Síntesis y evaluación de la actividad fotocatalítica de semiconductores de Zn1-xMxO (M = Cu y Ni, x = 0,01 - 0,20) en la generación de H2
dc.contributor.advisor | Moreno Aldana, Luis Carlos | spa |
dc.contributor.advisor | Parra Vargas, Carlos Arturo | spa |
dc.contributor.author | Morales Rivera, Angela Maria | spa |
dc.contributor.cvlac | Morales Rivera, Angela Maria [0001542185] | spa |
dc.contributor.googlescholar | Morales Rivera, Angela Maria [Angela Maria Morales Rivera] | spa |
dc.contributor.orcid | Morales Rivera, Angela Maria [0000-0003-0300-5280] | spa |
dc.contributor.researchgroup | laboratorio de Investigación en Combustibles y Energía | spa |
dc.contributor.researchgroup | Grupo Física de Materiales – GFM (Uptc) | spa |
dc.contributor.scopus | Morales Rivera, Angela Maria [57057749800] | spa |
dc.date.accessioned | 2025-07-17T00:23:13Z | |
dc.date.available | 2025-07-17T00:23:13Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | El ZnO es uno de los semiconductores más utilizados en la generación fotocatalítica de H2; sin embargo, presenta recombinación de pares e-/h+ y absorción en el UV. Por lo tanto, en esta investigación se planteó la síntesis y evaluación fotocatalítica de Zn1-xMxO (M = Ni o Cu y x = 0.01- 0.20) recubiertos con Pt, mezclados con granate Y3Al4.95Er0.05O12 (Er3+:YAG) y empleando metanol como agente de sacrificio, con el fin de mejorar las falencias del ZnO. Los materiales se sintetizaron por el método sol-gel y se caracterizaron por DRX, SEM-EDX, Raman, UV-Vis-DRS, adsorción-desorción de N2, EPR, magnetización y espectroscopía de fotoluminiscencia. Inicialmente, se determinó que 700 °C y 2 h son las condiciones de calcinación que mejoran la actividad del ZnO, por lo que se emplearon para preparar muestras con fórmula CuO/Zn0.99Cu0.01O y NiO/Zn0.99Ni0.01O. Se evidenció que no tuvo lugar la sustitución con Cu2+ o Ni2+ cuando x es superior a 0.01 y que el valor de x fue proporcional al contenido en porcentaje de las fases de CuO y NiO para x ≥ 0.05. No obstante, la formación de la heterounión p-n aumentó la producción de H2 de 676 µmol g-1h-1 del ZnO hasta 871 µmol g-1h-1. Por otro lado, se obtuvieron los materiales Er3+:YAG/Pt/CuO/Zn0.99Cu0.01O y Er3+:YAG/Pt/NiO/Zn0.99Ni0.01O, mediante recubrimiento con un 2.0% de Pt y la adición de Er3+:YAG en relación de masa 1.0:0.3 de Pt/ZnO:granate, que en conjunto con 10% v/v de metanol alcanzó una generación de H2 de 1932 µmol g-1h-1 y de 2324 µmol g-1h-1, respectivamente. Los hallazgos contribuyen significativamente a solventar las falencias del ZnO, ya que se incrementó la actividad en la región del visible y se redujo la recombinación de los pares e-/h+. (Texto tomado de la fuente). | spa |
dc.description.abstract | ZnO is one of the most widely used semiconductors in photocatalytic H2 generation; however, it presents e⁻/h⁺ pair recombination and absorption in the UV range. Therefore, this research focused on the synthesis and photocatalytic evaluation of Zn1-xMxO (M = Ni or Cu, and x = 0.01-0.20), coated with Pt, mixed with the Y3Al4.95Er0.05O12 garnet (Er³⁺:YAG), and using methanol as a sacrificial agent to improve the ZnO shortcomings. The materials were synthesized using the sol-gel method and characterized through XRD, SEM-EDX, Raman spectroscopy, UV-Vis-DRS, N2 adsorption-desorption, EPR, magnetization, and photoluminescence spectroscopy. Initially, it was determined that 700 °C and 2 h are the calcination conditions that improve the activity of ZnO, so they were used to prepare samples with formula CuO/Zn0.99Cu0.01O and NiO/Zn0.99Ni0.01O. It was observed that substitution with Cu2+ and Ni2+ does not occur when x exceeds 0.01, and that the x value was proportional to the percentage content of CuO and NiO phases for x ≥ 0.05. Nevertheless, the formation of the p-n heterojunction increased H2 production from 676 µmol g⁻¹h⁻¹ for ZnO to 871 µmol g⁻¹h⁻¹. On the other hand, Er3+:YAG/Pt/CuO/Zn0.99Cu0.01O and Er3+:YAG/Pt/NiO/Zn0.99Ni0.01O materials were obtained by coating with 2.0% platinum and adding Er3+:YAG in a mass ratio of 1.0:0.3 of Pt/ZnO:garnet, along with 10% v/v methanol reached an H2 generation of 1932 µmol g-1h-1 and 2324 µmol g-1h-1, respectively. The findings contribute significantly to resolving the ZnO shortcomings, since improved activity in the visible range was enhanced, and the recombination of e-/h+ pairs was reduced. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencias - Química | spa |
dc.description.researcharea | Nuevos materiales y procesos | spa |
dc.format.extent | xviii, 188 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88352 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento Química | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Química | spa |
dc.relation.references | [0-1] E.Dupont, R. Koppelaar, H. Jeanmart. Global available solar energy under physical and energy return on investment constraints. Applied Energy, 257 (2020), 113968. doi:10.1016/j.apenergy.2019.113968. | spa |
dc.relation.references | [0-2] K. Ahmad, H.R. Ghatak, S.M. Ahuja, A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: A sustainable approach, Environmental Technology & Innovation. 19 (2020) 100893. doi:10.1016/j.eti.2020.100893. | spa |
dc.relation.references | [0-3] Z. Ziobrowski, A. Rotkegel. Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage and Utilization. Energies, 17(8).(2024).1808.doi: 10.3390/en17081808. | spa |
dc.relation.references | [0-4] T. da Silva Veras, T.S. Mozer, D. da Costa Rubim Messeder dos Santos, A. da Silva César, Hydrogen: Trends, production and characterization of the main process worldwide, International Journal of Hydrogen Energy. 42 (2017) 2018–2033. doi:10.1016/j.ijhydene.2016.08.219. | spa |
dc.relation.references | [0-5] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535. doi:10.1039/c3cs60378d. | spa |
dc.relation.references | [0-6] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature. 238 (1972) 37–38. doi:10.1038/238037a0. | spa |
dc.relation.references | [0-7] N.R. Khalid, M. Rizwan Kamal, M.B. Tahir, M. Rafique, N.A. Niaz, Y. Ali, et al., Fabrication of direct Z-scheme MoO3/N–MoS2 photocatalyst for synergistically enhanced H2 production, International Journal of Hydrogen Energy. 46 (2021) 39822–39829. doi:10.1016/j.ijhydene.2021.09.230. | spa |
dc.relation.references | [0-8] M.I. Dagareh, H.Y. Hafeez, J. Mohammed, A.D. Kafadi, A.B. Suleiman, C.E. Ndikilar, Current trends and future perspectives on ZnO-based materials for robust and stable solar fuel (H2) generation, Chemical Physics Impact. 9 (2024) 100774. doi:10.1016/j.chphi.2024.100774. | spa |
dc.relation.references | [0-9] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, Mu. Naushad, ZnO-based heterostructures as photocatalysts for hydrogen generation and Depollution: A Review, Environmental Chemistry Letters. 20 (2022) 1047–1081. doi:10.1007/s10311-021-01361-1. | spa |
dc.relation.references | [0-10] I. Ahmad, S. Shukrullah, M.Y. Naz, H.N. Bhatti, N.R. Khalid, S. Ullah, Rational design of ZnO–CuO–Au S-scheme heterojunctions for photocatalytic hydrogen production under Visible light, International Journal of Hydrogen Energy. 48 (2023) 12683–12698. doi:10.1016/j.ijhydene.2022.11.289. | spa |
dc.relation.references | [0-11] D. Kong, X. Ruan, J. Geng, Y. Zhao, D. Zhang, X. Pu, et al., 0D/3D ZnIn2S4/Ag6Si2O7 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 Evolution under visible light, International Journal of Hydrogen Energy. 46 (2021) 28043–28052. doi:10.1016/j.ijhydene.2021.06.053. | spa |
dc.relation.references | [0-12] M.C. Uribe-López, M.C. Hidalgo-López, R. López-González, D.M. Frías-Márquez, G. Núñez-Nogueira, D. Hernández-Castillo, et al., Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties, Journal of Photochemistry and Photobiology A: Chemistry. 404 (2021) 112866. doi:10.1016/j.jphotochem.2020.112866. | spa |
dc.relation.references | [0-13] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, et al., Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Applied Materials & Interfaces. 4 (2012) 4024–4030. doi:10.1021/am300835p. | spa |
dc.relation.references | [0-14] Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies, Chemical Reviews. 120 (2019) 919–985. doi:10.1021/acs.chemrev.9b00201. | spa |
dc.relation.references | [0-15] P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu, International Journal of Hydrogen Energy. 38 (2013) 11840–11846. doi:10.1016/j.ijhydene.2013.06.131. | spa |
dc.relation.references | [0-16] Y. Zhu, Y. Zhou, Preparation of pure ZnO nanoparticles by a simple solid-state reaction method, Applied Physics A. 92 (2008) 275–278. doi:10.1007/s00339-008-4533-z. | spa |
dc.relation.references | [0-17] K.B. Baharudin, N. Abdullah, D. Derawi, Effect of calcination temperature on the physicochemical properties of zinc oxide nanoparticles synthesized by coprecipitation, Materials Research Express. 5 (2018) 125018. doi:10.1088/2053-1591/aae243. | spa |
dc.relation.references | [0-18] M. Anvarinezhad, A. Javadi, H. Jafarizadeh-Malmiri, Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles – hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process, Green Processing and Synthesis. 9 (2020) 375–385. doi:10.1515/gps-2020-0040. | spa |
dc.relation.references | [0-19] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chemistry. 19 (2016) 211–216. doi:10.1016/j.proche.2016.03.095. | spa |
dc.relation.references | [0-20] M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Synthesis of ZnO nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles, Applied Surface Science. 256 (2009) 298–304. doi:10.1016/j.apsusc.2009.08.019. | spa |
dc.relation.references | [0-21] P. Singh, A. Kumar, Deepak, D. Kaur, ZnO nanocrystalline powder synthesized by ultrasonic mist-chemical vapour deposition, Optical Materials. 30 (2008) 1316–1322. doi:10.1016/ j.optmat.2007.06.012. | spa |
dc.relation.references | [0-22] J.F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valadés-Pelayo, H. de Lasa, Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt, Applied Catalysis B: Environmental. 211 (2017) 337–348. doi:10.1016/j.apcatb.2017.04.029. | spa |
dc.relation.references | [0-23] Y.G. Kim, W.-K. Jo, Photodeposited-metal/ CdS/ZnO heterostructures for solar photocatalytic hydrogen production under different conditions, International Journal of Hydrogen Energy. 42 (2017) 11356–11363. doi:10.1016/j.ijhydene.2017.02.176. | spa |
dc.relation.references | [0-24] M.-Y. Xie, K.-Y. Su, X.-Y. Peng, R.-J. Wu, M. Chavali, W.-C. Chang, Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2–ZnO under Visible light, Journal of the Taiwan Institute of Chemical Engineers. 70 (2017) 161–167. doi:10.1016/j.jtice.2016.10.034. | spa |
dc.relation.references | [0-25] H. Yang, Z. Dai, Z. Sun, Upconversion luminescence and kinetics in Er3+:YAlO3 under 652.2 nm excitation, Journal of Luminescence. 124 (2007) 207–212. doi:10.1016/j.jlumin.2006.02.021. | spa |
dc.relation.references | [0-26] Chaika, M., Tomala, R., Vovk, O., Nizhankovskyi, S., Mancardi, G., & Strek, W. Upconversion luminescence in Cr3+: YAG single crystal under infrared excitation. Journal of Luminescence, 226 (2020), 117467. 10.1016/j.jlumin.2020.117467. | spa |
dc.relation.references | [0-27] Y. Li, Y. Guo, S. Li, Y. Li, J. Wang, Efficient visible-light photocatalytic hydrogen evolution over platinum supported titanium dioxide nanocomposites coating up-conversion luminescence agent (Er3+:Y3Al5O12/Pt–TiO2). International Journal of Hydrogen Energy. 40 (2015) 2132–2140. doi:10.1016/j.ijhydene.2014.12.023. | spa |
dc.relation.references | [0-28] D. Wang, X. Wang, J. Liu, M. Zhang, Y. Song, Z. Zhang, et al., Preparation of high proportion of Z-scheme Er3+:Y3Al5O12@Nb2O5/Pt/In2O3 composite for enhanced visible-light driven photocatalytic hydrogen production, Materials Science and Engineering: B. 257 (2020) 114549. doi:10.1016/j.mseb.2020.114549. | spa |
dc.relation.references | [0-29] L.N. Yin, Y. Li, J. Wang, Y.M. Kong, Y. Zhai, B.X. Wang, et al., The improvement of solar photocatalytic activity of ZnO by doping with Er3+:Y3Al5O12 during Dye degradation, Russian Journal of Physical Chemistry A. 86 (2012) 2049–2056. doi:10.1134/s0036024412130262. | spa |
dc.relation.references | [0-30] L. Yin, Y. Li, J. Wang, Y. Zhai, J. Wang, Y. Kong, et al., Preparation of Er3+:Y3Al5O12 /TiO2‐ZnO composite and application of solar energy in photocatalytic degradation of organic dyes, Environmental Progress & Sustainable Energy. 32 (2012) 697–704. doi:10.1002/ep.11688. | spa |
dc.relation.references | [0-31] B. Ghanbari Shohany, A. Khorsand Zak, Doped ZnO nanostructures with selected elements - structural, morphology and optical properties: A Review, Ceramics International. 46 (2020) 5507–5520. doi:10.1016/j.ceramint.2019.11.051. | spa |
dc.relation.references | [0-32] M.F. Manzoor, E. Ahmed, M. Ahmad, I. Ahmad, A.M. Rana, A. Ali, et al., Enhanced photocatalytic activity of hydrogen evolution through Cu incorporated ZnO nano composites, Materials Science in Semiconductor Processing. 120 (2020) 105278. doi:10.1016/j.mssp.2020.105278. | spa |
dc.relation.references | [0-33] A.M. Huerta-Flores, E. Luévano-Hipólito, L.M. Torres-Martínez, A. Torres-Sánchez, Photocatalytic H2 production and CO2 reduction on Cu, Ni-doped ZnO: Effect of metal doping and oxygen vacancies, Journal of Materials Science: Materials in Electronics. 30 (2019) 18506–18518. doi:10.1007/s10854-019-02204-0. | spa |
dc.relation.references | [1-1] B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnology Research and Innovation. 3 (2019) 275–290. doi:10.1016/j.biori.201 9.09.001. | spa |
dc.relation.references | [1-2] D.I. Anwar, D. Mulyadi, Synthesis of Fe-TiO2 composite as a photocatalyst for degradation of methylene blue, Procedia Chemistry. 17 (2015) 49–54. doi:10.1016/j.proche.2015.12.131. | spa |
dc.relation.references | [1-3] R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles, Optik. 127 (2016) 7143–7154. doi:10.1016/j.ijleo.2016.04.026. | spa |
dc.relation.references | [1-4] A. Fujii, Z. Meng, C. Yogi, T. Hashishin, T. Sanada, K. Kojima, Preparation of Pt-loaded WO3 with different types of morphology and photocatalytic degradation of methylene blue, Surface and Coatings Technology. 271 (2015) 251–258. doi:10.1016/j.surfcoat.2014.11.070. | spa |
dc.relation.references | [1-5] K. Dewangan, D. Singh, N. Satpute, R. Singh, A. Jaiswal, K. Shrivas, et al., Hydrothermally grown α-MoO3 microfibers for photocatalytic degradation of methylene blue dye, Journal of Molecular Liquids. 349 (2022) 118202. doi:10.1016/j.molliq.2021.118202. | spa |
dc.relation.references | [1-6] J. Ambigadevi, P. Senthil Kumar, D.-V.N. Vo, S. Hari Haran, T.N. Srinivasa Raghavan, Recent developments in photocatalytic remediation of textile effluent using semiconductor based nanostructured catalyst: A Review, Journal of Environmental Chemical Engineering. 9 (2021) 104881. doi:10.1016/j.jece.2020.104881. | spa |
dc.relation.references | [1-7] M.A. Franco, P.P. Conti, R.S. Andre, D.S. Correa, A review on chemiresistive ZnO gas sensors, Sensors and Actuators Reports. 4 (2022) 100100. doi:10.1016/j.snr.2022.100100. | spa |
dc.relation.references | [1-8] S.M. Mustafa, A.A. Barzinjy, A.H. Hamad, An environmentally friendly green synthesis of Co2+ and Mn2+ ion doped ZnO nanoparticles to improve solar cell efficiency, Journal of Environmental Chemical Engineering. 11 (2023) 109514. doi:10.1016/j.jece.2023.109514. | spa |
dc.relation.references | [1-9] T. Bi, Z. Du, S. Chen, H. He, X. Shen, Y. Fu, Preparation of flower-like ZnO photocatalyst with oxygen vacancy to enhance the photocatalytic degradation of methyl orange, Applied Surface Science. 614 (2023) 156240. doi:10.1016/j.apsusc.2022.156240. | spa |
dc.relation.references | [1-10] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, M. Naushad, ZnO-based heterostructures as photocatalysts for hydrogen generation and Depollution: A Review, Environmental Chemistry Letters. 20 (2022) 1047–1081. doi:10.1007/s10311-021-01361-1. | spa |
dc.relation.references | [1-11] M.M. Khan, J. Lee, M.H. Cho, Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect, Journal of Industrial and Engineering Chemistry. 20 (2014) 1584–1590. doi:10.1016/j.jiec.2013.08.002. | spa |
dc.relation.references | [1-12] S. Senapati, S.K. Srivastava, S.B. Singh, Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure, Nanoscale. 4 (2012) 6604. doi:10.1039/c2nr31831h. | spa |
dc.relation.references | [1-13] Ebrahimi, M. Samadi, S. Yousefzadeh, M. Soltani, A. Rahimi, T. Chou, et al., Improved solar-driven photocatalytic activity of hybrid graphene quantum dots/zno nanowires: A direct z-scheme mechanism, ACS Sustainable Chemistry & Engineering. 5 (2016) 367–375. doi:10.1021/acssuschemeng.6b01738. | spa |
dc.relation.references | [1-14] Z. Zhang, H. Liu, H. Zhang, H. Dong, X. Liu, H. Jia, et al., Synthesis of spindle-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance, Superlattices and Microstructures. 65 (2014) 134–145. doi:10.1016/j.spmi.2013.10.045. | spa |
dc.relation.references | [1-15] Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, et al., Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance, Chemical Engineering Journal. 379 (2020) 122295. doi:10.1016/j.cej.2019.122295. | spa |
dc.relation.references | [1-16] M.C. Uribe-López, M.C. Hidalgo-López, R. López-González, D.M. Frías-Márquez, G. Núñez-Nogueira, D. Hernández-Castillo, et al., Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties, Journal of Photochemistry and Photobiology A: Chemistry. 404 (2021) 112866. doi:10.1016/j.jphotochem.2020.112866. | spa |
dc.relation.references | [1-17] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, et al., Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Applied Materials & Interfaces. 4 (2012) 4024–4030. doi:10.1021/am300835p. | spa |
dc.relation.references | [1-18] Y. Zhu, Y. Zhou, Preparation of pure ZnO nanoparticles by a simple solid-state reaction method, Applied Physics A. 92 (2008) 275–278. doi:10.1007/s00339-008-4533-z. | spa |
dc.relation.references | [1-19] K.B. Baharudin, N. Abdullah, D. Derawi, Effect of calcination temperature on the physicochemical properties of zinc oxide nanoparticles synthesized by coprecipitation, Materials Research Express. 5 (2018) 125018. doi:10.1088/2053-1591/aae243. | spa |
dc.relation.references | [1-20] M. Anvarinezhad, A. Javadi, H. Jafarizadeh-Malmiri, Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles – hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process, Green Processing and Synthesis. 9 (2020) 375–385. doi:10.1515/gps-2020-0040. | spa |
dc.relation.references | [1-21] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chemistry. 19 (2016) 211–216. doi:10.1016/j.proche.2016.03.095. | spa |
dc.relation.references | [1-22] K. Irshad, M.T. Khan, A. Murtaza, Synthesis and characterization of transition-metals-doped ZnO nanoparticles by sol-gel auto-combustion method, Physica B: Condensed Matter. 543 (2018) 1–6. doi:10.1016/j.physb.2018.05.006. | spa |
dc.relation.references | [1-23] M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Synthesis of ZnO nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles, Applied Surface Science. 256 (2009) 298–304. doi:10.1016/j.apsusc.2009.08.019. | spa |
dc.relation.references | [1-24] P. Singh, A. Kumar, Deepak, D. Kaur, ZnO nanocrystalline powder synthesized by ultrasonic mist-chemical vapour deposition, Optical Materials. 30 (2008) 1316–1322. doi:10.1016/ j.optmat.2007.06.012. | spa |
dc.relation.references | [1-25] M.R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles, Journal of Materials Research and Technology. 3 (2014) 363–369. doi:10.1016/j.jmrt.2014.07.001. | spa |
dc.relation.references | [1-26] R. Meza-Gordillo, J. J. Villalobos-Maldonado, J. F. Pola-Albores, S. Enciso-Sáenz. Effect of titanium’s dioxide particle size immobilized on the photocatalytic oxidation of purple of bromocresol. Revista internacional de contaminación ambiental, 37. (2021). 10.20937/RICA.54008. | spa |
dc.relation.references | [1-27] Długosz, O., & Banach, M. Continuous synthesis of photocatalytic nanoparticles of pure ZnO and ZnO modified with metal nanoparticles. Journal of Nanostructure in Chemistry, (2021) 1-17. doi:10.1007/s40097-021-00387-9. | spa |
dc.relation.references | [1-28] J. Lv, Q. Hu, C. Cao, Y. Zhao. Modulation of valence band maximum edge and photocatalytic activity of BiOX by incorporation of halides. Chemosphere, (2018). 191, 427-437.doi: 10.1016/j.chemosphere.2017.09.149. | spa |
dc.relation.references | [1-29] P. de Azevedo Basto, V. Estolano de Lima, A.A. de Melo Neto, Effect of curing temperature in the relative decrease peak intensity of calcium hydroxide pastes for assessing pozzolanicity of supplementary cementitious materials, Construction and Building Materials. 325 (2022) 126767. doi:10.1016/j.conbuildmat.2022.126767. | spa |
dc.relation.references | [1-30] A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Solid State Sciences. 13 (2011) 251–256. doi:10.1016/j.solidstatesciences.2010.11.024. | spa |
dc.relation.references | [1-31] R. Sivakami, S. Dhanuskodi, R. Karvembu, Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 152 (2016) 43–50. doi:10.1016/j.saa.2015.07.008. | spa |
dc.relation.references | [1-32] V. Mote, Y. Purushotham, B. Dole, Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics. 6 (2012). doi:10.1186/2251-7235-6-6. | spa |
dc.relation.references | [1-33] K. Momma, F. Izumi, Vesta: A three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography. 41 (2008) 653–658. doi:10.1107/s0021889808012016. | spa |
dc.relation.references | [1-34] M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method, Superlattices and Microstructures. 85 (2015) 7–23. doi:10.1016/j.spmi.2015.05.007. | spa |
dc.relation.references | [1-35] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, et al., A comprehensive review of ZnO materials and Devices, Journal of Applied Physics. 98 (2005) 041301. doi:10.1063/1.1992666. | spa |
dc.relation.references | [1-36] R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing, Journal of Science: Advanced Materials and Devices. 2 (2017) 51–58. doi:10.1016/j.jsamd.2017.02.002. | spa |
dc.relation.references | [1-37] A.M. Morales Rivera, J.E.R. López, J. Munevar, E.B. Saitovitch, L.C.M. Aldana, C.A.P. Vargas, Synthesis and characterization of the structural and magnetic properties of the Sm3-xGdxFe5O12 (x = 0.0 –1.0) garnets using solid-state reaction and citrate methods, Journal of Alloys and Compounds. 859 (2021) 157883. doi:10.1016/j.jallcom.2020.157883. | spa |
dc.relation.references | [1-38] A.M. Ismail, A.A. Menazea, H.A. Kabary, A.E. El-Sherbiny, A. Samy, The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by sol–gel method, Journal of Molecular Structure. 1196 (2019) 332–337. doi:10.1016/j.molstruc.2019.06.084. | spa |
dc.relation.references | [1-39] S. Estrada, M. Martínez-Luévanos, A. Perez-Berumen, C. M., García-Cerda. Relationship between morphology, porosity, and the photocatalytic activity of TiO2 obtained by sol–gel method assisted with ionic and nonionic surfactants. boletín de la sociedad española de cerámica y vidrio, (2020). 59(5), 209-218. doi: 10.1016/j.bsecv.2019.10.003. | spa |
dc.relation.references | [1-40] V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, A. Li Bassi, Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide, Journal of Applied Physics. 115 (2014) 073508. doi:10.1063/1.4866322. | spa |
dc.relation.references | [1-41] J.J. Beltrán, C.A. Barrero, A. Punnoose, Relationship between ferromagnetism and formation of carbon bonds in carbon doped ZnO powders, Physical Chemistry Chemical Physics. 21 (2019) 8808–8819. doi:10.1039/c9cp01277j. | spa |
dc.relation.references | [1-42] H. Fukushima, H. Uchida, H. Funakubo, T. Katoda, K. Nishida. Evaluation of oxygen vacancies in ZnO single crystals and powders by micro-Raman spectroscopy. Journal of the Ceramic Society of Japan, 125(6), (2017). 445-448.doi. 10.2109/jcersj2.16262. | spa |
dc.relation.references | [1-43] C. Charpentier, P. Prod’homme, I. Maurin, M. Chaigneau, P. Roca. Cabarrocas, X-ray diffraction and Raman spectroscopy for a better understanding of ZnO:Al growth process, EPJ Photovoltaics. 2 (2011) 25002. doi:10.1051/epjpv/2011026. | spa |
dc.relation.references | [1-44] M. Acosta-Humánez, L. Montes-Vides, O. Almanza-Montero. Sol-gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. Dyna, 83(195), (2016). 224-228.doi: 10.15446/dyna.v83n195.50833. | spa |
dc.relation.references | [1-45] G. Swati, M. Morampudi, Size-selective and facile synthesis of ZnO/ZnS core–shell nanostructure and its characterization, Applied Physics A. 127 (2021). doi:10.1007/s00339-021-04554-1. | spa |
dc.relation.references | [1-46] A.M. Huerta-Flores, E. Luévano-Hipólito, L.M. Torres-Martínez, A. Torres-Sánchez, Photocatalytic H2 production and CO2 reduction on Cu, Ni-doped ZnO: Effect of metal doping and oxygen vacancies, Journal of Materials Science: Materials in Electronics. 30 (2019) 18506–18518. doi:10.1007/s10854-019-02204-0. | spa |
dc.relation.references | [1-47] X. Bi, G. Du, A. Kalam, D. Sun, Y. Yu, Q. Su, et al., Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance, Chemical Engineering Science. 234 (2021) 116440. doi:10.1016/j.ces.2021.116440. | spa |
dc.relation.references | [1-48] Dhupar, A., Kumar, S., Sharma, V., & Sharma, J. K. Mixed structure Zn (S, O) nanoparticles: synthesis and characterization. Materials Science Poland, 37(2) (2019), 230-237. doi:10.2478/msp-2019-0024. | spa |
dc.relation.references | [1-49] M.R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles, Journal of Materials Research and Technology. 3 (2014) 363–369. doi:10.1016/j.jmrt.2014.07.001. | spa |
dc.relation.references | [1-50] M.Y. Guo, A.M. Ng, F. Liu, A.B. Djurišić, W.K. Chan, H. Su, et al., Effect of native defects on photocatalytic properties of ZnO, The Journal of Physical Chemistry C. 115 (2011) 11095–11101. doi:10.1021/jp200926u. | spa |
dc.relation.references | [1-51] T.P. Yendrapati, A. Gautam, S. Bojja, U. Pal, Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation, Solar Energy. 196 (2020) 540–548. doi:10.1016/j.solener.2019.12.054. | spa |
dc.relation.references | [1-52] I. Khan, K. Saeed, I. Zekker, B. Zhang, A. H. Hendi, A. Ahmad, I. Khan. Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water, 14(2), (2022). 242. doi: 10.3390/w14020242. | spa |
dc.relation.references | [1-53] A. Senthilraja, M. Durai, S. Mohanty, S. Kumaravel, R. Medidi,G. Periyasami, M. Shanthi. The influence of operational factors on the photocatalytic degradation of methylene blue dye in aqueous Sr-Au-ZnO suspensions under UV-A light. Journal of Molecular Structure, 1321, (2025), 139993. doi: 10.1016/j.molstruc.2024.139993. | spa |
dc.relation.references | [1-54] K.Gupta, B. Sharma, V. Garg, P. Neelratan, V. Kumar, D. Kumar, S. K. Sharma. Enhanced photocatalytic degradation of methylene blue and methyl orange using biogenic ZnO NPs synthesized via Vachellia nilotica (Babool) leaves extract. Hybrid Advances, (2024) 100160. doi:10.1016/j.hybadv.2024.100160. | spa |
dc.relation.references | [1-55] C.A.Soto-Robles, P. A., Luque, C.M. Gómez-Gutiérrez, O. Nava, A.R. Vilchis-Nestor, E. Lugo-Medina. Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results in Physics, (2019) 15, 102807. doi:10.1016/j.rinp.2019.10280. | spa |
dc.relation.references | [1-56] M. Azarang, A. Shuhaimi, R. Yousefi, S.P. Jahromi. One-pot sol–gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of Methylene Blue. RSC Advances, 5(28), (2015) 21888-21896. doi:10.1039/C4RA16767H. | spa |
dc.relation.references | [1-57] H. Sadiq, F. Sher, S. Sehar, E. Lima, S. Zhang, M. Iqbal. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. Journal of Molecular Liquids, (2021) 335, 116567. doi:10.1016/j.molliq.2021.116567. | spa |
dc.relation.references | [1-58] Y. Feng, N. Feng, Y. Wei, G. Zhang. An in situ gelatin-assisted hydrothermal synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC advances, 4(16), (2014), 7933-794. doi:10.1039/C3RA46417B. | spa |
dc.relation.references | [1-59] Y. Ibrahim, A.H. Abdullah, S. Abdul Rashid, E.N. Muhamad, Synthesis, physicochemical characterization of ZnO and α-MoO3/ZnO heterostructures and their photocatalytic activity for the methylene blue (MB) dye degradation, Optical Materials. 136 (2023) 113371. doi:10.1016/j.optmat.2022.113371. | spa |
dc.relation.references | [1-60] S.N. Bukhari, A.A. Shah, M.A. Bhatti, A. Tahira, I.A. Channa, A.K. Shah, et al., Psyllium-husk-assisted synthesis of ZnO microstructures with improved photocatalytic properties for the degradation of methylene blue (MB), Nanomaterials. 12 (2022) 3568. doi:10.3390/nano12203568. | spa |
dc.relation.references | [1-61] P. Maijan, T. Waen-ngoen, S. Suwanboon, S. Chantarak, S.P. Voravuthikunchai. Sustainable environmental-based synthesis of zinc oxide nanoparticles using para rubber leaf extract for photocatalytic degradation of organic pollutants and microbial control in wastewater treatment. Inorganic Chemistry Communications, (2024). 162, 112086. doi: 10.1016/j.inoche.2024.112086. | spa |
dc.relation.references | [2-1] S.H. Mohr, J. Wang, G. Ellem, J. Ward, D. Giurco, Projection of world fossil fuels by country, Fuel. 141 (2015) 120–135. doi:10.1016/j.fuel.2014.10.030. | spa |
dc.relation.references | [2-2] B. Zhang, S.-X. Zhang, R. Yao, Y.-H. Wu, J.-S. Qiu, Progress and prospects of hydrogen production: Opportunities and challenges, Journal of Electronic Science and Technology. 19 (2021) 100080. doi:10.1016/j.jnlest.2021.100080. | spa |
dc.relation.references | [2-3] T. da Silva Veras, T.S. Mozer, D. da Costa Rubim Messeder dos Santos, A. da Silva César, Hydrogen: Trends, production and characterization of the main process worldwide, International Journal of Hydrogen Energy. 42 (2017) 2018–2033. doi:10.1016/j.ijhydene.2016.08.219. | spa |
dc.relation.references | [2-4] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535. doi:10.1039/c3cs60378d. | spa |
dc.relation.references | [2-5] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature. 238 (1972) 37–38. doi:10.1038/238037a0. | spa |
dc.relation.references | [2-6] N.R. Khalid, M. Rizwan Kamal, M.B. Tahir, M. Rafique, N.A. Niaz, Y. Ali, et al., Fabrication of direct Z-scheme MoO3/N–MoS2 photocatalyst for synergistically enhanced H2 production, International Journal of Hydrogen Energy. 46 (2021) 39822–39829. doi:10.1016/j.ijhydene.2021.09.230. | spa |
dc.relation.references | [2-7] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, Mu. Naushad, Zno-based heterostructures as photocatalysts for hydrogen generation and Depollution: A Review, Environmental Chemistry Letters. 20 (2022) 1047–1081. doi:10.1007/s10311-021-01361-1. | spa |
dc.relation.references | [2-8] I. Ahmad, S. Shukrullah, M.Y. Naz, H.N. Bhatti, N.R. Khalid, S. Ullah, Rational design of ZnO–CuO–Au S-scheme heterojunctions for photocatalytic hydrogen production under Visible light, International Journal of Hydrogen Energy. 48 (2023) 12683–12698. doi:10.1016/j.ijhydene.2022.11.289. | spa |
dc.relation.references | [2-9] D. Kong, X. Ruan, J. Geng, Y. Zhao, D. Zhang, X. Pu, et al., 0D/3D ZnIn2S4/Ag6Si2O7 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 Evolution under visible light, International Journal of Hydrogen Energy. 46 (2021) 28043–28052. doi:10.1016/j.ijhydene.2021.06.053. | spa |
dc.relation.references | [2-10] T. Jafari, E. Moharreri, A. Amin, R. Miao, W. Song, S. Suib, Photocatalytic water splitting—The untamed dream: A review of recent advances, Molecules. 21 (2016) 900. doi:10.3390/molecules21070900. | spa |
dc.relation.references | [2-11] X. Sun, H. Huang, Q. Zhao, T. Ma, L. Wang, Thin‐layered photocatalysts, Advanced Functional Materials. 30 (2020). doi:10.1002/adfm.201910005. | spa |
dc.relation.references | [2-12] Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies, Chemical Reviews. 120 (2019) 919–985. doi:10.1021/acs.chemrev.9b00201. | spa |
dc.relation.references | [2-13] P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu, International Journal of Hydrogen Energy. 38 (2013) 11840–11846. doi:10.1016/j.ijhydene.2013.06.131. | spa |
dc.relation.references | [2-14] J.F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valadés-Pelayo, H. de Lasa, Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt, Applied Catalysis B: Environmental. 211 (2017) 337–348. doi:10.1016/j.apcatb.2017.04.029. | spa |
dc.relation.references | [2-15] Y.G. Kim, W.-K. Jo, Photodeposited-metal/ CdS/ZnO heterostructures for solar photocatalytic hydrogen production under different conditions, International Journal of Hydrogen Energy. 42 (2017) 11356–11363. doi:10.1016/j.ijhydene.2017.02.176. | spa |
dc.relation.references | [2-16] M.-Y. Xie, K.-Y. Su, X.-Y. Peng, R.-J. Wu, M. Chavali, W.-C. Chang, Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2–ZnO under Visible light, Journal of the Taiwan Institute of Chemical Engineers. 70 (2017) 161–167. doi:10.1016/j.jtice.2016.10.034. | spa |
dc.relation.references | [2-17] H. Yang, Z. Dai, Z. Sun, Upconversion luminescence and kinetics in Er3+:YAlO3 under 652.2nm excitation, Journal of Luminescence. 124 (2007) 207–212. doi:10.1016/j.jlumin.2006.02.021. | spa |
dc.relation.references | [2-18] Y. Li, Y. Guo, S. Li, Y. Li, J. Wang, Efficient visible-light photocatalytic hydrogen evolution over platinum supported titanium dioxide nanocomposites coating up-conversion luminescence agent (Er3+:Y3Al5O12/Pt–TiO2). International Journal of Hydrogen Energy. 40 (2015) 2132–2140. doi:10.1016/j.ijhydene.2014.12.023. | spa |
dc.relation.references | [2-19] D. Wang, X. Wang, J. Liu, M. Zhang, Y. Song, Z. Zhang, et al., Preparation of high proportion of Z-scheme Er3+:Y3Al5O12@Nb2O5/Pt/In2O3 composite for enhanced visible-light driven photocatalytic hydrogen production, Materials Science and Engineering: B. 257 (2020) 114549. doi:10.1016/j.mseb.2020.114549. | spa |
dc.relation.references | [2-20] S. Li, Z. Liu, C. Lu, Z. Qu, C. Piao, J. Tang, et al., Highly efficient visible-light driven photocatalytic hydrogen production over (MoSe2-RGO)/(Er3+:Y3Al5O12/ZnS)/RuO2 photocatalyst, Journal of Photochemistry and Photobiology A: Chemistry. 400 (2020) 112714. doi:10.1016/j.jphotochem.2020.112714. | spa |
dc.relation.references | [2-21] Y. Zhou, S. Wei, S. Li, X. Liu, X. Shu, X. Zhang, et al., Sol-gel synthesis of Er3+:Y3Al5O12/TiO2Ta2O5/MoO2 composite membrane for visible-light driving photocatalytic hydrogen generation, International Journal of Hydrogen Energy. 42 (2017) 16362–16374. doi:10.1016/j.ijhydene.2017.05.213. | spa |
dc.relation.references | [2-22] J. Wang, D. Wang, X. Zhang, C. Zhao, M. Zhang, Z. Zhang, et al., An anti-symmetric dual (ASD) Z-scheme photocatalytic system: (ZnIn2S4/ Er3+:Y3Al5O12@ZnTiO3/CaIn2S4) for organic pollutants degradation with simultaneous hydrogen evolution, International Journal of Hydrogen Energy. 44 (2019) 6592–6607. doi:10.1016/j.ijhydene.2019.01.214. | spa |
dc.relation.references | [2-23] C. Lu, Y. Chen, Y. Li, C. Ma, H. Zhang, Y. Guo, et al., An effective quaternary nano-sized Er3+:Y3Al5O12/Pt–PdS/ZnS visible-light photocatalyst for H2 production, RSC Advances. 5 (2015) 54769–54776. doi:10.1039/c5ra11102a. | spa |
dc.relation.references | [2-24] Chaika, M., Tomala, R., Vovk, O., Nizhankovskyi, S., Mancardi, G., & Strek, W. Upconversion luminescence in Cr3+: YAG single crystal under infrared excitation. Journal of Luminescence, 226 (2020), 117467. 10.1016/j.jlumin.2020.117467. | spa |
dc.relation.references | [2-25] Chaika, M., Tomala, R., & Strek, W. Surface related laser induced white emission of Cr: YAG ceramic. Scientific Reports, 11(1) (2021), 14063. 10.1038/s41598-021-93638-2. | spa |
dc.relation.references | [2-26] L.N. Yin, Y. Li, J. Wang, Y.M. Kong, Y. Zhai, B.X. Wang, et al., The improvement of solar photocatalytic activity of ZnO by doping with Er3+:Y3Al5O12 during Dye degradation, Russian Journal of Physical Chemistry A. 86 (2012) 2049–2056. doi:10.1134/s0036024412130262. | spa |
dc.relation.references | [2-27] L. Yin, Y. Li, J. Wang, Y. Zhai, J. Wang, Y. Kong, et al., Preparation of Er3+:Y3Al5O12 /TiO2‐ZnO composite and application of solar energy in photocatalytic degradation of organic dyes, Environmental Progress & Sustainable Energy. 32 (2012) 697–704. doi:10.1002/ep.11688. | spa |
dc.relation.references | [2-28] Y. Guo, Y. Li, S. Li, L. Zhang, Y. Li, J. Wang, Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for Hydrogen Evolution from aqueous methanol solution, Energy. 82 (2015) 72–79. doi:10.1016/j.energy.2014.12.071. | spa |
dc.relation.references | [2-29] H.E. Hansen, F. Seland, S. Sunde, O.S. Burheim, B.G. Pollet, Two routes for sonochemical synthesis of platinum nanoparticles with narrow size distribution, Materials Advances. 2 (2021) 1962–1971. doi:10.1039/d0ma00909a. | spa |
dc.relation.references | [2-30] K. Momma, F. Izumi, vesta: A three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography. 41 (2008) 653–658. doi:10.1107/s0021889808012016. | spa |
dc.relation.references | [2-31] H.Yan, J. Yang, G. Ma, G. Wu, X. Zong, X. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis, 266(2) (2009), 165-168. doi:10.1016/j.jcat.2009.06.024. | spa |
dc.relation.references | [2-32] S.Mustapha, M. Ndamitso, A. Abdulkareem, J. Tijani, D. Shuaib,A. Mohammed, A. Kumaila. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(4), (2019). 045013.doi: 10.1088/2043-6254/ab52f7. | spa |
dc.relation.references | [2-33] Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, et al., A comprehensive review of ZnO materials and Devices, Journal of Applied Physics. 98 (2005). doi:10.1063/1.1992666. | spa |
dc.relation.references | [2-34] J. do Lunz, K.P. Licona, A. Antunes Ribeiro, J.A. Delgado, L.M. Alonso, M.V. de Oliveira, Effect of sonochemical technique on the morphology and crystallinity of hydroxyapatite nanoparticles, Materials Science Forum. 820 (2015) 287–292. doi:10.4028/www.scientific.net/msf.820.287. | spa |
dc.relation.references | [2-35] E. Luévano-Hipólito, L.M. Torres-Martínez, Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation, Materials Science and Engineering: B. 226 (2017) 223–233. doi:10.1016/j.mseb.2017.09.023. | spa |
dc.relation.references | [2-36] V. Mote, Y. Purushotham, B. Dole, Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics. 6 (2012). doi:10.1186/2251-7235-6-6. | spa |
dc.relation.references | [2-37] R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles, Journal of Materials Research and Technology. 3 (2014) 363–369. doi:10.1016/j.jmrt.2014.07.001. | spa |
dc.relation.references | [2-38] H. Fukushima, H. Uchida, H. Funakubo, T. Katoda, K. Nishida. Eval uation of oxygen vacancies in ZnO single crystals and powders by micro-Raman spectroscopy. Journal of the Ceramic Society of Japan, 125(6), (2017). 445-448.doi. 10.2109/jcersj2.16262. | spa |
dc.relation.references | [2-39] V. Mote, Y. Purushotham, B. Dole, Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics. 6 (2012). doi:10.1186/2251-7235-6-6. | spa |
dc.relation.references | [2-40] N. Alahmadi, M.S. Amin, R.M. Mohamed, Superficial visible-light-responsive Pt@ZnO nanorods photocatalysts for effective remediation of ciprofloxacin in water, Journal of Nanoparticle Research. 22 (2020). doi:10.1007/s11051-020-04968-7. | spa |
dc.relation.references | [2-41] A. Dhupar, S. Kumar, V. Sharma, J.K. Sharma, Mixed structure Zn (S, O) nanoparticles: Synthesis and characterization, Materials Science-Poland. 37 (2019) 230–237. doi:10.2478/msp-2019-0024. | spa |
dc.relation.references | [2-42] T.P. Yendrapati, A. Gautam, S. Bojja, U. Pal, Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation, Solar Energy. 196 (2020) 540–548. doi:10.1016/j.solener.2019.12.054. | spa |
dc.relation.references | [2-43] S.Mukhopadhyay, I. Mondal, U. Pal, P. Devi. (2015). Fabrication of hierarchical ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. Physical Chemistry Chemical Physics, 17(31),(2015) 20407-20415. doi: 10.1039/C5CP02689J. | spa |
dc.relation.references | [2-44] J. Yu, L. Qi, M. Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. The Journal of Physical Chemistry C, 114(30) (2010)., 13118-13125. doi: 10.1021/jp104488b. | spa |
dc.relation.references | [2-45] P. Muniraja, K.S. Kumar, A. Sudharani, M. Ramanadha, S. Ramu, B. Poornaprakash, et al., Structural, morphological, optical, photoluminescence, and magnetic properties of Zn1-xNixO nanoparticles, Journal of Superconductivity and Novel Magnetism. 33 (2019) 493–502. doi:10.1007/s10948-019-5092-6. | spa |
dc.relation.references | [2-46] N. Akter, T. Ahmed, I. Haque, M.K. Hossain, G. Ray, M.M. Hossain, et al., XPS valence band observable light-responsive system for photocatalytic acid red114 dye decomposition using a ZnO–Cu2O heterojunction, Heliyon. 10 (2024). doi:10.1016/j.heliyon.2024.e30802. | spa |
dc.relation.references | [2-47] H. Zhang, C. Kong, W. Li, G. Qin, H. Ruan, M. Tan, The formation mechanism and stability of P-type N-doped Zn-rich ZnO films, Journal of Materials Science: Materials in Electronics. 27 (2016) 5251–5258. doi:10.1007/s10854-016-4421-9. | spa |
dc.relation.references | [2-48] F. Xie, M. Yang, Z.-Y. Song, W.-C. Duan, X.-J. Huang, S.-H. Chen, et al., Highly sensitive electrochemical detection of Hg (II) promoted by oxygen vacancies of plasma-treated ZnO: XPS and DFT calculation analysis, Electrochimica Acta. 426 (2022) 140757. doi:10.1016/j.electacta.2022.140757. | spa |
dc.relation.references | [2-49] F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO zno in photocatalysis: A bottom-up approach to control defect density, Nanoscale. 6 (2014) 10224–10234. doi:10.1039/c4nr01887g. | spa |
dc.relation.references | [2-50] N.S. Resende, C.A. Perez, J.G. Eon, M. Schmal, The effect of coating TiO2 on the CO oxidation of the PT/γ-alumina catalysts, Catalysis Letters. 141 (2011) 1685–1692. doi:10.1007/s10562-011-0695-y. | spa |
dc.relation.references | [2-51] Y. Xia, T. Le, J. Peng, A.V. Ravindra, L. Xu, Pt quantum dots decorated nest-like 3D porous ZnO nanostructures for enhanced visible-light degradation of RHB, Journal of Porous Materials. 27 (2020) 1339–1348. doi:10.1007/s10934-020-00906-z. | spa |
dc.relation.references | [2-52] B. Himabindu, N.S. Latha Devi, P. Nagaraju, B. Rajini Kanth, A nanostructured Al-doped ZnO as an ultra-sensitive room-temperature ammonia gas sensor, Journal of Materials Science: Materials in Electronics. 34 (2023). doi:10.1007/s10854-023-10337-6. | spa |
dc.relation.references | [2-53] M. Bowker, Photocatalytic hydrogen production and oxygenate photoreforming. Catalysis letters, 142(8) (2012) 923-929. doi: 10.1007/s10562-012-0875-4. | spa |
dc.relation.references | [2-54] C. Huo, T. Wang, Z. Yin, X. Xu, J. He, S. Cao, Tuning the thickness of 3D inverse opal ZnO/ZnS heterojunction promotes excellent photocatalytic hydrogen evolution, Ceramics International. 49 (2023) 14673–14680. doi:10.1016/j.ceramint.2023.01.059. | spa |
dc.relation.references | [2-55] T. Wang, H.-J. Wang, J.-S. Lin, J.-L. Yang, F.-L. Zhang, X.-M. Lin, et al., Plasmonic photocatalysis: Mechanism, applications and perspectives, Chinese Journal of Structural Chemistry. 42 (2023) 100066. doi:10.1016/j.cjsc.2023.100066. | spa |
dc.relation.references | [2-56] S.T. Kochuveedu, Y.H. Jang, D. Kim. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chemical Society Reviews, 42(21)(2013) 8467-8493. doi:10.103/c3cs60043b. | spa |
dc.relation.references | [2-57] V. Subramanian, E. Wolf, P.V. Kamat. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. Journal of the American Chemical Society, (2004). 126(15), 4943-4950. | spa |
dc.relation.references | [2-58] X. Zhang, Y. Chen, R. Liu, D.P. Tsai Plasmonic photocatalysis. Reports on Progress in Physics, 76(4) (2013) 046401. doi:10.1088/0034-4885/76/4/046401. | spa |
dc.relation.references | [2-59] M. K. Ikhwan, R. S. Azis, M. Hashim, D. Holland, A. P. Howes, A. Zakaria, J. Hassan. The Formation of Yttrium Aluminium Monoclinic (Y4Al2O9) by Sol-Gel Synthesis at Low Heating Temperature. Journal of the Australian Ceramics Society, 50 (2) (2014) 17-24. | spa |
dc.relation.references | [2-60] Z. Liu, X. Cui, C. Piao, J. Tang, S. Li, D. Fang, D. J. Wang. Construction and preparation of a coated Z-schee (CNT-Ni2P-CNT/Er3+:Y3Al5O12)@Bi12GeO20 photocatalyst for the enhanced photocatalytic conversion of hexavalent chromium with the simultaneous degradation of concomitant organic pollutants. Powder technology, 368 (2020) 213-226. doi: 10.1016/j.powtec.2020.04.067. | spa |
dc.relation.references | [2-61] M. Hosseinifard, H. Goldooz, A. Badiei, A. Kazemzadeh. Preparation and Characterization of Y3Al5O12:Cr3+Nanophosphor by Electrochemical Technique. Advanced Ceramics Progress, 6(2) (2020) 30-34. doi: 10.30501/ACP.2020.109547. | spa |
dc.relation.references | [2-62] R. Nakamoto, B. Xu, C. Xu, H. Xu, L. Bellaiche, Properties of rare-earth iron garnets from first principles, Physical Review B. 95 (2017). doi:10.1103/physrevb.95.024434. | spa |
dc.relation.references | [2-63] M.V. dos S. Rezende, C.W. Paschoal, Radioluminescence enhancement in Eu3+ doped Y3Al5O12 phosphors by Ga substitution, Optical Materials. 46 (2015) 530–535. doi:10.1016/j.optmat.2015.05.019. | spa |
dc.relation.references | [2-64] I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, et al., Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and Laser Operation, Optical Materials. 32 (2010) 1251–1255. doi:10.1016/j.optmat.2010.04.029. | spa |
dc.relation.references | [2-65] S. Kostić, Z. Ž. Lazarević,V. Radojević, A. Milutinović . Study of structural and optical properties of YAG and Nd: YAG single crystals. Materials Research Bulletin 63(2015), 80-87. doi: 10.1016/j.materresbull.2014.11.033. | spa |
dc.relation.references | [2-66] W. Dewo, V. Gorbenko, Y. Zorenko, T. Runka, Raman spectroscopy Ce3+ doped Lu3Al5O12 single crystalline films grown onto Y3Al5O12 substrate, Optical Materials: X. 3 (2019) 100029. doi:10.1016/j.omx.2019.100029. | spa |
dc.relation.references | [67] R. Tomar, P. Kumar, A. Kumar, A. Kumar, P. Kumar, R.P. Pant, et al., Investigations on structural and magnetic properties of Mn doped Er2O3. Solid State Sciences. 67 (2017) 8–12. doi:10.1016/j.solidstatesciences.2017.03.003. | spa |
dc.relation.references | [2-68] L. Yin, Y. Li, J. Wang, Y. Zhai, Y. Kong, J. Gao, et al., Effect of different doped elements on visible light absorption and ultraviolet light emission on Er3+:Y3Al5O12, Journal of Luminescence. 132 (2012) 3010–3018. doi:10.1016/j.jlumin.2012.06.017. | spa |
dc.relation.references | [2-69] D.K. Sardar, C.C. Russell, J.B. Gruber, T.H. Allik, Absorption intensities and emission cross sections of Principal Intermanifold and inter-stark transitions of Er3+(4f11) in Polycrystalline Ceramic Garnet Y3Al5O12, Journal of Applied Physics. 97 (2005). doi:10.1063/1.1928327. | spa |
dc.relation.references | [2-70] H. Qiu, M. Tan, T.Y. Ohulchanskyy, J.F. Lovell, G. Chen, Recent progress in upconversion photodynamic therapy, Nanomaterials. 8 (2018) 344. doi:10.3390/nano8050344. | spa |
dc.relation.references | [2-71] H. Xu, Z. Dai, Z. Jiang, Luminescence characteristics of ultraviolet upconversion from Er3 +:YAG crystal by Ar+ laser (488 nm) excitation, The European Physical Journal D. 17 (2001) 79–83. doi:10.1007/s100530170040. | spa |
dc.relation.references | [2-72] M. Thommes, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Chemistry International. 38 (2016) 25–25. doi:10.1515/ci-2016-0119. | spa |
dc.relation.references | [2-73] M. Dimitropoulos, C. Aggelopoulos, L. Sygellou, P. Koutsoukos, S. Yannopoulos, Unveiling the Photocorrosion Mechanism of Zinc Oxide Photocatalyst: Interplay between Surface Corrosion and Regeneration, Journal of Environmental Chemical Engineering. (2023). doi:10.2139/ssrn.4513954. | spa |
dc.relation.references | [2-74] D.Dworschak, C. Brunnhofer, M. Valtiner, M. Photocorrosion of ZnO single crystals during electrochemical water splitting. ACS Applied Materials & Interfaces, 12(46), (2020) 51530-51536.doi: 10.1021/acsami.0c15508. | spa |
dc.relation.references | [2-75] J.M. Goncalves, A. Kumar, M.I. da Silva, H. Toma, P.R. Martins, P. R., Araki, K., Angnes, L. (2021). Nanoporous gold‐based materials for electrochemical energy storage and conversion. Energy Technology, 9(5), 2000927. doi: 10.1002/ente.202000927. | spa |
dc.relation.references | [2-76] R. Kumar, G. Swain, S. Dutta, Synthesis of visible light-sensitive photocatalysts for hydrogen production, Fuel. 360 (2024) 130555. doi:10.1016/j.fuel.2023.130555. | spa |
dc.relation.references | [2-77] A.B. Patil, B.D. Jadhav, P.V. Bhoir, Efficient photocatalytic hydrogen production over Ce/ZnO from aqueous methanol solution, Materials for Renewable and Sustainable Energy. 10 (2021). doi:10.1007/s40243-021-00199-5. | spa |
dc.relation.references | [2-78] M. Huerta-Flores, E. Luévano-Hipólito, L.M. Torres-Martínez, A. Torres-Sánchez, Photocatalytic H2 production and CO2 reduction on Cu, Ni-doped ZnO: Effect of metal doping and oxygen vacancies, Journal of Materials Science: Materials in Electronics. 30 (2019) 18506–18518. doi:10.1007/s10854-019-02204-0. | spa |
dc.relation.references | [2-79] H. Yoo, S. Kahng, J. Hyeun Kim, Z-scheme assisted ZnO/Cu2O-CuO photocatalysts to increase photoactive electrons in hydrogen evolution by water splitting, Solar Energy Materials and Solar Cells. 204 (2020) 110211. doi:10.1016/j.solmat.2019.110211. | spa |
dc.relation.references | [2-80] X. Ji, H. Xu, S. Liang, L. Gan, R. Zhang, X. Wang, 3D ordered macroporous Pt/ZnS@ZnO core-shell heterostructure for highly effective photocatalytic hydrogen evolution, International Journal of Hydrogen Energy. 47 (2022) 17640–17649. doi:10.1016/j.ijhydene.2022.03.241. | spa |
dc.relation.references | [2-81] A. Oskenbay, D. Salikhov, O. Rofman, I. Rakhimbek, Z. Shalabayev, N. Khan, et al., Solid-state synthesis of ZnS/ZnO nanocomposites and their decoration with NiS cocatalyst for photocatalytic hydrogen production, Ceramics International. 49 (2023) 32246–32260. doi:10.1016/j.ceramint.2023.07.200. | spa |
dc.relation.references | [2-82] J.-H. Goh, K.-W. Tan, J.-E. Liow, P.-S. Khiew, W.-S. Chiu, C.-Y. Haw, Modulating oxygen vacancy of ZnO for visible-light driven photocatalytic H2 evolution via facile gas treatment approach, Mater. Sci. Semicond. Process.178 (2024) 108445. doi:10.1016/j.mssp.2024.108445. | spa |
dc.relation.references | [2-83] G.L. Chiarello, M.H. Aguirre, E. Selli, Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2, Journal of Catalysis. 273 (2010) 182–190. doi:10.1016/j.jcat.2010.05.012. | spa |
dc.relation.references | [2-84] S. Oros-Ruiz, R. Zanella, R. López, A. Hernández-Gordillo, R. Gómez, Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with Urea, Journal of Hazardous Materials. 263 (2013) 2–10. doi:10.1016/j.jhazmat.2013.03.057. | spa |
dc.relation.references | [3-1] E.Dupont, R. Koppelaar, H. Jeanmart. Global available solar energy under physical and energy return on investment constraints. Applied Energy, 257 (2020), 113968. doi:10.1016/j.apenergy.2019.113968. | spa |
dc.relation.references | [3-2] K. Ahmad, H.R. Ghatak, S.M. Ahuja, A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: A sustainable approach, Environmental Technology & Innovation. 19 (2020) 100893. doi:10.1016/j.eti.2020.100893. | spa |
dc.relation.references | [3-3] Z. Ziobrowski, A. Rotkegel. Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage and Utilization. Energies, 17(8).(2024).1808.doi: 10.3390/en17081808. | spa |
dc.relation.references | [3-4] M.I. Dagareh, H.Y. Hafeez, J. Mohammed, A.D. Kafadi, A.B. Suleiman, C.E. Ndikilar, Current trends and future perspectives on ZnO-based materials for robust and stable solar fuel (H2) generation, Chemical Physics Impact. 9 (2024) 100774. doi:10.1016/j.chphi.2024.100774. | spa |
dc.relation.references | [3-5] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535. doi:10.1039/c3cs60378d. | spa |
dc.relation.references | [3-6] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, Mu. Naushad, Zno-based heterostructures as photocatalysts for hydrogen generation and Depollution: A Review, Environmental Chemistry Letters. 20 (2022) 1047–1081. doi:10.1007/s10311-021-01361-1. | spa |
dc.relation.references | [3-7] I. Ahmad, S. Shukrullah, M.Y. Naz, H.N. Bhatti, N.R. Khalid, S. Ullah, Rational design of ZnO–CuO–Au S-scheme heterojunctions for photocatalytic hydrogen production under Visible light, International Journal of Hydrogen Energy. 48 (2023) 12683–12698. doi:10.1016/j.ijhydene.2022.11.289. | spa |
dc.relation.references | [3-8] B. Ghanbari Shohany, A. Khorsand Zak, Doped ZnO nanostructures with selected elements - structural, morphology and optical properties: A Review, Ceramics International. 46 (2020) 5507–5520. doi:10.1016/j.ceramint.2019.11.051. | spa |
dc.relation.references | [3-9] T. Munir, A. Mahmood, N. Ahmad, M. Atif, K.S. Alimgeer, A. Fatehmulla, et al., Structural, electrical and optical properties of Zn1−xCuxO (x = 0.00–0.09) nanoparticles, Journal of King Saud University - Science. 33 (2021) 101330. doi:10.1016/j.jksus.2020.101330. | spa |
dc.relation.references | [3-10] K. Luo, Q. Zhang, H. Yuan, Y. Liu, X. Wang, J. Zhang, et al., Facile synthesis of Ag/ Zn1−xCuxO nanoparticle compound photocatalyst for high-efficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag, Ceramics International. 47 (2021) 48–56. doi:10.1016/j.ceramint.2020.06.102. | spa |
dc.relation.references | [3-11] K.G. Kanade, B.B. Kale, J.-O. Baeg, S.M. Lee, C.W. Lee, S.-J. Moon, et al., Self-assembled aligned cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation, Materials Chemistry and Physics. 102 (2007) 98–104. doi:10.1016/j.matchemphys.2006.11.012. | spa |
dc.relation.references | [3-12] M.F. Manzoor, E. Ahmed, M. Ahmad, I. Ahmad, A.M. Rana, A. Ali, et al., Enhanced photocatalytic activity of hydrogen evolution through Cu incorporated ZnO nano composites, Materials Science in Semiconductor Processing. 120 (2020) 105278. doi:10.1016/j.mssp.2020.105278. | spa |
dc.relation.references | [3-13] A. Samanta, M.N. Goswami, P.K. Mahapatra, Nickel doped ZnO nanoparticles as a novel photocatalytic and Multiferroic Semiconductor, Physica E: Low-Dimensional Systems and Nanostructures. 158 (2024) 115885. doi:10.1016/j.physe.2023.115885. | spa |
dc.relation.references | [3-14] F. Destalina, I. Mujtahid, P.L. Mutmainnah, Photocatalytic and antibacterial activities of zinc oxide (ZnO) nanoparticles doped with nickel (Ni), AIP Conference Proceedings. 3161 (2024) 030011. doi:10.1063/5.0172436. | spa |
dc.relation.references | [3-15] S. Kant;Amit Kumar, A comparative analysis of structural, optical and photocatalytic properties of ZnO and Ni doped ZnO nanospheres prepared by Sol Gel Method, Advanced Materials Letters. 3 (2012) 350–354. doi:10.5185/amlett.2012.5344. | spa |
dc.relation.references | [3-16] A.M. Huerta-Flores, E. Luévano-Hipólito, L.M. Torres-Martínez, A. Torres-Sánchez, Photocatalytic H2 production and CO2 reduction on Cu, Ni-doped ZnO: Effect of metal doping and oxygen vacancies, Journal of Materials Science: Materials in Electronics. 30 (2019) 18506–18518. doi:10.1007/s10854-019-02204-0. | spa |
dc.relation.references | [3-17] Y. Guo, Y. Li, S. Li, L. Zhang, Y. Li, J. Wang, Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for Hydrogen Evolution from aqueous methanol solution, Energy. 82 (2015) 72–79. doi:10.1016/j.energy.2014.12.071. | spa |
dc.relation.references | [3-18] K. Momma, F. Izumi, vesta: A three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography. 41 (2008) 653–658. doi:10.1107/s0021889808012016. | spa |
dc.relation.references | [3-19] H.Yan, J. Yang, G. Ma, G. Wu, X. Zong, X. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis, 266(2) (2009), 165-168. doi:10.1016/j.jcat.2009.06.024. | spa |
dc.relation.references | [3-20] E. Luévano-Hipólito, L.M. Torres-Martínez, Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation, Materials Science and Engineering: B. 226 (2017) 223–233. doi:10.1016/j.mseb.2017.09.023. | spa |
dc.relation.references | [3-21] S.Mustapha, M. Ndamitso, A. Abdulkareem, J. Tijani, D. Shuaib,A. Mohammed, A. Kumaila. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(4), (2019). 045013.doi: 10.1088/2043-6254/ab52f7. | spa |
dc.relation.references | [3-22] V. Mote, Y. Purushotham, B. Dole, Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics. 6 (2012). doi:10.1186/2251-7235-6-6. | spa |
dc.relation.references | [3-23] R. Sivakami, S. Dhanuskodi, R. Karvembu, Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 152 (2016) 43–50. doi:10.1016/j.saa.2015.07.008. | spa |
dc.relation.references | [3-24] R. Sonkar, N.J. Mondal, B. Boro, M.P. Ghosh, D. Chowdhury, Cu doped ZnO nanoparticles: Correlations between tuneable optoelectronic, antioxidant and photocatalytic activities, Journal of Physics and Chemistry of Solids. 185 (2024) 111715. doi:10.1016/j.jpcs.2023.111715. | spa |
dc.relation.references | [3-25] D. Kumar, M. Singh, A.K. Singh, Crystallite size effect on lattice strain and crystal structure of Ba1/4Sr3/4MnO3 layered perovskite manganite, AIP Conference Proceedings. (2018). doi:10.1063/1.5032520. | spa |
dc.relation.references | [3-26] R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles, Journal of Materials Research and Technology. 3 (2014) 363–369. doi:10.1016/j.jmrt.2014.07.001. | spa |
dc.relation.references | [3-27] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, et al., A comprehensive review of ZnO materials and Devices, Journal of Applied Physics. 98 (2005) 041301. doi:10.1063/1.1992666. | spa |
dc.relation.references | [3-28] R Mohapatra, J., Mishra, D. K., Berma, V., Kamilla, S. K., Sakthivel, R., Mohapatra, B. K., & Singh, S. K. Structural and magnetic properties of Zn1−xCuxO (0≤ x≤ 0.1) systems. Advanced Science Letters, 4(2) (2011), 458-462.doi: 10.1166/asl.2011.1228. | spa |
dc.relation.references | [3-29] P. Maddahi, N. Shahtahmasebi, A. Kompany, M. Mashreghi, S. Safaee, F. Roozban, Effect of doping on structural and optical properties of ZnO nanoparticles: Study of antibacterial properties, Materials Science-Poland. 32 (2014) 130–135. doi:10.2478/s13536-013-0181-x. | spa |
dc.relation.references | [3-30] R. Dridi, M. BenAmor, N. Mahdhi, A. Amlouk, K. Boubaker, M. Amlouk, Structural, optical and conductivity studies of amorphous ZnxNi1-xO thin films along with Wettability and photocatalytic tests, Journal of Non-Crystalline Solids. 449 (2016) 1–11. doi:10.1016/j.jnoncrysol.2016.07.008. | spa |
dc.relation.references | [3-31] H. Fukushima, H. Uchida, H. Funakubo, T. Katoda, K. Nishida. Eval uation of oxygen vacancies in ZnO single crystals and powders by micro-Raman spectroscopy. Journal of the Ceramic Society of Japan, 125(6), (2017). 445-448.doi. 10.2109/jcersj2.16262. | spa |
dc.relation.references | [3-32] N. Alahmadi, M.S. Amin, R.M. Mohamed, Superficial visible-light-responsive Pt@ZnO nanorods photocatalysts for effective remediation of ciprofloxacin in water, Journal of Nanoparticle Research. 22 (2020). doi:10.1007/s11051-020-04968-7. | spa |
dc.relation.references | [3-33] A.K. Rana, Y. Kumar, P. Rajput, S.N. Jha, D. Bhattacharyya, P.M. Shirage, Search for origin of room temperature ferromagnetism properties in Ni-doped ZnO nanostructure, ACS Applied Materials & Interfaces. 9 (2017) 7691–7700. doi:10.1021/acsami.6b12616. | spa |
dc.relation.references | [3-34] Z.H. Alhashem, Ni-doped ZnO nanoparticles derived by the sol–gel method: Structural, optical, and magnetic characteristics, Arabian Journal of Chemistry. 17 (2024) 105701. doi:10.1016/j.arabjc.2024.105701. | spa |
dc.relation.references | [3-35] P. Bose, S. Ghosh, S. Basak, M.K. Naskar, A facile synthesis of mesoporous NiO nanosheets and their application in CO oxidation, Journal of Asian Ceramic Societies. 4 (2016) 1–5. doi:10.1016/j.jascer.2016.01.006. | spa |
dc.relation.references | [3-36] D. Scolfaro, A.D. Rodrigues, M.P. de Godoy, Optical absorption in full composition range of ZnCuO thin films synthesized by spray pyrolysis, Applied Physics A. 124 (2018). doi:10.1007/s00339-018-2201-5. | spa |
dc.relation.references | [3-37] T.H. Tran, V.T. Nguyen, Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: A brief review, International Scholarly Research Notices. 2014 (2014) 1–14. doi:10.1155/2014/856592. | spa |
dc.relation.references | [3-38] X. Bi, G. Du, A. Kalam, D. Sun, Y. Yu, Q. Su, et al., Tuning oxygen vacancy content in tio2 nanoparticles to enhance the photocatalytic performance, Chemical Engineering Science. 234 (2021) 116440. doi:10.1016/j.ces.2021.116440. | spa |
dc.relation.references | [3-39] A. Dhupar, S. Kumar, V. Sharma, J.K. Sharma, Mixed structure Zn(S,O) nanoparticles: Synthesis and characterization, Materials Science-Poland. 37 (2019) 230–237. doi:10.2478/msp-2019-0024. | spa |
dc.relation.references | [3-40] J.-H. Weng, M.-C. Kao, K.-H. Chen, M.-Z. Li, Influences of Cu doping on the microstructure, optical and resistance switching properties of zinc oxide thin films, Nanomaterials. 13 (2023) 2685. doi:10.3390/nano13192685. | spa |
dc.relation.references | [3-41] B. Singh, A. Kaushal, I. Bdikin, K. Venkata Saravanan, J.M.F. Ferreira, Effect of Ni doping on structural and optical properties of Zn1-xNixO nanopowder synthesized via low cost sono-chemical method, Materials Research Bulletin. 70 (2015) 430–435. doi:10.1016/j.materresbull.2015.05.009. | spa |
dc.relation.references | [3-42] T.P. Yendrapati, A. Gautam, S. Bojja, U. Pal, Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation, Solar Energy. 196 (2020) 540–548. doi:10.1016/j.solener.2019.12.054. | spa |
dc.relation.references | [3-43] G. preet Singh, J. Singh, K. Chandel, S. Arora, S. Singh, D. Singh, et al., Synthesis and characterization of pristine CuO and Mg/Cuo nanostructures for their anti-breast cancer and photocatalytic degradation applications: Experimental and DFT investigations, Materials Today Communications. 40 (2024) 109398. doi:10.1016/j.mtcomm.2024.109398. | spa |
dc.relation.references | [3-44] S. Aejitha, G. Dhanraj, T. Govindaraj, N. Senthil kumar, F. Maiz, Mohd. Shkir, et al., Effect of La-doping on NiO photocatalyst for enhancing photocatalytic degradation performance under visible light irradiation: DFT calculations and degradation mechanism, Inorganic Chemistry Communications. 156 (2023) 111172. doi:10.1016/j.inoche.2023.111172. | spa |
dc.relation.references | [3-45] P. Muniraja, K.S. Kumar, A. Sudharani, M. Ramanadha & R. P. Vijayalakshmi, Structural, Morphological, Optical, Photoluminescence, and Magnetic Properties of Zn1-xNixO Nanoparticles. Journal of Superconductivity and Novel Magnetism, 33 (2020) 493-502. doi:10.1007/s10948-019-5092-6. | spa |
dc.relation.references | [3-46] A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores, M. Miki-Yoshida, Optical band gap estimation of zno Nanorods, Materials Research. 19 (2016) 33–38. doi:10.1590/1980-5373-mr-2015-0612. | spa |
dc.relation.references | [3-47] W.T. Alsaggaf, A. Shawky, M.H.H. Mahmoud, S-scheme CuO/ZnO p-n heterojunctions for endorsed photocatalytic reduction of mercuric ions under visible light, Inorganic Chemistry Communications. 143 (2022) 109778. doi:10.1016/j.inoche.2022.109778. | spa |
dc.relation.references | [3-48] A. Sedky, N. Afify, A. Almohammedi, E.M. Ibrahim, A.M. Ali, Structural, optical, photoluminescence and magnetic investigation of doped and Co-doped ZnO nanoparticles, Optical and Quantum Electronics. 55 (2023). doi:10.1007/s11082-023-04718-8. | spa |
dc.relation.references | [3-49] D. Anbuselvan, S. Nilavazhagan, A. Santhanam, N. Chidhambaram, K.V. Gunavathy, T. Ahamad, et al., Room temperature ferromagnetic behavior of nickel-doped zinc oxide dilute magnetic semiconductor for Spintronics Applications, Physica E: Low-Dimensional Systems and Nanostructures. 129 (2021) 114665. doi:10.1016/j.physe.2021.114665. | spa |
dc.relation.references | [3-50] L. Radjehi, A. Djelloul, M. Bououdina, R. Siab, W. Tebib, Structural and magnetic properties of copper oxide films deposited by DC magnetron reactive sputtering, Applied Physics A. 124 (2018). doi:10.1007/s00339-018-2141-0. | spa |
dc.relation.references | [3-51] S.M. Yakout, A.M. El-Sayed, Enhanced ferromagnetic and photocatalytic properties in Mn or Fe doped p-CuO/n-ZnO nanocomposites, Advanced Powder Technology. 30 (2019) 2841–2850. doi:10.1016/j.apt.2019.08.033. | spa |
dc.relation.references | [3-52] H. Ahmoum, G. Li, M. Boughrara, R. Gebauer, M.S. Su’ait, K. Tanji, et al., Oxygen vacancy suppress room temperature ferromagnetism of p-type Cu doped ZnO: Synthesis and density functional theory, Micro and Nanostructures. 167 (2022) 207291. doi:10.1016/j.micrna.2022.207291. | spa |
dc.relation.references | [3-53] A.M. Morales Rivera. Tesis de maestría. Síntesis y Caracterización de granates del Tipo Sm3-xTRxFe5O12 (TR = dy, GD, Lu y La), Universidad Nacional de Colombia. (2017). | spa |
dc.relation.references | [3-54] A. Morais, R.A. Torquato, U.C. Silva, C. Salvador, C. Chesman, Effect of doping and sintering in structure and magnetic properties of the diluted magnetic semiconductor ZnO:Ni, Cerâmica. 64 (2018) 627–631. doi:10.1590/0366-69132018643722463. | spa |
dc.relation.references | [3-55] J. Yu, L. Qi, M. Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. The Journal of Physical Chemistry C, 114(30) (2010)., 13118-13125. doi: 10.1021/jp104488b. | spa |
dc.relation.references | [3-56] M. Thommes, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Chemistry International. 38 (2016) 25–25. doi:10.1515/ci-2016-0119. | spa |
dc.relation.references | [3-57] C. Huo, T. Wang, Z. Yin, X. Xu, J. He, S. Cao, Tuning the thickness of 3D inverse opal ZnO/ZnS heterojunction promotes excellent photocatalytic hydrogen evolution, Ceramics International. 49 (2023) 14673–14680. doi:10.1016/j.ceramint.2023.01.059. | spa |
dc.relation.references | [3-58] S.Mukhopadhyay, I. Mondal, U. Pal, P. Devi. (2015). Fabrication of hierarchical ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. Physical Chemistry Chemical Physics, 17(31),(2015) 20407-20415. doi: 10.1039/C5CP02689J. | spa |
dc.relation.references | [3-59] P. Nayak, S. Kumar, I. Sinha, K.K. Singh, ZnO/CuO nanocomposites from recycled printed circuit board: Preparation and photocatalytic properties, Environmental Science and Pollution Research. 26 (2019) 16279–16288. doi:10.1007/s11356-019-04986-6. | spa |
dc.relation.references | [3-60] X. Guo, W. Ju, Z. Luo, B. Ruan, K. Wu, P. Li, ZnO/CuO based dye sensitized photocatalytic hydrogen production from water, International Journal of Hydrogen Energy. 98 (2025) 1087–1098. doi:10.1016/j.ijhydene.2024.12.117. | spa |
dc.relation.references | [3-61] M.A. Mannaa, K.F. Qasim, F.T. Alshorifi, S.M. El-Bahy, R.S. Salama, Role of NiO nanoparticles in enhancing structure properties of TiO2 and its applications in photodegradation and hydrogen evolution, ACS Omega. 6 (2021) 30386–30400. doi:10.1021/acsomega.1c03693. | spa |
dc.relation.references | [3-62] M. Saeed, K. Albalawi, I. Khan, N. Akram, I.H.A. Abd El-Rahim, S.K. Alhag, et al., Synthesis of p-n NiO-ZnO heterojunction for photodegradation of Crystal Violet Dye, Alexandria Engineering Journal. 65 (2023) 561–574. doi:10.1016/j.aej.2022.09.048. | spa |
dc.relation.references | [3-63] J. Li, F. Zhao, L. Zhang, M. Zhang, H. Jiang, S. Li, J. Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity. RSC Advances, 5(83),(2015), 67610-67616.doi: 10.1039/C5RA08903D. | spa |
dc.relation.references | [3-64] G. Swati, M. Morampudi, Size-selective and facile synthesis of ZnO/ZnS core–shell nanostructure and its characterization, Applied Physics A. 127 (2021). doi:10.1007/s00339-021-04554-1. | spa |
dc.relation.references | [3-65] A. Sayari, L. El Mir, Annealing and Ni content effects on EPR and structural properties of Zn1–xNixO aerogel nanoparticles, Materials Science-Poland. 35 (2017) 454–462. doi:10.1515/msp-2017-0062. | spa |
dc.relation.references | [3-66] M. Dimitropoulos, C. Aggelopoulos, L. Sygellou, P. Koutsoukos, S. Yannopoulos, Unveiling the Photocorrosion Mechanism of Zinc Oxide Photocatalyst: Interplay between Surface Corrosion and Regeneration, Journal of Environmental Chemical Engineering. (2023). doi:10.2139/ssrn.4513954. [61] | spa |
dc.relation.references | [3-67] M. Dimitropoulos, C. Aggelopoulos, L. Sygellou, P. Koutsoukos, S. Yannopoulos, Unveiling the Photocorrosion Mechanism of Zinc Oxide Photocatalyst: Interplay between Surface Corrosion and Regeneration, Journal of Environmental Chemical Engineering. (2023). doi:10.2139/ssrn.4513954. | spa |
dc.relation.references | [3-68] J. Do Lunz, K.P. Licona, A. Antunes Ribeiro, J.A. Delgado, L.M. Alonso, M.V. de Oliveira, Effect of sonochemical technique on the morphology and crystallinity of hydroxyapatite nanoparticles, Materials Science Forum. 820 (2015) 287–292. doi:10.4028/www.scientific.net/msf.820.287. | spa |
dc.relation.references | [3-69] R. Nakamoto, B. Xu, C. Xu, H. Xu, L. Bellaiche, Properties of rare-earth iron garnets from first principles, Physical Review B. 95 (2017). doi:10.1103/physrevb.95.024434. | spa |
dc.relation.references | [3-70] S.T. Kochuveedu, Y.H. Jang, D. Kim. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chemical Society Reviews, 42(21)(2013) 8467-8493. doi:10.103/c3cs60043b. | spa |
dc.relation.references | [3-71] X. Zhang, Y. Chen, R. Liu, D.P. Tsai Plasmonic photocatalysis. Reports on Progress in Physics, 76(4) (2013) 046401. doi:10.1088/0034-4885/76/4/046401. | spa |
dc.relation.references | [3-72] Y. Zhou, S. Wei, S. Li, X. Liu, X. Shu, X. Zhang, et al., Sol-gel synthesis of Er3+:Y3Al5O12/TiO2Ta2O5/MoO2 composite membrane for visible-light driving photocatalytic hydrogen generation, International Journal of Hydrogen Energy. 42 (2017) 16362–16374. doi:10.1016/j.ijhydene.2017.05.213. | spa |
dc.relation.references | [3-73] R. Kumar, G. Swain, S. Dutta, Synthesis of visible light-sensitive photocatalysts for hydrogen production, Fuel. 360 (2024) 130555. doi:10.1016/j.fuel.2023.130555. | spa |
dc.relation.references | [3-74] Tox-Prediction, ProTox-3.0 - Prediction of TOXicity of Chemicals. (n.d.). https://tox.charite.de/protox3/index.php?site=compound_input (accessed February 14, 2025). | spa |
dc.relation.references | [3-75] A.B. Patil, B.D. Jadhav, P.V. Bhoir, Efficient photocatalytic hydrogen production over Ce/ZnO from aqueous methanol solution, Materials for Renewable and Sustainable Energy. 10 (2021). doi:10.1007/s40243-021-00199-5. | spa |
dc.relation.references | [3-76] M. Wang, S. Shen, L. Li, Z. Tang, J. Yang, Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts, Journal of Materials Science. 52 (2017) 5155–5164. doi:10.1007/s10853-017-0752-z. | spa |
dc.relation.references | [3-77] M. Hashim, M. Usman, S. Ahmad, R. Shah, A. Ali, N.U. Rahman, ZnO/NiO nanocomposite with enhanced photocatalytic H2 production, International Journal of Photoenergy. 2024 (2024) 1–11. doi:10.1155/2024/2676368. | spa |
dc.relation.references | [3-78] S. Meng, Z. Haifeng, Z. Yunlong, Study on the performance and mechanism of photocatalytic hydrogen production by NiO/ZnO-graphene composite materials under low irradiation conditions, Diamond and Related Materials. 151 (2025) 111823. doi:10.1016/j.diamond.2024.111823. | spa |
dc.relation.references | [3-79] Z. Liu, H. Bai, S. Xu, D.D. Sun, Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generation, International Journal of Hydrogen Energy. 36 (2011) 13473–13480. doi:10.1016/j.ijhydene.2011.07.137. | spa |
dc.relation.references | [3-80] H. Yoo, S. Kahng, J. Hyeun Kim, Z-scheme assisted ZnO/Cu2O-CuO photocatalysts to increase photoactive electrons in hydrogen evolution by water splitting, Solar Energy Materials and Solar Cells. 204 (2020) 110211. doi:10.1016/j.solmat.2019.110211. | spa |
dc.relation.references | [3-81] Y. Li, Y. Guo, S. Li, Y. Li, J. Wang, Efficient visible-light photocatalytic hydrogen evolution over platinum supported titanium dioxide nanocomposites coating up-conversion luminescence agent (Er3+:Y3Al5O12/Pt–TiO2). International Journal of Hydrogen Energy. 40 (2015) 2132–2140. doi:10.1016/j.ijhydene.2014.12.023. | spa |
dc.relation.references | [3-82] G.L. Chiarello, M.H. Aguirre, E. Selli, Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2, Journal of Catalysis. 273 (2010) 182–190. doi:10.1016/j.jcat.2010.05.012. | spa |
dc.relation.references | [3-83] S. Oros-Ruiz, R. Zanella, R. López, A. Hernández-Gordillo, R. Gómez, Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with Urea, Journal of Hazardous Materials. 263 (2013) 2–10. doi:10.1016/j.jhazmat.2013.03.057. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales | spa |
dc.subject.proposal | ZnO | spa |
dc.subject.proposal | Sustitución | spa |
dc.subject.proposal | Sol-gel | spa |
dc.subject.proposal | Er3+:YAG | spa |
dc.subject.proposal | Agente de sacrificio | spa |
dc.subject.proposal | Generación de H2 | spa |
dc.subject.proposal | ZnO | eng |
dc.subject.proposal | Substitution | eng |
dc.subject.proposal | Sol-gel | eng |
dc.subject.proposal | Er³⁺:YAG | eng |
dc.subject.proposal | Sacrificial agent | eng |
dc.subject.proposal | H2 generation | eng |
dc.subject.wikidata | fotocatálisis | spa |
dc.subject.wikidata | photocatalysis | eng |
dc.subject.wikidata | óxido de zinc | spa |
dc.subject.wikidata | zinc oxide | eng |
dc.subject.wikidata | ZnO | spa |
dc.subject.wikidata | semiconductor | spa |
dc.subject.wikidata | semiconductor | eng |
dc.subject.wikidata | producción de hidrógeno | spa |
dc.subject.wikidata | hydrogen production process | eng |
dc.title | Síntesis y evaluación de la actividad fotocatalítica de semiconductores de Zn1-xMxO (M = Cu y Ni, x = 0,01 - 0,20) en la generación de H2 | spa |
dc.title.translated | Synthesis and evaluation of the photocatalytic activity of Zn1-xMxO (M = Cu and Ni, x = 0.01 - 0.20) semiconductors in H2 generation | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1049640135.2025.pdf
- Tamaño:
- 17.71 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ciencias - Química
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: