Síntesis y evaluación de la actividad fotocatalítica de semiconductores de Zn1-xMxO (M = Cu y Ni, x = 0,01 - 0,20) en la generación de H2

dc.contributor.advisorMoreno Aldana, Luis Carlosspa
dc.contributor.advisorParra Vargas, Carlos Arturospa
dc.contributor.authorMorales Rivera, Angela Mariaspa
dc.contributor.cvlacMorales Rivera, Angela Maria [0001542185]spa
dc.contributor.googlescholarMorales Rivera, Angela Maria [Angela Maria Morales Rivera]spa
dc.contributor.orcidMorales Rivera, Angela Maria [0000-0003-0300-5280]spa
dc.contributor.researchgrouplaboratorio de Investigación en Combustibles y Energíaspa
dc.contributor.researchgroupGrupo Física de Materiales – GFM (Uptc)spa
dc.contributor.scopusMorales Rivera, Angela Maria [57057749800]spa
dc.date.accessioned2025-07-17T00:23:13Z
dc.date.available2025-07-17T00:23:13Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl ZnO es uno de los semiconductores más utilizados en la generación fotocatalítica de H2; sin embargo, presenta recombinación de pares e-/h+ y absorción en el UV. Por lo tanto, en esta investigación se planteó la síntesis y evaluación fotocatalítica de Zn1-xMxO (M = Ni o Cu y x = 0.01- 0.20) recubiertos con Pt, mezclados con granate Y3Al4.95Er0.05O12 (Er3+:YAG) y empleando metanol como agente de sacrificio, con el fin de mejorar las falencias del ZnO. Los materiales se sintetizaron por el método sol-gel y se caracterizaron por DRX, SEM-EDX, Raman, UV-Vis-DRS, adsorción-desorción de N2, EPR, magnetización y espectroscopía de fotoluminiscencia. Inicialmente, se determinó que 700 °C y 2 h son las condiciones de calcinación que mejoran la actividad del ZnO, por lo que se emplearon para preparar muestras con fórmula CuO/Zn0.99Cu0.01O y NiO/Zn0.99Ni0.01O. Se evidenció que no tuvo lugar la sustitución con Cu2+ o Ni2+ cuando x es superior a 0.01 y que el valor de x fue proporcional al contenido en porcentaje de las fases de CuO y NiO para x ≥ 0.05. No obstante, la formación de la heterounión p-n aumentó la producción de H2 de 676 µmol g-1h-1 del ZnO hasta 871 µmol g-1h-1. Por otro lado, se obtuvieron los materiales Er3+:YAG/Pt/CuO/Zn0.99Cu0.01O y Er3+:YAG/Pt/NiO/Zn0.99Ni0.01O, mediante recubrimiento con un 2.0% de Pt y la adición de Er3+:YAG en relación de masa 1.0:0.3 de Pt/ZnO:granate, que en conjunto con 10% v/v de metanol alcanzó una generación de H2 de 1932 µmol g-1h-1 y de 2324 µmol g-1h-1, respectivamente. Los hallazgos contribuyen significativamente a solventar las falencias del ZnO, ya que se incrementó la actividad en la región del visible y se redujo la recombinación de los pares e-/h+. (Texto tomado de la fuente).spa
dc.description.abstractZnO is one of the most widely used semiconductors in photocatalytic H2 generation; however, it presents e⁻/h⁺ pair recombination and absorption in the UV range. Therefore, this research focused on the synthesis and photocatalytic evaluation of Zn1-xMxO (M = Ni or Cu, and x = 0.01-0.20), coated with Pt, mixed with the Y3Al4.95Er0.05O12 garnet (Er³⁺:YAG), and using methanol as a sacrificial agent to improve the ZnO shortcomings. The materials were synthesized using the sol-gel method and characterized through XRD, SEM-EDX, Raman spectroscopy, UV-Vis-DRS, N2 adsorption-desorption, EPR, magnetization, and photoluminescence spectroscopy. Initially, it was determined that 700 °C and 2 h are the calcination conditions that improve the activity of ZnO, so they were used to prepare samples with formula CuO/Zn0.99Cu0.01O and NiO/Zn0.99Ni0.01O. It was observed that substitution with Cu2+ and Ni2+ does not occur when x exceeds 0.01, and that the x value was proportional to the percentage content of CuO and NiO phases for x ≥ 0.05. Nevertheless, the formation of the p-n heterojunction increased H2 production from 676 µmol g⁻¹h⁻¹ for ZnO to 871 µmol g⁻¹h⁻¹. On the other hand, Er3+:YAG/Pt/CuO/Zn0.99Cu0.01O and Er3+:YAG/Pt/NiO/Zn0.99Ni0.01O materials were obtained by coating with 2.0% platinum and adding Er3+:YAG in a mass ratio of 1.0:0.3 of Pt/ZnO:garnet, along with 10% v/v methanol reached an H2 generation of 1932 µmol g-1h-1 and 2324 µmol g-1h-1, respectively. The findings contribute significantly to resolving the ZnO shortcomings, since improved activity in the visible range was enhanced, and the recombination of e-/h+ pairs was reduced.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Químicaspa
dc.description.researchareaNuevos materiales y procesosspa
dc.format.extentxviii, 188 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88352
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Químicaspa
dc.relation.references[0-1] E.Dupont, R. Koppelaar, H. Jeanmart. Global available solar energy under physical and energy return on investment constraints. Applied Energy, 257 (2020), 113968. doi:10.1016/j.apenergy.2019.113968.spa
dc.relation.references[0-2] K. Ahmad, H.R. Ghatak, S.M. Ahuja, A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: A sustainable approach, Environmental Technology & Innovation. 19 (2020) 100893. doi:10.1016/j.eti.2020.100893.spa
dc.relation.references[0-3] Z. Ziobrowski, A. Rotkegel. Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage and Utilization. Energies, 17(8).(2024).1808.doi: 10.3390/en17081808.spa
dc.relation.references[0-4] T. da Silva Veras, T.S. Mozer, D. da Costa Rubim Messeder dos Santos, A. da Silva César, Hydrogen: Trends, production and characterization of the main process worldwide, International Journal of Hydrogen Energy. 42 (2017) 2018–2033. doi:10.1016/j.ijhydene.2016.08.219.spa
dc.relation.references[0-5] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535. doi:10.1039/c3cs60378d.spa
dc.relation.references[0-6] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature. 238 (1972) 37–38. doi:10.1038/238037a0.spa
dc.relation.references[0-7] N.R. Khalid, M. Rizwan Kamal, M.B. Tahir, M. Rafique, N.A. Niaz, Y. Ali, et al., Fabrication of direct Z-scheme MoO3/N–MoS2 photocatalyst for synergistically enhanced H2 production, International Journal of Hydrogen Energy. 46 (2021) 39822–39829. doi:10.1016/j.ijhydene.2021.09.230.spa
dc.relation.references[0-8] M.I. Dagareh, H.Y. Hafeez, J. Mohammed, A.D. Kafadi, A.B. Suleiman, C.E. Ndikilar, Current trends and future perspectives on ZnO-based materials for robust and stable solar fuel (H2) generation, Chemical Physics Impact. 9 (2024) 100774. doi:10.1016/j.chphi.2024.100774.spa
dc.relation.references[0-9] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, Mu. Naushad, ZnO-based heterostructures as photocatalysts for hydrogen generation and Depollution: A Review, Environmental Chemistry Letters. 20 (2022) 1047–1081. doi:10.1007/s10311-021-01361-1.spa
dc.relation.references[0-10] I. Ahmad, S. Shukrullah, M.Y. Naz, H.N. Bhatti, N.R. Khalid, S. Ullah, Rational design of ZnO–CuO–Au S-scheme heterojunctions for photocatalytic hydrogen production under Visible light, International Journal of Hydrogen Energy. 48 (2023) 12683–12698. doi:10.1016/j.ijhydene.2022.11.289.spa
dc.relation.references[0-11] D. Kong, X. Ruan, J. Geng, Y. Zhao, D. Zhang, X. Pu, et al., 0D/3D ZnIn2S4/Ag6Si2O7 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 Evolution under visible light, International Journal of Hydrogen Energy. 46 (2021) 28043–28052. doi:10.1016/j.ijhydene.2021.06.053.spa
dc.relation.references[0-12] M.C. Uribe-López, M.C. Hidalgo-López, R. López-González, D.M. Frías-Márquez, G. Núñez-Nogueira, D. Hernández-Castillo, et al., Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties, Journal of Photochemistry and Photobiology A: Chemistry. 404 (2021) 112866. doi:10.1016/j.jphotochem.2020.112866.spa
dc.relation.references[0-13] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, et al., Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Applied Materials & Interfaces. 4 (2012) 4024–4030. doi:10.1021/am300835p.spa
dc.relation.references[0-14] Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies, Chemical Reviews. 120 (2019) 919–985. doi:10.1021/acs.chemrev.9b00201.spa
dc.relation.references[0-15] P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu, International Journal of Hydrogen Energy. 38 (2013) 11840–11846. doi:10.1016/j.ijhydene.2013.06.131.spa
dc.relation.references[0-16] Y. Zhu, Y. Zhou, Preparation of pure ZnO nanoparticles by a simple solid-state reaction method, Applied Physics A. 92 (2008) 275–278. doi:10.1007/s00339-008-4533-z.spa
dc.relation.references[0-17] K.B. Baharudin, N. Abdullah, D. Derawi, Effect of calcination temperature on the physicochemical properties of zinc oxide nanoparticles synthesized by coprecipitation, Materials Research Express. 5 (2018) 125018. doi:10.1088/2053-1591/aae243.spa
dc.relation.references[0-18] M. Anvarinezhad, A. Javadi, H. Jafarizadeh-Malmiri, Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles – hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process, Green Processing and Synthesis. 9 (2020) 375–385. doi:10.1515/gps-2020-0040.spa
dc.relation.references[0-19] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chemistry. 19 (2016) 211–216. doi:10.1016/j.proche.2016.03.095.spa
dc.relation.references[0-20] M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Synthesis of ZnO nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles, Applied Surface Science. 256 (2009) 298–304. doi:10.1016/j.apsusc.2009.08.019.spa
dc.relation.references[0-21] P. Singh, A. Kumar, Deepak, D. Kaur, ZnO nanocrystalline powder synthesized by ultrasonic mist-chemical vapour deposition, Optical Materials. 30 (2008) 1316–1322. doi:10.1016/ j.optmat.2007.06.012.spa
dc.relation.references[0-22] J.F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valadés-Pelayo, H. de Lasa, Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt, Applied Catalysis B: Environmental. 211 (2017) 337–348. doi:10.1016/j.apcatb.2017.04.029.spa
dc.relation.references[0-23] Y.G. Kim, W.-K. Jo, Photodeposited-metal/ CdS/ZnO heterostructures for solar photocatalytic hydrogen production under different conditions, International Journal of Hydrogen Energy. 42 (2017) 11356–11363. doi:10.1016/j.ijhydene.2017.02.176.spa
dc.relation.references[0-24] M.-Y. Xie, K.-Y. Su, X.-Y. Peng, R.-J. Wu, M. Chavali, W.-C. Chang, Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2–ZnO under Visible light, Journal of the Taiwan Institute of Chemical Engineers. 70 (2017) 161–167. doi:10.1016/j.jtice.2016.10.034.spa
dc.relation.references[0-25] H. Yang, Z. Dai, Z. Sun, Upconversion luminescence and kinetics in Er3+:YAlO3 under 652.2 nm excitation, Journal of Luminescence. 124 (2007) 207–212. doi:10.1016/j.jlumin.2006.02.021.spa
dc.relation.references[0-26] Chaika, M., Tomala, R., Vovk, O., Nizhankovskyi, S., Mancardi, G., & Strek, W. Upconversion luminescence in Cr3+: YAG single crystal under infrared excitation. Journal of Luminescence, 226 (2020), 117467. 10.1016/j.jlumin.2020.117467.spa
dc.relation.references[0-27] Y. Li, Y. Guo, S. Li, Y. Li, J. Wang, Efficient visible-light photocatalytic hydrogen evolution over platinum supported titanium dioxide nanocomposites coating up-conversion luminescence agent (Er3+:Y3Al5O12/Pt–TiO2). International Journal of Hydrogen Energy. 40 (2015) 2132–2140. doi:10.1016/j.ijhydene.2014.12.023.spa
dc.relation.references[0-28] D. Wang, X. Wang, J. Liu, M. Zhang, Y. Song, Z. Zhang, et al., Preparation of high proportion of Z-scheme Er3+:Y3Al5O12@Nb2O5/Pt/In2O3 composite for enhanced visible-light driven photocatalytic hydrogen production, Materials Science and Engineering: B. 257 (2020) 114549. doi:10.1016/j.mseb.2020.114549.spa
dc.relation.references[0-29] L.N. Yin, Y. Li, J. Wang, Y.M. Kong, Y. Zhai, B.X. Wang, et al., The improvement of solar photocatalytic activity of ZnO by doping with Er3+:Y3Al5O12 during Dye degradation, Russian Journal of Physical Chemistry A. 86 (2012) 2049–2056. doi:10.1134/s0036024412130262.spa
dc.relation.references[0-30] L. Yin, Y. Li, J. Wang, Y. Zhai, J. Wang, Y. Kong, et al., Preparation of Er3+:Y3Al5O12 /TiO2‐ZnO composite and application of solar energy in photocatalytic degradation of organic dyes, Environmental Progress & Sustainable Energy. 32 (2012) 697–704. doi:10.1002/ep.11688.spa
dc.relation.references[0-31] B. Ghanbari Shohany, A. Khorsand Zak, Doped ZnO nanostructures with selected elements - structural, morphology and optical properties: A Review, Ceramics International. 46 (2020) 5507–5520. doi:10.1016/j.ceramint.2019.11.051.spa
dc.relation.references[0-32] M.F. Manzoor, E. Ahmed, M. Ahmad, I. Ahmad, A.M. Rana, A. Ali, et al., Enhanced photocatalytic activity of hydrogen evolution through Cu incorporated ZnO nano composites, Materials Science in Semiconductor Processing. 120 (2020) 105278. doi:10.1016/j.mssp.2020.105278.spa
dc.relation.references[0-33] A.M. Huerta-Flores, E. Luévano-Hipólito, L.M. Torres-Martínez, A. Torres-Sánchez, Photocatalytic H2 production and CO2 reduction on Cu, Ni-doped ZnO: Effect of metal doping and oxygen vacancies, Journal of Materials Science: Materials in Electronics. 30 (2019) 18506–18518. doi:10.1007/s10854-019-02204-0.spa
dc.relation.references[1-1] B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnology Research and Innovation. 3 (2019) 275–290. doi:10.1016/j.biori.201 9.09.001.spa
dc.relation.references[1-2] D.I. Anwar, D. Mulyadi, Synthesis of Fe-TiO2 composite as a photocatalyst for degradation of methylene blue, Procedia Chemistry. 17 (2015) 49–54. doi:10.1016/j.proche.2015.12.131.spa
dc.relation.references[1-3] R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles, Optik. 127 (2016) 7143–7154. doi:10.1016/j.ijleo.2016.04.026.spa
dc.relation.references[1-4] A. Fujii, Z. Meng, C. Yogi, T. Hashishin, T. Sanada, K. Kojima, Preparation of Pt-loaded WO3 with different types of morphology and photocatalytic degradation of methylene blue, Surface and Coatings Technology. 271 (2015) 251–258. doi:10.1016/j.surfcoat.2014.11.070.spa
dc.relation.references[1-5] K. Dewangan, D. Singh, N. Satpute, R. Singh, A. Jaiswal, K. Shrivas, et al., Hydrothermally grown α-MoO3 microfibers for photocatalytic degradation of methylene blue dye, Journal of Molecular Liquids. 349 (2022) 118202. doi:10.1016/j.molliq.2021.118202.spa
dc.relation.references[1-6] J. Ambigadevi, P. Senthil Kumar, D.-V.N. Vo, S. Hari Haran, T.N. Srinivasa Raghavan, Recent developments in photocatalytic remediation of textile effluent using semiconductor based nanostructured catalyst: A Review, Journal of Environmental Chemical Engineering. 9 (2021) 104881. doi:10.1016/j.jece.2020.104881.spa
dc.relation.references[1-7] M.A. Franco, P.P. Conti, R.S. Andre, D.S. Correa, A review on chemiresistive ZnO gas sensors, Sensors and Actuators Reports. 4 (2022) 100100. doi:10.1016/j.snr.2022.100100.spa
dc.relation.references[1-8] S.M. Mustafa, A.A. Barzinjy, A.H. Hamad, An environmentally friendly green synthesis of Co2+ and Mn2+ ion doped ZnO nanoparticles to improve solar cell efficiency, Journal of Environmental Chemical Engineering. 11 (2023) 109514. doi:10.1016/j.jece.2023.109514.spa
dc.relation.references[1-9] T. Bi, Z. Du, S. Chen, H. He, X. Shen, Y. Fu, Preparation of flower-like ZnO photocatalyst with oxygen vacancy to enhance the photocatalytic degradation of methyl orange, Applied Surface Science. 614 (2023) 156240. doi:10.1016/j.apsusc.2022.156240.spa
dc.relation.references[1-10] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, M. Naushad, ZnO-based heterostructures as photocatalysts for hydrogen generation and Depollution: A Review, Environmental Chemistry Letters. 20 (2022) 1047–1081. doi:10.1007/s10311-021-01361-1.spa
dc.relation.references[1-11] M.M. Khan, J. Lee, M.H. Cho, Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect, Journal of Industrial and Engineering Chemistry. 20 (2014) 1584–1590. doi:10.1016/j.jiec.2013.08.002.spa
dc.relation.references[1-12] S. Senapati, S.K. Srivastava, S.B. Singh, Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure, Nanoscale. 4 (2012) 6604. doi:10.1039/c2nr31831h.spa
dc.relation.references[1-13] Ebrahimi, M. Samadi, S. Yousefzadeh, M. Soltani, A. Rahimi, T. Chou, et al., Improved solar-driven photocatalytic activity of hybrid graphene quantum dots/zno nanowires: A direct z-scheme mechanism, ACS Sustainable Chemistry & Engineering. 5 (2016) 367–375. doi:10.1021/acssuschemeng.6b01738.spa
dc.relation.references[1-14] Z. Zhang, H. Liu, H. Zhang, H. Dong, X. Liu, H. Jia, et al., Synthesis of spindle-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance, Superlattices and Microstructures. 65 (2014) 134–145. doi:10.1016/j.spmi.2013.10.045.spa
dc.relation.references[1-15] Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, et al., Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance, Chemical Engineering Journal. 379 (2020) 122295. doi:10.1016/j.cej.2019.122295.spa
dc.relation.references[1-16] M.C. Uribe-López, M.C. Hidalgo-López, R. López-González, D.M. Frías-Márquez, G. Núñez-Nogueira, D. Hernández-Castillo, et al., Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties, Journal of Photochemistry and Photobiology A: Chemistry. 404 (2021) 112866. doi:10.1016/j.jphotochem.2020.112866.spa
dc.relation.references[1-17] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, et al., Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Applied Materials & Interfaces. 4 (2012) 4024–4030. doi:10.1021/am300835p.spa
dc.relation.references[1-18] Y. Zhu, Y. Zhou, Preparation of pure ZnO nanoparticles by a simple solid-state reaction method, Applied Physics A. 92 (2008) 275–278. doi:10.1007/s00339-008-4533-z.spa
dc.relation.references[1-19] K.B. Baharudin, N. Abdullah, D. Derawi, Effect of calcination temperature on the physicochemical properties of zinc oxide nanoparticles synthesized by coprecipitation, Materials Research Express. 5 (2018) 125018. doi:10.1088/2053-1591/aae243.spa
dc.relation.references[1-20] M. Anvarinezhad, A. Javadi, H. Jafarizadeh-Malmiri, Green approach in fabrication of photocatalytic, antimicrobial, and antioxidant zinc oxide nanoparticles – hydrothermal synthesis using clove hydroalcoholic extract and optimization of the process, Green Processing and Synthesis. 9 (2020) 375–385. doi:10.1515/gps-2020-0040.spa
dc.relation.references[1-21] J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chemistry. 19 (2016) 211–216. doi:10.1016/j.proche.2016.03.095.spa
dc.relation.references[1-22] K. Irshad, M.T. Khan, A. Murtaza, Synthesis and characterization of transition-metals-doped ZnO nanoparticles by sol-gel auto-combustion method, Physica B: Condensed Matter. 543 (2018) 1–6. doi:10.1016/j.physb.2018.05.006.spa
dc.relation.references[1-23] M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Synthesis of ZnO nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles, Applied Surface Science. 256 (2009) 298–304. doi:10.1016/j.apsusc.2009.08.019.spa
dc.relation.references[1-24] P. Singh, A. Kumar, Deepak, D. Kaur, ZnO nanocrystalline powder synthesized by ultrasonic mist-chemical vapour deposition, Optical Materials. 30 (2008) 1316–1322. doi:10.1016/ j.optmat.2007.06.012.spa
dc.relation.references[1-25] M.R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles, Journal of Materials Research and Technology. 3 (2014) 363–369. doi:10.1016/j.jmrt.2014.07.001.spa
dc.relation.references[1-26] R. Meza-Gordillo, J. J. Villalobos-Maldonado, J. F. Pola-Albores, S. Enciso-Sáenz. Effect of titanium’s dioxide particle size immobilized on the photocatalytic oxidation of purple of bromocresol. Revista internacional de contaminación ambiental, 37. (2021). 10.20937/RICA.54008.spa
dc.relation.references[1-27] Długosz, O., & Banach, M. Continuous synthesis of photocatalytic nanoparticles of pure ZnO and ZnO modified with metal nanoparticles. Journal of Nanostructure in Chemistry, (2021) 1-17. doi:10.1007/s40097-021-00387-9.spa
dc.relation.references[1-28] J. Lv, Q. Hu, C. Cao, Y. Zhao. Modulation of valence band maximum edge and photocatalytic activity of BiOX by incorporation of halides. Chemosphere, (2018). 191, 427-437.doi: 10.1016/j.chemosphere.2017.09.149.spa
dc.relation.references[1-29] P. de Azevedo Basto, V. Estolano de Lima, A.A. de Melo Neto, Effect of curing temperature in the relative decrease peak intensity of calcium hydroxide pastes for assessing pozzolanicity of supplementary cementitious materials, Construction and Building Materials. 325 (2022) 126767. doi:10.1016/j.conbuildmat.2022.126767.spa
dc.relation.references[1-30] A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Solid State Sciences. 13 (2011) 251–256. doi:10.1016/j.solidstatesciences.2010.11.024.spa
dc.relation.references[1-31] R. Sivakami, S. Dhanuskodi, R. Karvembu, Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 152 (2016) 43–50. doi:10.1016/j.saa.2015.07.008.spa
dc.relation.references[1-32] V. Mote, Y. Purushotham, B. Dole, Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics. 6 (2012). doi:10.1186/2251-7235-6-6.spa
dc.relation.references[1-33] K. Momma, F. Izumi, Vesta: A three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography. 41 (2008) 653–658. doi:10.1107/s0021889808012016.spa
dc.relation.references[1-34] M. Kahouli, A. Barhoumi, A. Bouzid, A. Al-Hajry, S. Guermazi, Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method, Superlattices and Microstructures. 85 (2015) 7–23. doi:10.1016/j.spmi.2015.05.007.spa
dc.relation.references[1-35] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, et al., A comprehensive review of ZnO materials and Devices, Journal of Applied Physics. 98 (2005) 041301. doi:10.1063/1.1992666.spa
dc.relation.references[1-36] R. Raji, K.G. Gopchandran, ZnO nanostructures with tunable visible luminescence: Effects of kinetics of chemical reduction and annealing, Journal of Science: Advanced Materials and Devices. 2 (2017) 51–58. doi:10.1016/j.jsamd.2017.02.002.spa
dc.relation.references[1-37] A.M. Morales Rivera, J.E.R. López, J. Munevar, E.B. Saitovitch, L.C.M. Aldana, C.A.P. Vargas, Synthesis and characterization of the structural and magnetic properties of the Sm3-xGdxFe5O12 (x = 0.0 –1.0) garnets using solid-state reaction and citrate methods, Journal of Alloys and Compounds. 859 (2021) 157883. doi:10.1016/j.jallcom.2020.157883.spa
dc.relation.references[1-38] A.M. Ismail, A.A. Menazea, H.A. Kabary, A.E. El-Sherbiny, A. Samy, The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by sol–gel method, Journal of Molecular Structure. 1196 (2019) 332–337. doi:10.1016/j.molstruc.2019.06.084.spa
dc.relation.references[1-39] S. Estrada, M. Martínez-Luévanos, A. Perez-Berumen, C. M., García-Cerda. Relationship between morphology, porosity, and the photocatalytic activity of TiO2 obtained by sol–gel method assisted with ionic and nonionic surfactants. boletín de la sociedad española de cerámica y vidrio, (2020). 59(5), 209-218. doi: 10.1016/j.bsecv.2019.10.003.spa
dc.relation.references[1-40] V. Russo, M. Ghidelli, P. Gondoni, C.S. Casari, A. Li Bassi, Multi-wavelength Raman scattering of nanostructured Al-doped zinc oxide, Journal of Applied Physics. 115 (2014) 073508. doi:10.1063/1.4866322.spa
dc.relation.references[1-41] J.J. Beltrán, C.A. Barrero, A. Punnoose, Relationship between ferromagnetism and formation of carbon bonds in carbon doped ZnO powders, Physical Chemistry Chemical Physics. 21 (2019) 8808–8819. doi:10.1039/c9cp01277j.spa
dc.relation.references[1-42] H. Fukushima, H. Uchida, H. Funakubo, T. Katoda, K. Nishida. Evaluation of oxygen vacancies in ZnO single crystals and powders by micro-Raman spectroscopy. Journal of the Ceramic Society of Japan, 125(6), (2017). 445-448.doi. 10.2109/jcersj2.16262.spa
dc.relation.references[1-43] C. Charpentier, P. Prod’homme, I. Maurin, M. Chaigneau, P. Roca. Cabarrocas, X-ray diffraction and Raman spectroscopy for a better understanding of ZnO:Al growth process, EPJ Photovoltaics. 2 (2011) 25002. doi:10.1051/epjpv/2011026.spa
dc.relation.references[1-44] M. Acosta-Humánez, L. Montes-Vides, O. Almanza-Montero. Sol-gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. Dyna, 83(195), (2016). 224-228.doi: 10.15446/dyna.v83n195.50833.spa
dc.relation.references[1-45] G. Swati, M. Morampudi, Size-selective and facile synthesis of ZnO/ZnS core–shell nanostructure and its characterization, Applied Physics A. 127 (2021). doi:10.1007/s00339-021-04554-1.spa
dc.relation.references[1-46] A.M. Huerta-Flores, E. Luévano-Hipólito, L.M. Torres-Martínez, A. Torres-Sánchez, Photocatalytic H2 production and CO2 reduction on Cu, Ni-doped ZnO: Effect of metal doping and oxygen vacancies, Journal of Materials Science: Materials in Electronics. 30 (2019) 18506–18518. doi:10.1007/s10854-019-02204-0.spa
dc.relation.references[1-47] X. Bi, G. Du, A. Kalam, D. Sun, Y. Yu, Q. Su, et al., Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance, Chemical Engineering Science. 234 (2021) 116440. doi:10.1016/j.ces.2021.116440.spa
dc.relation.references[1-48] Dhupar, A., Kumar, S., Sharma, V., & Sharma, J. K. Mixed structure Zn (S, O) nanoparticles: synthesis and characterization. Materials Science Poland, 37(2) (2019), 230-237. doi:10.2478/msp-2019-0024.spa
dc.relation.references[1-49] M.R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles, Journal of Materials Research and Technology. 3 (2014) 363–369. doi:10.1016/j.jmrt.2014.07.001.spa
dc.relation.references[1-50] M.Y. Guo, A.M. Ng, F. Liu, A.B. Djurišić, W.K. Chan, H. Su, et al., Effect of native defects on photocatalytic properties of ZnO, The Journal of Physical Chemistry C. 115 (2011) 11095–11101. doi:10.1021/jp200926u.spa
dc.relation.references[1-51] T.P. Yendrapati, A. Gautam, S. Bojja, U. Pal, Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation, Solar Energy. 196 (2020) 540–548. doi:10.1016/j.solener.2019.12.054.spa
dc.relation.references[1-52] I. Khan, K. Saeed, I. Zekker, B. Zhang, A. H. Hendi, A. Ahmad, I. Khan. Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water, 14(2), (2022). 242. doi: 10.3390/w14020242.spa
dc.relation.references[1-53] A. Senthilraja, M. Durai, S. Mohanty, S. Kumaravel, R. Medidi,G. Periyasami, M. Shanthi. The influence of operational factors on the photocatalytic degradation of methylene blue dye in aqueous Sr-Au-ZnO suspensions under UV-A light. Journal of Molecular Structure, 1321, (2025), 139993. doi: 10.1016/j.molstruc.2024.139993.spa
dc.relation.references[1-54] K.Gupta, B. Sharma, V. Garg, P. Neelratan, V. Kumar, D. Kumar, S. K. Sharma. Enhanced photocatalytic degradation of methylene blue and methyl orange using biogenic ZnO NPs synthesized via Vachellia nilotica (Babool) leaves extract. Hybrid Advances, (2024) 100160. doi:10.1016/j.hybadv.2024.100160.spa
dc.relation.references[1-55] C.A.Soto-Robles, P. A., Luque, C.M. Gómez-Gutiérrez, O. Nava, A.R. Vilchis-Nestor, E. Lugo-Medina. Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results in Physics, (2019) 15, 102807. doi:10.1016/j.rinp.2019.10280.spa
dc.relation.references[1-56] M. Azarang, A. Shuhaimi, R. Yousefi, S.P. Jahromi. One-pot sol–gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of Methylene Blue. RSC Advances, 5(28), (2015) 21888-21896. doi:10.1039/C4RA16767H.spa
dc.relation.references[1-57] H. Sadiq, F. Sher, S. Sehar, E. Lima, S. Zhang, M. Iqbal. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. Journal of Molecular Liquids, (2021) 335, 116567. doi:10.1016/j.molliq.2021.116567.spa
dc.relation.references[1-58] Y. Feng, N. Feng, Y. Wei, G. Zhang. An in situ gelatin-assisted hydrothermal synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC advances, 4(16), (2014), 7933-794. doi:10.1039/C3RA46417B.spa
dc.relation.references[1-59] Y. Ibrahim, A.H. Abdullah, S. Abdul Rashid, E.N. Muhamad, Synthesis, physicochemical characterization of ZnO and α-MoO3/ZnO heterostructures and their photocatalytic activity for the methylene blue (MB) dye degradation, Optical Materials. 136 (2023) 113371. doi:10.1016/j.optmat.2022.113371.spa
dc.relation.references[1-60] S.N. Bukhari, A.A. Shah, M.A. Bhatti, A. Tahira, I.A. Channa, A.K. Shah, et al., Psyllium-husk-assisted synthesis of ZnO microstructures with improved photocatalytic properties for the degradation of methylene blue (MB), Nanomaterials. 12 (2022) 3568. doi:10.3390/nano12203568.spa
dc.relation.references[1-61] P. Maijan, T. Waen-ngoen, S. Suwanboon, S. Chantarak, S.P. Voravuthikunchai. Sustainable environmental-based synthesis of zinc oxide nanoparticles using para rubber leaf extract for photocatalytic degradation of organic pollutants and microbial control in wastewater treatment. Inorganic Chemistry Communications, (2024). 162, 112086. doi: 10.1016/j.inoche.2024.112086.spa
dc.relation.references[2-1] S.H. Mohr, J. Wang, G. Ellem, J. Ward, D. Giurco, Projection of world fossil fuels by country, Fuel. 141 (2015) 120–135. doi:10.1016/j.fuel.2014.10.030.spa
dc.relation.references[2-2] B. Zhang, S.-X. Zhang, R. Yao, Y.-H. Wu, J.-S. Qiu, Progress and prospects of hydrogen production: Opportunities and challenges, Journal of Electronic Science and Technology. 19 (2021) 100080. doi:10.1016/j.jnlest.2021.100080.spa
dc.relation.references[2-3] T. da Silva Veras, T.S. Mozer, D. da Costa Rubim Messeder dos Santos, A. da Silva César, Hydrogen: Trends, production and characterization of the main process worldwide, International Journal of Hydrogen Energy. 42 (2017) 2018–2033. doi:10.1016/j.ijhydene.2016.08.219.spa
dc.relation.references[2-4] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535. doi:10.1039/c3cs60378d.spa
dc.relation.references[2-5] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature. 238 (1972) 37–38. doi:10.1038/238037a0.spa
dc.relation.references[2-6] N.R. Khalid, M. Rizwan Kamal, M.B. Tahir, M. Rafique, N.A. Niaz, Y. Ali, et al., Fabrication of direct Z-scheme MoO3/N–MoS2 photocatalyst for synergistically enhanced H2 production, International Journal of Hydrogen Energy. 46 (2021) 39822–39829. doi:10.1016/j.ijhydene.2021.09.230.spa
dc.relation.references[2-7] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, Mu. Naushad, Zno-based heterostructures as photocatalysts for hydrogen generation and Depollution: A Review, Environmental Chemistry Letters. 20 (2022) 1047–1081. doi:10.1007/s10311-021-01361-1.spa
dc.relation.references[2-8] I. Ahmad, S. Shukrullah, M.Y. Naz, H.N. Bhatti, N.R. Khalid, S. Ullah, Rational design of ZnO–CuO–Au S-scheme heterojunctions for photocatalytic hydrogen production under Visible light, International Journal of Hydrogen Energy. 48 (2023) 12683–12698. doi:10.1016/j.ijhydene.2022.11.289.spa
dc.relation.references[2-9] D. Kong, X. Ruan, J. Geng, Y. Zhao, D. Zhang, X. Pu, et al., 0D/3D ZnIn2S4/Ag6Si2O7 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 Evolution under visible light, International Journal of Hydrogen Energy. 46 (2021) 28043–28052. doi:10.1016/j.ijhydene.2021.06.053.spa
dc.relation.references[2-10] T. Jafari, E. Moharreri, A. Amin, R. Miao, W. Song, S. Suib, Photocatalytic water splitting—The untamed dream: A review of recent advances, Molecules. 21 (2016) 900. doi:10.3390/molecules21070900.spa
dc.relation.references[2-11] X. Sun, H. Huang, Q. Zhao, T. Ma, L. Wang, Thin‐layered photocatalysts, Advanced Functional Materials. 30 (2020). doi:10.1002/adfm.201910005.spa
dc.relation.references[2-12] Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies, Chemical Reviews. 120 (2019) 919–985. doi:10.1021/acs.chemrev.9b00201.spa
dc.relation.references[2-13] P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu, International Journal of Hydrogen Energy. 38 (2013) 11840–11846. doi:10.1016/j.ijhydene.2013.06.131.spa
dc.relation.references[2-14] J.F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valadés-Pelayo, H. de Lasa, Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt, Applied Catalysis B: Environmental. 211 (2017) 337–348. doi:10.1016/j.apcatb.2017.04.029.spa
dc.relation.references[2-15] Y.G. Kim, W.-K. Jo, Photodeposited-metal/ CdS/ZnO heterostructures for solar photocatalytic hydrogen production under different conditions, International Journal of Hydrogen Energy. 42 (2017) 11356–11363. doi:10.1016/j.ijhydene.2017.02.176.spa
dc.relation.references[2-16] M.-Y. Xie, K.-Y. Su, X.-Y. Peng, R.-J. Wu, M. Chavali, W.-C. Chang, Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2–ZnO under Visible light, Journal of the Taiwan Institute of Chemical Engineers. 70 (2017) 161–167. doi:10.1016/j.jtice.2016.10.034.spa
dc.relation.references[2-17] H. Yang, Z. Dai, Z. Sun, Upconversion luminescence and kinetics in Er3+:YAlO3 under 652.2nm excitation, Journal of Luminescence. 124 (2007) 207–212. doi:10.1016/j.jlumin.2006.02.021.spa
dc.relation.references[2-18] Y. Li, Y. Guo, S. Li, Y. Li, J. Wang, Efficient visible-light photocatalytic hydrogen evolution over platinum supported titanium dioxide nanocomposites coating up-conversion luminescence agent (Er3+:Y3Al5O12/Pt–TiO2). International Journal of Hydrogen Energy. 40 (2015) 2132–2140. doi:10.1016/j.ijhydene.2014.12.023.spa
dc.relation.references[2-19] D. Wang, X. Wang, J. Liu, M. Zhang, Y. Song, Z. Zhang, et al., Preparation of high proportion of Z-scheme Er3+:Y3Al5O12@Nb2O5/Pt/In2O3 composite for enhanced visible-light driven photocatalytic hydrogen production, Materials Science and Engineering: B. 257 (2020) 114549. doi:10.1016/j.mseb.2020.114549.spa
dc.relation.references[2-20] S. Li, Z. Liu, C. Lu, Z. Qu, C. Piao, J. Tang, et al., Highly efficient visible-light driven photocatalytic hydrogen production over (MoSe2-RGO)/(Er3+:Y3Al5O12/ZnS)/RuO2 photocatalyst, Journal of Photochemistry and Photobiology A: Chemistry. 400 (2020) 112714. doi:10.1016/j.jphotochem.2020.112714.spa
dc.relation.references[2-21] Y. Zhou, S. Wei, S. Li, X. Liu, X. Shu, X. Zhang, et al., Sol-gel synthesis of Er3+:Y3Al5O12/TiO2Ta2O5/MoO2 composite membrane for visible-light driving photocatalytic hydrogen generation, International Journal of Hydrogen Energy. 42 (2017) 16362–16374. doi:10.1016/j.ijhydene.2017.05.213.spa
dc.relation.references[2-22] J. Wang, D. Wang, X. Zhang, C. Zhao, M. Zhang, Z. Zhang, et al., An anti-symmetric dual (ASD) Z-scheme photocatalytic system: (ZnIn2S4/ Er3+:Y3Al5O12@ZnTiO3/CaIn2S4) for organic pollutants degradation with simultaneous hydrogen evolution, International Journal of Hydrogen Energy. 44 (2019) 6592–6607. doi:10.1016/j.ijhydene.2019.01.214.spa
dc.relation.references[2-23] C. Lu, Y. Chen, Y. Li, C. Ma, H. Zhang, Y. Guo, et al., An effective quaternary nano-sized Er3+:Y3Al5O12/Pt–PdS/ZnS visible-light photocatalyst for H2 production, RSC Advances. 5 (2015) 54769–54776. doi:10.1039/c5ra11102a.spa
dc.relation.references[2-24] Chaika, M., Tomala, R., Vovk, O., Nizhankovskyi, S., Mancardi, G., & Strek, W. Upconversion luminescence in Cr3+: YAG single crystal under infrared excitation. Journal of Luminescence, 226 (2020), 117467. 10.1016/j.jlumin.2020.117467.spa
dc.relation.references[2-25] Chaika, M., Tomala, R., & Strek, W. Surface related laser induced white emission of Cr: YAG ceramic. Scientific Reports, 11(1) (2021), 14063. 10.1038/s41598-021-93638-2.spa
dc.relation.references[2-26] L.N. Yin, Y. Li, J. Wang, Y.M. Kong, Y. Zhai, B.X. Wang, et al., The improvement of solar photocatalytic activity of ZnO by doping with Er3+:Y3Al5O12 during Dye degradation, Russian Journal of Physical Chemistry A. 86 (2012) 2049–2056. doi:10.1134/s0036024412130262.spa
dc.relation.references[2-27] L. Yin, Y. Li, J. Wang, Y. Zhai, J. Wang, Y. Kong, et al., Preparation of Er3+:Y3Al5O12 /TiO2‐ZnO composite and application of solar energy in photocatalytic degradation of organic dyes, Environmental Progress & Sustainable Energy. 32 (2012) 697–704. doi:10.1002/ep.11688.spa
dc.relation.references[2-28] Y. Guo, Y. Li, S. Li, L. Zhang, Y. Li, J. Wang, Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for Hydrogen Evolution from aqueous methanol solution, Energy. 82 (2015) 72–79. doi:10.1016/j.energy.2014.12.071.spa
dc.relation.references[2-29] H.E. Hansen, F. Seland, S. Sunde, O.S. Burheim, B.G. Pollet, Two routes for sonochemical synthesis of platinum nanoparticles with narrow size distribution, Materials Advances. 2 (2021) 1962–1971. doi:10.1039/d0ma00909a.spa
dc.relation.references[2-30] K. Momma, F. Izumi, vesta: A three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography. 41 (2008) 653–658. doi:10.1107/s0021889808012016.spa
dc.relation.references[2-31] H.Yan, J. Yang, G. Ma, G. Wu, X. Zong, X. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis, 266(2) (2009), 165-168. doi:10.1016/j.jcat.2009.06.024.spa
dc.relation.references[2-32] S.Mustapha, M. Ndamitso, A. Abdulkareem, J. Tijani, D. Shuaib,A. Mohammed, A. Kumaila. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(4), (2019). 045013.doi: 10.1088/2043-6254/ab52f7.spa
dc.relation.references[2-33] Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, et al., A comprehensive review of ZnO materials and Devices, Journal of Applied Physics. 98 (2005). doi:10.1063/1.1992666.spa
dc.relation.references[2-34] J. do Lunz, K.P. Licona, A. Antunes Ribeiro, J.A. Delgado, L.M. Alonso, M.V. de Oliveira, Effect of sonochemical technique on the morphology and crystallinity of hydroxyapatite nanoparticles, Materials Science Forum. 820 (2015) 287–292. doi:10.4028/www.scientific.net/msf.820.287.spa
dc.relation.references[2-35] E. Luévano-Hipólito, L.M. Torres-Martínez, Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation, Materials Science and Engineering: B. 226 (2017) 223–233. doi:10.1016/j.mseb.2017.09.023.spa
dc.relation.references[2-36] V. Mote, Y. Purushotham, B. Dole, Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics. 6 (2012). doi:10.1186/2251-7235-6-6.spa
dc.relation.references[2-37] R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles, Journal of Materials Research and Technology. 3 (2014) 363–369. doi:10.1016/j.jmrt.2014.07.001.spa
dc.relation.references[2-38] H. Fukushima, H. Uchida, H. Funakubo, T. Katoda, K. Nishida. Eval uation of oxygen vacancies in ZnO single crystals and powders by micro-Raman spectroscopy. Journal of the Ceramic Society of Japan, 125(6), (2017). 445-448.doi. 10.2109/jcersj2.16262.spa
dc.relation.references[2-39] V. Mote, Y. Purushotham, B. Dole, Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics. 6 (2012). doi:10.1186/2251-7235-6-6.spa
dc.relation.references[2-40] N. Alahmadi, M.S. Amin, R.M. Mohamed, Superficial visible-light-responsive Pt@ZnO nanorods photocatalysts for effective remediation of ciprofloxacin in water, Journal of Nanoparticle Research. 22 (2020). doi:10.1007/s11051-020-04968-7.spa
dc.relation.references[2-41] A. Dhupar, S. Kumar, V. Sharma, J.K. Sharma, Mixed structure Zn (S, O) nanoparticles: Synthesis and characterization, Materials Science-Poland. 37 (2019) 230–237. doi:10.2478/msp-2019-0024.spa
dc.relation.references[2-42] T.P. Yendrapati, A. Gautam, S. Bojja, U. Pal, Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation, Solar Energy. 196 (2020) 540–548. doi:10.1016/j.solener.2019.12.054.spa
dc.relation.references[2-43] S.Mukhopadhyay, I. Mondal, U. Pal, P. Devi. (2015). Fabrication of hierarchical ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. Physical Chemistry Chemical Physics, 17(31),(2015) 20407-20415. doi: 10.1039/C5CP02689J.spa
dc.relation.references[2-44] J. Yu, L. Qi, M. Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. The Journal of Physical Chemistry C, 114(30) (2010)., 13118-13125. doi: 10.1021/jp104488b.spa
dc.relation.references[2-45] P. Muniraja, K.S. Kumar, A. Sudharani, M. Ramanadha, S. Ramu, B. Poornaprakash, et al., Structural, morphological, optical, photoluminescence, and magnetic properties of Zn1-xNixO nanoparticles, Journal of Superconductivity and Novel Magnetism. 33 (2019) 493–502. doi:10.1007/s10948-019-5092-6.spa
dc.relation.references[2-46] N. Akter, T. Ahmed, I. Haque, M.K. Hossain, G. Ray, M.M. Hossain, et al., XPS valence band observable light-responsive system for photocatalytic acid red114 dye decomposition using a ZnO–Cu2O heterojunction, Heliyon. 10 (2024). doi:10.1016/j.heliyon.2024.e30802.spa
dc.relation.references[2-47] H. Zhang, C. Kong, W. Li, G. Qin, H. Ruan, M. Tan, The formation mechanism and stability of P-type N-doped Zn-rich ZnO films, Journal of Materials Science: Materials in Electronics. 27 (2016) 5251–5258. doi:10.1007/s10854-016-4421-9.spa
dc.relation.references[2-48] F. Xie, M. Yang, Z.-Y. Song, W.-C. Duan, X.-J. Huang, S.-H. Chen, et al., Highly sensitive electrochemical detection of Hg (II) promoted by oxygen vacancies of plasma-treated ZnO: XPS and DFT calculation analysis, Electrochimica Acta. 426 (2022) 140757. doi:10.1016/j.electacta.2022.140757.spa
dc.relation.references[2-49] F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO zno in photocatalysis: A bottom-up approach to control defect density, Nanoscale. 6 (2014) 10224–10234. doi:10.1039/c4nr01887g.spa
dc.relation.references[2-50] N.S. Resende, C.A. Perez, J.G. Eon, M. Schmal, The effect of coating TiO2 on the CO oxidation of the PT/γ-alumina catalysts, Catalysis Letters. 141 (2011) 1685–1692. doi:10.1007/s10562-011-0695-y.spa
dc.relation.references[2-51] Y. Xia, T. Le, J. Peng, A.V. Ravindra, L. Xu, Pt quantum dots decorated nest-like 3D porous ZnO nanostructures for enhanced visible-light degradation of RHB, Journal of Porous Materials. 27 (2020) 1339–1348. doi:10.1007/s10934-020-00906-z.spa
dc.relation.references[2-52] B. Himabindu, N.S. Latha Devi, P. Nagaraju, B. Rajini Kanth, A nanostructured Al-doped ZnO as an ultra-sensitive room-temperature ammonia gas sensor, Journal of Materials Science: Materials in Electronics. 34 (2023). doi:10.1007/s10854-023-10337-6.spa
dc.relation.references[2-53] M. Bowker, Photocatalytic hydrogen production and oxygenate photoreforming. Catalysis letters, 142(8) (2012) 923-929. doi: 10.1007/s10562-012-0875-4.spa
dc.relation.references[2-54] C. Huo, T. Wang, Z. Yin, X. Xu, J. He, S. Cao, Tuning the thickness of 3D inverse opal ZnO/ZnS heterojunction promotes excellent photocatalytic hydrogen evolution, Ceramics International. 49 (2023) 14673–14680. doi:10.1016/j.ceramint.2023.01.059.spa
dc.relation.references[2-55] T. Wang, H.-J. Wang, J.-S. Lin, J.-L. Yang, F.-L. Zhang, X.-M. Lin, et al., Plasmonic photocatalysis: Mechanism, applications and perspectives, Chinese Journal of Structural Chemistry. 42 (2023) 100066. doi:10.1016/j.cjsc.2023.100066.spa
dc.relation.references[2-56] S.T. Kochuveedu, Y.H. Jang, D. Kim. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chemical Society Reviews, 42(21)(2013) 8467-8493. doi:10.103/c3cs60043b.spa
dc.relation.references[2-57] V. Subramanian, E. Wolf, P.V. Kamat. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. Journal of the American Chemical Society, (2004). 126(15), 4943-4950.spa
dc.relation.references[2-58] X. Zhang, Y. Chen, R. Liu, D.P. Tsai Plasmonic photocatalysis. Reports on Progress in Physics, 76(4) (2013) 046401. doi:10.1088/0034-4885/76/4/046401.spa
dc.relation.references[2-59] M. K. Ikhwan, R. S. Azis, M. Hashim, D. Holland, A. P. Howes, A. Zakaria, J. Hassan. The Formation of Yttrium Aluminium Monoclinic (Y4Al2O9) by Sol-Gel Synthesis at Low Heating Temperature. Journal of the Australian Ceramics Society, 50 (2) (2014) 17-24.spa
dc.relation.references[2-60] Z. Liu, X. Cui, C. Piao, J. Tang, S. Li, D. Fang, D. J. Wang. Construction and preparation of a coated Z-schee (CNT-Ni2P-CNT/Er3+:Y3Al5O12)@Bi12GeO20 photocatalyst for the enhanced photocatalytic conversion of hexavalent chromium with the simultaneous degradation of concomitant organic pollutants. Powder technology, 368 (2020) 213-226. doi: 10.1016/j.powtec.2020.04.067.spa
dc.relation.references[2-61] M. Hosseinifard, H. Goldooz, A. Badiei, A. Kazemzadeh. Preparation and Characterization of Y3Al5O12:Cr3+Nanophosphor by Electrochemical Technique. Advanced Ceramics Progress, 6(2) (2020) 30-34. doi: 10.30501/ACP.2020.109547.spa
dc.relation.references[2-62] R. Nakamoto, B. Xu, C. Xu, H. Xu, L. Bellaiche, Properties of rare-earth iron garnets from first principles, Physical Review B. 95 (2017). doi:10.1103/physrevb.95.024434.spa
dc.relation.references[2-63] M.V. dos S. Rezende, C.W. Paschoal, Radioluminescence enhancement in Eu3+ doped Y3Al5O12 phosphors by Ga substitution, Optical Materials. 46 (2015) 530–535. doi:10.1016/j.optmat.2015.05.019.spa
dc.relation.references[2-64] I. Martial, S. Bigotta, M. Eichhorn, C. Kieleck, J. Didierjean, N. Aubry, et al., Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and Laser Operation, Optical Materials. 32 (2010) 1251–1255. doi:10.1016/j.optmat.2010.04.029.spa
dc.relation.references[2-65] S. Kostić, Z. Ž. Lazarević,V. Radojević, A. Milutinović . Study of structural and optical properties of YAG and Nd: YAG single crystals. Materials Research Bulletin 63(2015), 80-87. doi: 10.1016/j.materresbull.2014.11.033.spa
dc.relation.references[2-66] W. Dewo, V. Gorbenko, Y. Zorenko, T. Runka, Raman spectroscopy Ce3+ doped Lu3Al5O12 single crystalline films grown onto Y3Al5O12 substrate, Optical Materials: X. 3 (2019) 100029. doi:10.1016/j.omx.2019.100029.spa
dc.relation.references[67] R. Tomar, P. Kumar, A. Kumar, A. Kumar, P. Kumar, R.P. Pant, et al., Investigations on structural and magnetic properties of Mn doped Er2O3. Solid State Sciences. 67 (2017) 8–12. doi:10.1016/j.solidstatesciences.2017.03.003.spa
dc.relation.references[2-68] L. Yin, Y. Li, J. Wang, Y. Zhai, Y. Kong, J. Gao, et al., Effect of different doped elements on visible light absorption and ultraviolet light emission on Er3+:Y3Al5O12, Journal of Luminescence. 132 (2012) 3010–3018. doi:10.1016/j.jlumin.2012.06.017.spa
dc.relation.references[2-69] D.K. Sardar, C.C. Russell, J.B. Gruber, T.H. Allik, Absorption intensities and emission cross sections of Principal Intermanifold and inter-stark transitions of Er3+(4f11) in Polycrystalline Ceramic Garnet Y3Al5O12, Journal of Applied Physics. 97 (2005). doi:10.1063/1.1928327.spa
dc.relation.references[2-70] H. Qiu, M. Tan, T.Y. Ohulchanskyy, J.F. Lovell, G. Chen, Recent progress in upconversion photodynamic therapy, Nanomaterials. 8 (2018) 344. doi:10.3390/nano8050344.spa
dc.relation.references[2-71] H. Xu, Z. Dai, Z. Jiang, Luminescence characteristics of ultraviolet upconversion from Er3 +:YAG crystal by Ar+ laser (488 nm) excitation, The European Physical Journal D. 17 (2001) 79–83. doi:10.1007/s100530170040.spa
dc.relation.references[2-72] M. Thommes, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Chemistry International. 38 (2016) 25–25. doi:10.1515/ci-2016-0119.spa
dc.relation.references[2-73] M. Dimitropoulos, C. Aggelopoulos, L. Sygellou, P. Koutsoukos, S. Yannopoulos, Unveiling the Photocorrosion Mechanism of Zinc Oxide Photocatalyst: Interplay between Surface Corrosion and Regeneration, Journal of Environmental Chemical Engineering. (2023). doi:10.2139/ssrn.4513954.spa
dc.relation.references[2-74] D.Dworschak, C. Brunnhofer, M. Valtiner, M. Photocorrosion of ZnO single crystals during electrochemical water splitting. ACS Applied Materials & Interfaces, 12(46), (2020) 51530-51536.doi: 10.1021/acsami.0c15508.spa
dc.relation.references[2-75] J.M. Goncalves, A. Kumar, M.I. da Silva, H. Toma, P.R. Martins, P. R., Araki, K., Angnes, L. (2021). Nanoporous gold‐based materials for electrochemical energy storage and conversion. Energy Technology, 9(5), 2000927. doi: 10.1002/ente.202000927.spa
dc.relation.references[2-76] R. Kumar, G. Swain, S. Dutta, Synthesis of visible light-sensitive photocatalysts for hydrogen production, Fuel. 360 (2024) 130555. doi:10.1016/j.fuel.2023.130555.spa
dc.relation.references[2-77] A.B. Patil, B.D. Jadhav, P.V. Bhoir, Efficient photocatalytic hydrogen production over Ce/ZnO from aqueous methanol solution, Materials for Renewable and Sustainable Energy. 10 (2021). doi:10.1007/s40243-021-00199-5.spa
dc.relation.references[2-78] M. Huerta-Flores, E. Luévano-Hipólito, L.M. Torres-Martínez, A. Torres-Sánchez, Photocatalytic H2 production and CO2 reduction on Cu, Ni-doped ZnO: Effect of metal doping and oxygen vacancies, Journal of Materials Science: Materials in Electronics. 30 (2019) 18506–18518. doi:10.1007/s10854-019-02204-0.spa
dc.relation.references[2-79] H. Yoo, S. Kahng, J. Hyeun Kim, Z-scheme assisted ZnO/Cu2O-CuO photocatalysts to increase photoactive electrons in hydrogen evolution by water splitting, Solar Energy Materials and Solar Cells. 204 (2020) 110211. doi:10.1016/j.solmat.2019.110211.spa
dc.relation.references[2-80] X. Ji, H. Xu, S. Liang, L. Gan, R. Zhang, X. Wang, 3D ordered macroporous Pt/ZnS@ZnO core-shell heterostructure for highly effective photocatalytic hydrogen evolution, International Journal of Hydrogen Energy. 47 (2022) 17640–17649. doi:10.1016/j.ijhydene.2022.03.241.spa
dc.relation.references[2-81] A. Oskenbay, D. Salikhov, O. Rofman, I. Rakhimbek, Z. Shalabayev, N. Khan, et al., Solid-state synthesis of ZnS/ZnO nanocomposites and their decoration with NiS cocatalyst for photocatalytic hydrogen production, Ceramics International. 49 (2023) 32246–32260. doi:10.1016/j.ceramint.2023.07.200.spa
dc.relation.references[2-82] J.-H. Goh, K.-W. Tan, J.-E. Liow, P.-S. Khiew, W.-S. Chiu, C.-Y. Haw, Modulating oxygen vacancy of ZnO for visible-light driven photocatalytic H2 evolution via facile gas treatment approach, Mater. Sci. Semicond. Process.178 (2024) 108445. doi:10.1016/j.mssp.2024.108445.spa
dc.relation.references[2-83] G.L. Chiarello, M.H. Aguirre, E. Selli, Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2, Journal of Catalysis. 273 (2010) 182–190. doi:10.1016/j.jcat.2010.05.012.spa
dc.relation.references[2-84] S. Oros-Ruiz, R. Zanella, R. López, A. Hernández-Gordillo, R. Gómez, Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with Urea, Journal of Hazardous Materials. 263 (2013) 2–10. doi:10.1016/j.jhazmat.2013.03.057.spa
dc.relation.references[3-1] E.Dupont, R. Koppelaar, H. Jeanmart. Global available solar energy under physical and energy return on investment constraints. Applied Energy, 257 (2020), 113968. doi:10.1016/j.apenergy.2019.113968.spa
dc.relation.references[3-2] K. Ahmad, H.R. Ghatak, S.M. Ahuja, A review on photocatalytic remediation of environmental pollutants and H2 production through water splitting: A sustainable approach, Environmental Technology & Innovation. 19 (2020) 100893. doi:10.1016/j.eti.2020.100893.spa
dc.relation.references[3-3] Z. Ziobrowski, A. Rotkegel. Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage and Utilization. Energies, 17(8).(2024).1808.doi: 10.3390/en17081808.spa
dc.relation.references[3-4] M.I. Dagareh, H.Y. Hafeez, J. Mohammed, A.D. Kafadi, A.B. Suleiman, C.E. Ndikilar, Current trends and future perspectives on ZnO-based materials for robust and stable solar fuel (H2) generation, Chemical Physics Impact. 9 (2024) 100774. doi:10.1016/j.chphi.2024.100774.spa
dc.relation.references[3-5] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520–7535. doi:10.1039/c3cs60378d.spa
dc.relation.references[3-6] P. Dhiman, G. Rana, A. Kumar, G. Sharma, D.-V.N. Vo, Mu. Naushad, Zno-based heterostructures as photocatalysts for hydrogen generation and Depollution: A Review, Environmental Chemistry Letters. 20 (2022) 1047–1081. doi:10.1007/s10311-021-01361-1.spa
dc.relation.references[3-7] I. Ahmad, S. Shukrullah, M.Y. Naz, H.N. Bhatti, N.R. Khalid, S. Ullah, Rational design of ZnO–CuO–Au S-scheme heterojunctions for photocatalytic hydrogen production under Visible light, International Journal of Hydrogen Energy. 48 (2023) 12683–12698. doi:10.1016/j.ijhydene.2022.11.289.spa
dc.relation.references[3-8] B. Ghanbari Shohany, A. Khorsand Zak, Doped ZnO nanostructures with selected elements - structural, morphology and optical properties: A Review, Ceramics International. 46 (2020) 5507–5520. doi:10.1016/j.ceramint.2019.11.051.spa
dc.relation.references[3-9] T. Munir, A. Mahmood, N. Ahmad, M. Atif, K.S. Alimgeer, A. Fatehmulla, et al., Structural, electrical and optical properties of Zn1−xCuxO (x = 0.00–0.09) nanoparticles, Journal of King Saud University - Science. 33 (2021) 101330. doi:10.1016/j.jksus.2020.101330.spa
dc.relation.references[3-10] K. Luo, Q. Zhang, H. Yuan, Y. Liu, X. Wang, J. Zhang, et al., Facile synthesis of Ag/ Zn1−xCuxO nanoparticle compound photocatalyst for high-efficiency photocatalytic degradation: Insights into the synergies and antagonisms between Cu and Ag, Ceramics International. 47 (2021) 48–56. doi:10.1016/j.ceramint.2020.06.102.spa
dc.relation.references[3-11] K.G. Kanade, B.B. Kale, J.-O. Baeg, S.M. Lee, C.W. Lee, S.-J. Moon, et al., Self-assembled aligned cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation, Materials Chemistry and Physics. 102 (2007) 98–104. doi:10.1016/j.matchemphys.2006.11.012.spa
dc.relation.references[3-12] M.F. Manzoor, E. Ahmed, M. Ahmad, I. Ahmad, A.M. Rana, A. Ali, et al., Enhanced photocatalytic activity of hydrogen evolution through Cu incorporated ZnO nano composites, Materials Science in Semiconductor Processing. 120 (2020) 105278. doi:10.1016/j.mssp.2020.105278.spa
dc.relation.references[3-13] A. Samanta, M.N. Goswami, P.K. Mahapatra, Nickel doped ZnO nanoparticles as a novel photocatalytic and Multiferroic Semiconductor, Physica E: Low-Dimensional Systems and Nanostructures. 158 (2024) 115885. doi:10.1016/j.physe.2023.115885.spa
dc.relation.references[3-14] F. Destalina, I. Mujtahid, P.L. Mutmainnah, Photocatalytic and antibacterial activities of zinc oxide (ZnO) nanoparticles doped with nickel (Ni), AIP Conference Proceedings. 3161 (2024) 030011. doi:10.1063/5.0172436.spa
dc.relation.references[3-15] S. Kant;Amit Kumar, A comparative analysis of structural, optical and photocatalytic properties of ZnO and Ni doped ZnO nanospheres prepared by Sol Gel Method, Advanced Materials Letters. 3 (2012) 350–354. doi:10.5185/amlett.2012.5344.spa
dc.relation.references[3-16] A.M. Huerta-Flores, E. Luévano-Hipólito, L.M. Torres-Martínez, A. Torres-Sánchez, Photocatalytic H2 production and CO2 reduction on Cu, Ni-doped ZnO: Effect of metal doping and oxygen vacancies, Journal of Materials Science: Materials in Electronics. 30 (2019) 18506–18518. doi:10.1007/s10854-019-02204-0.spa
dc.relation.references[3-17] Y. Guo, Y. Li, S. Li, L. Zhang, Y. Li, J. Wang, Enhancement of visible-light photocatalytic activity of Pt supported potassium niobate (Pt-KNbO3) by up-conversion luminescence agent (Er3+:Y3Al5O12) for Hydrogen Evolution from aqueous methanol solution, Energy. 82 (2015) 72–79. doi:10.1016/j.energy.2014.12.071.spa
dc.relation.references[3-18] K. Momma, F. Izumi, vesta: A three-dimensional visualization system for electronic and structural analysis, Journal of Applied Crystallography. 41 (2008) 653–658. doi:10.1107/s0021889808012016.spa
dc.relation.references[3-19] H.Yan, J. Yang, G. Ma, G. Wu, X. Zong, X. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis, 266(2) (2009), 165-168. doi:10.1016/j.jcat.2009.06.024.spa
dc.relation.references[3-20] E. Luévano-Hipólito, L.M. Torres-Martínez, Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation, Materials Science and Engineering: B. 226 (2017) 223–233. doi:10.1016/j.mseb.2017.09.023.spa
dc.relation.references[3-21] S.Mustapha, M. Ndamitso, A. Abdulkareem, J. Tijani, D. Shuaib,A. Mohammed, A. Kumaila. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(4), (2019). 045013.doi: 10.1088/2043-6254/ab52f7.spa
dc.relation.references[3-22] V. Mote, Y. Purushotham, B. Dole, Williamson-hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of Theoretical and Applied Physics. 6 (2012). doi:10.1186/2251-7235-6-6.spa
dc.relation.references[3-23] R. Sivakami, S. Dhanuskodi, R. Karvembu, Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 152 (2016) 43–50. doi:10.1016/j.saa.2015.07.008.spa
dc.relation.references[3-24] R. Sonkar, N.J. Mondal, B. Boro, M.P. Ghosh, D. Chowdhury, Cu doped ZnO nanoparticles: Correlations between tuneable optoelectronic, antioxidant and photocatalytic activities, Journal of Physics and Chemistry of Solids. 185 (2024) 111715. doi:10.1016/j.jpcs.2023.111715.spa
dc.relation.references[3-25] D. Kumar, M. Singh, A.K. Singh, Crystallite size effect on lattice strain and crystal structure of Ba1/4Sr3/4MnO3 layered perovskite manganite, AIP Conference Proceedings. (2018). doi:10.1063/1.5032520.spa
dc.relation.references[3-26] R. Parra, F.Z. Haque, Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles, Journal of Materials Research and Technology. 3 (2014) 363–369. doi:10.1016/j.jmrt.2014.07.001.spa
dc.relation.references[3-27] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, et al., A comprehensive review of ZnO materials and Devices, Journal of Applied Physics. 98 (2005) 041301. doi:10.1063/1.1992666.spa
dc.relation.references[3-28] R Mohapatra, J., Mishra, D. K., Berma, V., Kamilla, S. K., Sakthivel, R., Mohapatra, B. K., & Singh, S. K. Structural and magnetic properties of Zn1−xCuxO (0≤ x≤ 0.1) systems. Advanced Science Letters, 4(2) (2011), 458-462.doi: 10.1166/asl.2011.1228.spa
dc.relation.references[3-29] P. Maddahi, N. Shahtahmasebi, A. Kompany, M. Mashreghi, S. Safaee, F. Roozban, Effect of doping on structural and optical properties of ZnO nanoparticles: Study of antibacterial properties, Materials Science-Poland. 32 (2014) 130–135. doi:10.2478/s13536-013-0181-x.spa
dc.relation.references[3-30] R. Dridi, M. BenAmor, N. Mahdhi, A. Amlouk, K. Boubaker, M. Amlouk, Structural, optical and conductivity studies of amorphous ZnxNi1-xO thin films along with Wettability and photocatalytic tests, Journal of Non-Crystalline Solids. 449 (2016) 1–11. doi:10.1016/j.jnoncrysol.2016.07.008.spa
dc.relation.references[3-31] H. Fukushima, H. Uchida, H. Funakubo, T. Katoda, K. Nishida. Eval uation of oxygen vacancies in ZnO single crystals and powders by micro-Raman spectroscopy. Journal of the Ceramic Society of Japan, 125(6), (2017). 445-448.doi. 10.2109/jcersj2.16262.spa
dc.relation.references[3-32] N. Alahmadi, M.S. Amin, R.M. Mohamed, Superficial visible-light-responsive Pt@ZnO nanorods photocatalysts for effective remediation of ciprofloxacin in water, Journal of Nanoparticle Research. 22 (2020). doi:10.1007/s11051-020-04968-7.spa
dc.relation.references[3-33] A.K. Rana, Y. Kumar, P. Rajput, S.N. Jha, D. Bhattacharyya, P.M. Shirage, Search for origin of room temperature ferromagnetism properties in Ni-doped ZnO nanostructure, ACS Applied Materials & Interfaces. 9 (2017) 7691–7700. doi:10.1021/acsami.6b12616.spa
dc.relation.references[3-34] Z.H. Alhashem, Ni-doped ZnO nanoparticles derived by the sol–gel method: Structural, optical, and magnetic characteristics, Arabian Journal of Chemistry. 17 (2024) 105701. doi:10.1016/j.arabjc.2024.105701.spa
dc.relation.references[3-35] P. Bose, S. Ghosh, S. Basak, M.K. Naskar, A facile synthesis of mesoporous NiO nanosheets and their application in CO oxidation, Journal of Asian Ceramic Societies. 4 (2016) 1–5. doi:10.1016/j.jascer.2016.01.006.spa
dc.relation.references[3-36] D. Scolfaro, A.D. Rodrigues, M.P. de Godoy, Optical absorption in full composition range of ZnCuO thin films synthesized by spray pyrolysis, Applied Physics A. 124 (2018). doi:10.1007/s00339-018-2201-5.spa
dc.relation.references[3-37] T.H. Tran, V.T. Nguyen, Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: A brief review, International Scholarly Research Notices. 2014 (2014) 1–14. doi:10.1155/2014/856592.spa
dc.relation.references[3-38] X. Bi, G. Du, A. Kalam, D. Sun, Y. Yu, Q. Su, et al., Tuning oxygen vacancy content in tio2 nanoparticles to enhance the photocatalytic performance, Chemical Engineering Science. 234 (2021) 116440. doi:10.1016/j.ces.2021.116440.spa
dc.relation.references[3-39] A. Dhupar, S. Kumar, V. Sharma, J.K. Sharma, Mixed structure Zn(S,O) nanoparticles: Synthesis and characterization, Materials Science-Poland. 37 (2019) 230–237. doi:10.2478/msp-2019-0024.spa
dc.relation.references[3-40] J.-H. Weng, M.-C. Kao, K.-H. Chen, M.-Z. Li, Influences of Cu doping on the microstructure, optical and resistance switching properties of zinc oxide thin films, Nanomaterials. 13 (2023) 2685. doi:10.3390/nano13192685.spa
dc.relation.references[3-41] B. Singh, A. Kaushal, I. Bdikin, K. Venkata Saravanan, J.M.F. Ferreira, Effect of Ni doping on structural and optical properties of Zn1-xNixO nanopowder synthesized via low cost sono-chemical method, Materials Research Bulletin. 70 (2015) 430–435. doi:10.1016/j.materresbull.2015.05.009.spa
dc.relation.references[3-42] T.P. Yendrapati, A. Gautam, S. Bojja, U. Pal, Formation of ZnO@CuS nanorods for efficient photocatalytic hydrogen generation, Solar Energy. 196 (2020) 540–548. doi:10.1016/j.solener.2019.12.054.spa
dc.relation.references[3-43] G. preet Singh, J. Singh, K. Chandel, S. Arora, S. Singh, D. Singh, et al., Synthesis and characterization of pristine CuO and Mg/Cuo nanostructures for their anti-breast cancer and photocatalytic degradation applications: Experimental and DFT investigations, Materials Today Communications. 40 (2024) 109398. doi:10.1016/j.mtcomm.2024.109398.spa
dc.relation.references[3-44] S. Aejitha, G. Dhanraj, T. Govindaraj, N. Senthil kumar, F. Maiz, Mohd. Shkir, et al., Effect of La-doping on NiO photocatalyst for enhancing photocatalytic degradation performance under visible light irradiation: DFT calculations and degradation mechanism, Inorganic Chemistry Communications. 156 (2023) 111172. doi:10.1016/j.inoche.2023.111172.spa
dc.relation.references[3-45] P. Muniraja, K.S. Kumar, A. Sudharani, M. Ramanadha & R. P. Vijayalakshmi, Structural, Morphological, Optical, Photoluminescence, and Magnetic Properties of Zn1-xNixO Nanoparticles. Journal of Superconductivity and Novel Magnetism, 33 (2020) 493-502. doi:10.1007/s10948-019-5092-6.spa
dc.relation.references[3-46] A. Sáenz-Trevizo, P. Amézaga-Madrid, P. Pizá-Ruiz, W. Antúnez-Flores, M. Miki-Yoshida, Optical band gap estimation of zno Nanorods, Materials Research. 19 (2016) 33–38. doi:10.1590/1980-5373-mr-2015-0612.spa
dc.relation.references[3-47] W.T. Alsaggaf, A. Shawky, M.H.H. Mahmoud, S-scheme CuO/ZnO p-n heterojunctions for endorsed photocatalytic reduction of mercuric ions under visible light, Inorganic Chemistry Communications. 143 (2022) 109778. doi:10.1016/j.inoche.2022.109778.spa
dc.relation.references[3-48] A. Sedky, N. Afify, A. Almohammedi, E.M. Ibrahim, A.M. Ali, Structural, optical, photoluminescence and magnetic investigation of doped and Co-doped ZnO nanoparticles, Optical and Quantum Electronics. 55 (2023). doi:10.1007/s11082-023-04718-8.spa
dc.relation.references[3-49] D. Anbuselvan, S. Nilavazhagan, A. Santhanam, N. Chidhambaram, K.V. Gunavathy, T. Ahamad, et al., Room temperature ferromagnetic behavior of nickel-doped zinc oxide dilute magnetic semiconductor for Spintronics Applications, Physica E: Low-Dimensional Systems and Nanostructures. 129 (2021) 114665. doi:10.1016/j.physe.2021.114665.spa
dc.relation.references[3-50] L. Radjehi, A. Djelloul, M. Bououdina, R. Siab, W. Tebib, Structural and magnetic properties of copper oxide films deposited by DC magnetron reactive sputtering, Applied Physics A. 124 (2018). doi:10.1007/s00339-018-2141-0.spa
dc.relation.references[3-51] S.M. Yakout, A.M. El-Sayed, Enhanced ferromagnetic and photocatalytic properties in Mn or Fe doped p-CuO/n-ZnO nanocomposites, Advanced Powder Technology. 30 (2019) 2841–2850. doi:10.1016/j.apt.2019.08.033.spa
dc.relation.references[3-52] H. Ahmoum, G. Li, M. Boughrara, R. Gebauer, M.S. Su’ait, K. Tanji, et al., Oxygen vacancy suppress room temperature ferromagnetism of p-type Cu doped ZnO: Synthesis and density functional theory, Micro and Nanostructures. 167 (2022) 207291. doi:10.1016/j.micrna.2022.207291.spa
dc.relation.references[3-53] A.M. Morales Rivera. Tesis de maestría. Síntesis y Caracterización de granates del Tipo Sm3-xTRxFe5O12 (TR = dy, GD, Lu y La), Universidad Nacional de Colombia. (2017).spa
dc.relation.references[3-54] A. Morais, R.A. Torquato, U.C. Silva, C. Salvador, C. Chesman, Effect of doping and sintering in structure and magnetic properties of the diluted magnetic semiconductor ZnO:Ni, Cerâmica. 64 (2018) 627–631. doi:10.1590/0366-69132018643722463.spa
dc.relation.references[3-55] J. Yu, L. Qi, M. Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. The Journal of Physical Chemistry C, 114(30) (2010)., 13118-13125. doi: 10.1021/jp104488b.spa
dc.relation.references[3-56] M. Thommes, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), Chemistry International. 38 (2016) 25–25. doi:10.1515/ci-2016-0119.spa
dc.relation.references[3-57] C. Huo, T. Wang, Z. Yin, X. Xu, J. He, S. Cao, Tuning the thickness of 3D inverse opal ZnO/ZnS heterojunction promotes excellent photocatalytic hydrogen evolution, Ceramics International. 49 (2023) 14673–14680. doi:10.1016/j.ceramint.2023.01.059.spa
dc.relation.references[3-58] S.Mukhopadhyay, I. Mondal, U. Pal, P. Devi. (2015). Fabrication of hierarchical ZnO/CdS heterostructured nanocomposites for enhanced hydrogen evolution from solar water splitting. Physical Chemistry Chemical Physics, 17(31),(2015) 20407-20415. doi: 10.1039/C5CP02689J.spa
dc.relation.references[3-59] P. Nayak, S. Kumar, I. Sinha, K.K. Singh, ZnO/CuO nanocomposites from recycled printed circuit board: Preparation and photocatalytic properties, Environmental Science and Pollution Research. 26 (2019) 16279–16288. doi:10.1007/s11356-019-04986-6.spa
dc.relation.references[3-60] X. Guo, W. Ju, Z. Luo, B. Ruan, K. Wu, P. Li, ZnO/CuO based dye sensitized photocatalytic hydrogen production from water, International Journal of Hydrogen Energy. 98 (2025) 1087–1098. doi:10.1016/j.ijhydene.2024.12.117.spa
dc.relation.references[3-61] M.A. Mannaa, K.F. Qasim, F.T. Alshorifi, S.M. El-Bahy, R.S. Salama, Role of NiO nanoparticles in enhancing structure properties of TiO2 and its applications in photodegradation and hydrogen evolution, ACS Omega. 6 (2021) 30386–30400. doi:10.1021/acsomega.1c03693.spa
dc.relation.references[3-62] M. Saeed, K. Albalawi, I. Khan, N. Akram, I.H.A. Abd El-Rahim, S.K. Alhag, et al., Synthesis of p-n NiO-ZnO heterojunction for photodegradation of Crystal Violet Dye, Alexandria Engineering Journal. 65 (2023) 561–574. doi:10.1016/j.aej.2022.09.048.spa
dc.relation.references[3-63] J. Li, F. Zhao, L. Zhang, M. Zhang, H. Jiang, S. Li, J. Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity. RSC Advances, 5(83),(2015), 67610-67616.doi: 10.1039/C5RA08903D.spa
dc.relation.references[3-64] G. Swati, M. Morampudi, Size-selective and facile synthesis of ZnO/ZnS core–shell nanostructure and its characterization, Applied Physics A. 127 (2021). doi:10.1007/s00339-021-04554-1.spa
dc.relation.references[3-65] A. Sayari, L. El Mir, Annealing and Ni content effects on EPR and structural properties of Zn1–xNixO aerogel nanoparticles, Materials Science-Poland. 35 (2017) 454–462. doi:10.1515/msp-2017-0062.spa
dc.relation.references[3-66] M. Dimitropoulos, C. Aggelopoulos, L. Sygellou, P. Koutsoukos, S. Yannopoulos, Unveiling the Photocorrosion Mechanism of Zinc Oxide Photocatalyst: Interplay between Surface Corrosion and Regeneration, Journal of Environmental Chemical Engineering. (2023). doi:10.2139/ssrn.4513954. [61]spa
dc.relation.references[3-67] M. Dimitropoulos, C. Aggelopoulos, L. Sygellou, P. Koutsoukos, S. Yannopoulos, Unveiling the Photocorrosion Mechanism of Zinc Oxide Photocatalyst: Interplay between Surface Corrosion and Regeneration, Journal of Environmental Chemical Engineering. (2023). doi:10.2139/ssrn.4513954.spa
dc.relation.references[3-68] J. Do Lunz, K.P. Licona, A. Antunes Ribeiro, J.A. Delgado, L.M. Alonso, M.V. de Oliveira, Effect of sonochemical technique on the morphology and crystallinity of hydroxyapatite nanoparticles, Materials Science Forum. 820 (2015) 287–292. doi:10.4028/www.scientific.net/msf.820.287.spa
dc.relation.references[3-69] R. Nakamoto, B. Xu, C. Xu, H. Xu, L. Bellaiche, Properties of rare-earth iron garnets from first principles, Physical Review B. 95 (2017). doi:10.1103/physrevb.95.024434.spa
dc.relation.references[3-70] S.T. Kochuveedu, Y.H. Jang, D. Kim. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chemical Society Reviews, 42(21)(2013) 8467-8493. doi:10.103/c3cs60043b.spa
dc.relation.references[3-71] X. Zhang, Y. Chen, R. Liu, D.P. Tsai Plasmonic photocatalysis. Reports on Progress in Physics, 76(4) (2013) 046401. doi:10.1088/0034-4885/76/4/046401.spa
dc.relation.references[3-72] Y. Zhou, S. Wei, S. Li, X. Liu, X. Shu, X. Zhang, et al., Sol-gel synthesis of Er3+:Y3Al5O12/TiO2Ta2O5/MoO2 composite membrane for visible-light driving photocatalytic hydrogen generation, International Journal of Hydrogen Energy. 42 (2017) 16362–16374. doi:10.1016/j.ijhydene.2017.05.213.spa
dc.relation.references[3-73] R. Kumar, G. Swain, S. Dutta, Synthesis of visible light-sensitive photocatalysts for hydrogen production, Fuel. 360 (2024) 130555. doi:10.1016/j.fuel.2023.130555.spa
dc.relation.references[3-74] Tox-Prediction, ProTox-3.0 - Prediction of TOXicity of Chemicals. (n.d.). https://tox.charite.de/protox3/index.php?site=compound_input (accessed February 14, 2025).spa
dc.relation.references[3-75] A.B. Patil, B.D. Jadhav, P.V. Bhoir, Efficient photocatalytic hydrogen production over Ce/ZnO from aqueous methanol solution, Materials for Renewable and Sustainable Energy. 10 (2021). doi:10.1007/s40243-021-00199-5.spa
dc.relation.references[3-76] M. Wang, S. Shen, L. Li, Z. Tang, J. Yang, Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts, Journal of Materials Science. 52 (2017) 5155–5164. doi:10.1007/s10853-017-0752-z.spa
dc.relation.references[3-77] M. Hashim, M. Usman, S. Ahmad, R. Shah, A. Ali, N.U. Rahman, ZnO/NiO nanocomposite with enhanced photocatalytic H2 production, International Journal of Photoenergy. 2024 (2024) 1–11. doi:10.1155/2024/2676368.spa
dc.relation.references[3-78] S. Meng, Z. Haifeng, Z. Yunlong, Study on the performance and mechanism of photocatalytic hydrogen production by NiO/ZnO-graphene composite materials under low irradiation conditions, Diamond and Related Materials. 151 (2025) 111823. doi:10.1016/j.diamond.2024.111823.spa
dc.relation.references[3-79] Z. Liu, H. Bai, S. Xu, D.D. Sun, Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generation, International Journal of Hydrogen Energy. 36 (2011) 13473–13480. doi:10.1016/j.ijhydene.2011.07.137.spa
dc.relation.references[3-80] H. Yoo, S. Kahng, J. Hyeun Kim, Z-scheme assisted ZnO/Cu2O-CuO photocatalysts to increase photoactive electrons in hydrogen evolution by water splitting, Solar Energy Materials and Solar Cells. 204 (2020) 110211. doi:10.1016/j.solmat.2019.110211.spa
dc.relation.references[3-81] Y. Li, Y. Guo, S. Li, Y. Li, J. Wang, Efficient visible-light photocatalytic hydrogen evolution over platinum supported titanium dioxide nanocomposites coating up-conversion luminescence agent (Er3+:Y3Al5O12/Pt–TiO2). International Journal of Hydrogen Energy. 40 (2015) 2132–2140. doi:10.1016/j.ijhydene.2014.12.023.spa
dc.relation.references[3-82] G.L. Chiarello, M.H. Aguirre, E. Selli, Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2, Journal of Catalysis. 273 (2010) 182–190. doi:10.1016/j.jcat.2010.05.012.spa
dc.relation.references[3-83] S. Oros-Ruiz, R. Zanella, R. López, A. Hernández-Gordillo, R. Gómez, Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with Urea, Journal of Hazardous Materials. 263 (2013) 2–10. doi:10.1016/j.jhazmat.2013.03.057.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesspa
dc.subject.proposalZnOspa
dc.subject.proposalSustituciónspa
dc.subject.proposalSol-gelspa
dc.subject.proposalEr3+:YAGspa
dc.subject.proposalAgente de sacrificiospa
dc.subject.proposalGeneración de H2spa
dc.subject.proposalZnOeng
dc.subject.proposalSubstitutioneng
dc.subject.proposalSol-geleng
dc.subject.proposalEr³⁺:YAGeng
dc.subject.proposalSacrificial agenteng
dc.subject.proposalH2 generationeng
dc.subject.wikidatafotocatálisisspa
dc.subject.wikidataphotocatalysiseng
dc.subject.wikidataóxido de zincspa
dc.subject.wikidatazinc oxideeng
dc.subject.wikidataZnOspa
dc.subject.wikidatasemiconductorspa
dc.subject.wikidatasemiconductoreng
dc.subject.wikidataproducción de hidrógenospa
dc.subject.wikidatahydrogen production processeng
dc.titleSíntesis y evaluación de la actividad fotocatalítica de semiconductores de Zn1-xMxO (M = Cu y Ni, x = 0,01 - 0,20) en la generación de H2spa
dc.title.translatedSynthesis and evaluation of the photocatalytic activity of Zn1-xMxO (M = Cu and Ni, x = 0.01 - 0.20) semiconductors in H2 generationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1049640135.2025.pdf
Tamaño:
17.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: