |
dc.subject.lemb | Swine - reproduction | eng |
dc.subject.lemb | CRIA DE CERDOS | spa |
dc.subject.lemb | Swine - breeding | eng |
dc.subject.proposal | Cerdas de cría | spa |
dc.subject.proposal | Coinfecciones virales | spa |
dc.subject.proposal | Fallo reproductivo porcino (PRF) | spa |
dc.subject.proposal | PCVs | |
dc.subject.proposal | PPVs | |
dc.subject.proposal | PRRSV | |
dc.subject.proposal | Breeding sows | eng |
dc.subject.proposal | Viral coinfections | eng |
dc.subject.proposal | Porcine reproductive failure | eng |
dc.title | Estudio de las coinfecciones virales presentes en el complejo reproductivo porcino (SMEDI) en cerdas de reemplazo en granjas tecnificadas de Cundinamarca y otras regiones de Colombia | spa |
dc.title.translated | Study of viral coinfections in the Porcine Reproductive Complex (SMEDI) in replacement gilts from industrialized swine farms in Cundinamarca and other regions of Colombia | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | DataPaper | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 52710662-2025.pdf
- Tamaño:
- 5.19 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Biotecnología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: