Optimización de una planta piloto de aprovechamiento integral de naranja en términos energéticos y exergéticos
| dc.contributor.advisor | Velásquez Arredondo, Héctor Iván | |
| dc.contributor.author | Arango Meneses, Juan Fernando | |
| dc.date.accessioned | 2021-04-19T19:22:50Z | |
| dc.date.available | 2021-04-19T19:22:50Z | |
| dc.date.issued | 2021-04-10 | |
| dc.description.abstract | La falta de políticas económico-productivas efectivas y la problemática ambiental ha conllevado a la implementación de técnicas que permitan llevar a cabo procesos productivos de aprovechamiento de manera efectiva, sin causar defectos en la producción. En este trabajo de investigación se llevó a cabo una evaluación de diferentes casos de estudios propuestos con el fin de optimizar una planta de aprovechamiento integral de naranja., desde el punto de vista energético y exergético. Para ello se estableció un caso base a partir de la información del proyecto de Evaluación Integrada con Criterios de Sustentabilidad, del Proceso de Extracción por Arrastre de Vapor de Aceite Esencial de Cáscara de Naranja (Citrus Sinensis) de los Valles de la Provincia de Arequipa, en la Perspectiva de su Utilización Comercial. Al final de la investigación, se estableció la condición ideal que minimiza la exergía destruida con un valor de 17.14%, y así mismo otros elementos como el consumo de combustible del sistema. Finalmente, como un añadido a esta investigación, se desarrolló un análisis termoeconómico que permita establecer los efectos de las configuraciones planteadas, en los costos exergéticos del sistema., y de esta forma comprobar que la minimización de la exergía destruida conlleva a una disminución en los costos exergéticos. | spa |
| dc.description.abstract | The lack of effective economic-productive policies and the environmental problem has caused the implementation of techniques that allows to carry out productive processes of effective use, without causing defects in production. In this research, an evaluation of different case studies proposed was carried out, in order to optimize a plant for the integral use of orange, from the energy and exergy point of view. For this, a base case was established based on the information from Evaluación Integrada con Criterios de Sustentabilidad, del Proceso de Extracción por Arrastre de Vapor de Aceite Esencial de Cáscara de Naranja (Citrus Sinensis) de los Valles de la Provincia de Arequipa, en la Perspectiva de su Utilización Comercial. At the end of this research, the ideal condition that minimizes the exergy destroyed was established with a value of 17.14%, as well as other elements such as the fuel consumption of the system. Finally, as an addition to this research, a thermoeconomic analysis was developed that allows to establish the effects of the proposed configurations on the exergetic costs of the system, and in this way to verify that the minimization of the destroyed exergy leads to a decrease in the exergy costs. | eng |
| dc.description.degreelevel | Maestría | spa |
| dc.description.researcharea | Sistemas energéticos | spa |
| dc.description.technicalinfo | Optimización exergética. | |
| dc.format.extent | 144 páginas | spa |
| dc.format.mimetype | application/pdf | spa |
| dc.identifier.instname | Universidad Nacional de Colombia -Sede Medellín | spa |
| dc.identifier.reponame | Repositorio Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https:/repositorio.una.edu.co | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79404 | |
| dc.language.iso | spa | spa |
| dc.publisher | Universidad Nacional de Colombia | spa |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
| dc.publisher.department | Departamento de Ingeniería Mecánica | spa |
| dc.publisher.faculty | Facultad de Minas | spa |
| dc.publisher.place | Medellín | spa |
| dc.publisher.program | Medellín - Minas - Maestría en Ingeniería Mecánica | spa |
| dc.relation.references | Akbari Vakilabadi, M., Bidi, M., & Najafi, A. F. (2018). Energy, Exergy analysis and optimization of solar thermal power plant with adding heat and water recovery system. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2018.06.094 | spa |
| dc.relation.references | Akbarpour Ghiasi, R., Fallah, M., Lotfan, S., & Rosen, M. A. (2020). A new approach for optimization of combined cycle system based on first level of exergy destruction splitting. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2019.100600 | spa |
| dc.relation.references | Allaf, T., Tomao, V., Besombes, C., & Chemat, F. (2013). Thermal and mechanical intensification of essential oil extraction from orange peel via instant autovaporization. Chemical Engineering and Processing: Process Intensification, 72. https://doi.org/10.1016/j.cep.2013.06.005 | spa |
| dc.relation.references | Álvarez Hincapié, C., & Velásquez Arredondo, H. (2013). Exergía en sistemas biológicos: Aproximación holística para el estudio de ecosistemas y el manejo ambiental. Producción + Limpia. | spa |
| dc.relation.references | Baron, R. D., Pérez, L. L., Salcedo, J. M., Córdoba, L. P., & Sobral, P. J. do A. (2017). Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2017.02.004 | spa |
| dc.relation.references | Basu, P. (2010). Biomass gasification and pyrolysis practical design and theory. In Elseiver (p. 376). https://doi.org/10.1016/B978-0-12-374988-8.00001-5 | spa |
| dc.relation.references | Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal Design and Optimization. In Thermal Design and Optimization. https://doi.org/10.1016/S0140-7007(97)87632-3 | spa |
| dc.relation.references | Cao, Y., Mihardjo, L. W., Farhang, B., Ghaebi, H., & Parikhani, T. (2020). Development, assessment and comparison of three high-temperature geothermal-driven configurations for power and hydrogen generation: Energy, exergy thermoeconomic and optimization. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.09.013 | spa |
| dc.relation.references | Catrini, P., Cipollina, A., Micale, G., Piacentino, A., & Tamburini, A. (2017). Exergy analysis and thermoeconomic cost accounting of a Combined Heat and Power steam cycle integrated with a Multi Effect Distillation-Thermal Vapour Compression desalination plant. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.04.032 | spa |
| dc.relation.references | Cengel, Y., & Michael A, B. (2014). Termodinámica. In Mc Graw Hill (Vol. 7). https://doi.org/10.1007/s13398-014-0173-7.2 | spa |
| dc.relation.references | Cheméo. (2018). Chemical Properties of D-Limonene. https://www.chemeo.com/cid/32-729-7/D-Limonene#ref-joback | spa |
| dc.relation.references | Cypriano, D. Z., da Silva, L. L., & Tasic, L. (2018). High value-added products from the orange juice industry waste. Waste Management. https://doi.org/10.1016/j.wasman.2018.07.028 | spa |
| dc.relation.references | DANE. (2016). INSUMOS Y FACTORES ASOCIADOS A LA PRODUCCIÓN AGROPECUARIA: El cultivo de la naranja Valencia (Citrus sinensis [L.] Osbeck) y su producción como respuesta a la aplicación de correctivos y fertilizantes y al efecto de la polinización dirigida con abeja Apis. 99. https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_oct_2016.pdf | spa |
| dc.relation.references | Deng, J., Wang, R., Wu, J., Han, G., Wu, D., & Li, S. (2008). Exergy cost analysis of a micro-trigeneration system based on the structural theory of thermoeconomics. Energy. https://doi.org/10.1016/j.energy.2008.05.001 | spa |
| dc.relation.references | Dincer, I., Midilli, A., & Kucuk, H. (2014). Progress in exergy, energy, and the environment. In Progress in Exergy, Energy, and the Environment. https://doi.org/10.1007/978-3-319-04681-5 | spa |
| dc.relation.references | Dincer, I., & Rosen, M. A. (2013). Chapter 9 - Exergy Analysis of Thermal Energy Storage Systems. In I. Dincer & M. A. Rosen (Eds.), Exergy (Second Edition) (Second Edi, pp. 133–166). | spa |
| dc.relation.references | Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-097089-9.00009-7 Ebrahimgol, H., Aghaie, M., Zolfaghari, A., & Naserbegi, A. (2020). A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Annals of Nuclear Energy. https://doi.org/10.1016/j.anucene.2020.107540 | spa |
| dc.relation.references | Fallah, M., Ghiasi, R. A., & Mokarram, N. H. (2018). A comprehensive comparison among different types of geothermal plants from exergy and thermoeconomic points of view. Thermal Science and Engineering Progress. https://doi.org/10.1016/j.tsep.2017.10.017 | spa |
| dc.relation.references | Flórez-Orrego, D., & de Oliveira Junior, S. (2017). Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach. Energy, 137, 234–250. https://doi.org/10.1016/j.energy.2017.06.157 | spa |
| dc.relation.references | Food and Agriculture Organization of the United Nations. (2017). FAO Statistics. www.fao.org | spa |
| dc.relation.references | Galaverna, G., & Dall’Asta, C. (2014). Production Processes of Orange Juice and Effects on Antioxidant Components. In Processing and Impact on Antioxidants in Beverages. https://doi.org/10.1016/B978-0-12-404738-9.00021-0 | spa |
| dc.relation.references | Geankoplis, C. J. (2003). Transport Processes and Separation Process Principles. In Transport processes and separation process principles (p. 696). https://doi.org/10.1053/j.ajkd.2008.04.005 | spa |
| dc.relation.references | Gupta, R., Asgari, S., Moazamigoodarzi, H., Pal, S., & Puri, I. K. (2020). Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction. Energy. https://doi.org/10.1016/j.energy.2020.117625 | spa |
| dc.relation.references | Han, T., Wang, C., Zhu, C., & Che, D. (2018). Optimization of waste heat recovery power generation system for cement plant by combining pinch and exergy analysis methods. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2018.05.039 | spa |
| dc.relation.references | Hosseini, S. S., Khodaiyan, F., & Yarmand, M. S. (2016). Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. International Journal of Biological Macromolecules, 82, 920–926. https://doi.org/10.1016/j.ijbiomac.2015.11.007 | spa |
| dc.relation.references | Kotas, T. J. (1985a). Appendix A - Chemical exergy and enthalpy of devaluation. In T. J. B. T.-T. E. M. of T. P. A. Kotas (Ed.), The Exergy Method of Thermal Plant Analysis (pp. 236–262). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-408-01350-5.50014-3 | spa |
| dc.relation.references | Kotas, T. J. (1985b). Chapter 2 - Basic exergy concepts. In T. J. B. T.-T. E. M. of T. P. A. Kotas (Ed.), The Exergy Method of Thermal Plant Analysis (pp. 29–56). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-408-01350-5.50009-X | spa |
| dc.relation.references | Kotas, T. J. (1985c). Chapter 6 - Thermoeconomic applications of exergy. In T. J. Kotas (Ed.), The Exergy Method of Thermal Plant Analysis (pp. 197–235). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-408-01350-5.50013-1 | spa |
| dc.relation.references | Kutz, M. (2019). Handbook of farm, dairy and food machinery engineering. In Handbook of Farm, Dairy and Food Machinery Engineering. https://doi.org/10.1016/C2017-0-01578-1 León Ruiz, Y., & Moréno Sepulveda, J. C. (2006). EVALUACIÓN DEL EFECTO DE LA POLINIZACIÓN DIRIGIDA A CULTIVOS DE NARANJA (Citrus sinensis VALENCIA " Y " OMBLIGON CON EL USO DE LA ABEJA Apis mellifera EN EL MUNICIPIO DE SASAIMA, CUNDINAMARCA. | spa |
| dc.relation.references | Liu, C., Xie, Z., Sun, F., & Chen, L. (2017). Exergy analysis and optimization of coking process. Energy, 139, 694–705. https://doi.org/10.1016/j.energy.2017.08.006 | spa |
| dc.relation.references | Liu, D., Wang, H., Liu, H., Zheng, Z., Zhang, Y., & Yao, M. (2020). Identification of factors affecting exergy destruction and engine efficiency of various classes of fuel. Energy. https://doi.org/10.1016/j.energy.2020.118897 | spa |
| dc.relation.references | Lopez-Velazquez, M. A., Santes, V., Balmaseda, J., & Torres-Garcia, E. (2013). Pyrolysis of orange waste: A thermo-kinetic study. Journal of Analytical and Applied Pyrolysis, 99, 170–177. https://doi.org/10.1016/j.jaap.2012.09.016 | spa |
| dc.relation.references | Mata-Torres, C., Zurita, A., Cardemil, J. M., & Escobar, R. A. (2019). Exergy cost and thermoeconomic analysis of a Rankine Cycle + Multi-Effect Distillation plant considering time-varying conditions. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2019.04.023 | spa |
| dc.relation.references | Meramo-Hurtado, S. I., & González-Delgado, Á. D. (2019). Biorefinery synthesis and design using sustainability parameters and hierarchical/3D multi-objective optimization. Journal of Cleaner Production, 240, 118134. https://doi.org/10.1016/j.jclepro.2019.118134 | spa |
| dc.relation.references | Ministerio de Agricultura y Riego del Perú. (2018). Serie de Estadísticas de Producción Agrícola (SEPA). http://frenteweb.minagri.gob.pe/sisca/?mod=consulta_cult | spa |
| dc.relation.references | Mirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Adva nces in Engineering Software. https://doi.org/10.1016/j.advengsoft.2016.01.008 | spa |
| dc.relation.references | Moncada, J., Tamayo, J. A., & Cardona, C. A. (2014). Techno-economic and environmental assessment of essential oil extraction from Citronella (Cymbopogon winteriana) and Lemongrass (Cymbopogon citrus): A Colombian case to evaluate different extraction technologies. Industrial Crops and Products, 54, 175–184. https://doi.org/10.1016/j.indcrop.2014.01.035 | spa |
| dc.relation.references | Moncada, J., Tamayo, J. A., & Cardona, C. A. (2016). Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. Journal of Cleaner Production, 112, 172–181. https://doi.org/10.1016/j.jclepro.2015.09.067 | spa |
| dc.relation.references | Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. (2010). Fundamentals of Engineering Thermodynamics. In John Wiley & Sons, Inc. http://books.google.com/books?id=oyt8iW6B4aUC&pgis=1 | spa |
| dc.relation.references | Nisar, T., Wang, Z. C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670–680. https://doi.org/10.1016/j.ijbiomac.2017.08.068 | spa |
| dc.relation.references | Rashidi, H., & Khorshidi, J. (2018). Exergy analysis and multiobjective optimization of a biomass gasification based multigeneration system. International Journal of Hydrogen Energy, 43(5), 2631–2644. https://doi.org/10.1016/j.ijhydene.2017.12.073 | spa |
| dc.relation.references | Rewatkar, P. M., & Basavaraj, M. (2020). Determination of Specific Heat of Nagpur Orange Fruit (Citrus-Sinesis L) as a Function of Temperature and Moisture Content. In ICRRM 2019 – System Reliability, Quality Control, Safety, Maintenance and Management. https://doi.org/10.1007/978-981-13-8507-0_14 | spa |
| dc.relation.references | Saberian, H., Hamidi-Esfahani, Z., Ahmadi Gavlighi, H., & Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification. https://doi.org/10.1016/j.cep.2017.03.025 | spa |
| dc.relation.references | Sahoo, U., Kumar, R., Singh, S. K., & Tripathi, A. K. (2018). Energy, exergy, economic analysis and optimization of polygeneration hybrid solar-biomass system. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2018.09.093 | spa |
| dc.relation.references | Sánchez Villafana, E. D., & Vargas Machuca Bueno, J. P. (2019). Thermoeconomic and environmental analysis and optimization of the supercritical CO 2 cycle integration in a simple cycle power plant. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2019.02.052 | spa |
| dc.relation.references | Singh, K., & Das, R. (2017). Exergy optimization of cooling tower for HGSHP and HVAC applications. Energy Conversion and Management, 136, 418–430. https://doi.org/10.1016/j.enconman.2017.01.024 | spa |
| dc.relation.references | Srivastava, A. K. (2012). Advances in citrus nutrition. In Advances in Citrus Nutrition. https://doi.org/10.1007/978-94-007-4171-3 | spa |
| dc.relation.references | Sucheta, Rai, S. K., Chaturvedi, K., & Yadav, S. K. (2019). Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2019.01.022 | spa |
| dc.relation.references | Sukumaran, S., & Sudhakar, K. (2018). Performance analysis of solar powered airport based on energy and exergy analysis. Energy, 149, 1000–1009. https://doi.org/10.1016/j.energy.2018.02.095 | spa |
| dc.relation.references | Szargut, J., Morris, D. R., & Steward, F. R. (1987). Exergy analysis of thermal, chemical, and metallurgical processes. Hemisphere Publishing,New York, NY. https://www.osti.gov/biblio/6157620 | spa |
| dc.relation.references | Taheri, K., & Gadow, R. (2017). Industrial compressed air system analysis: Exergy and thermoeconomic analysis. In CIRP Journal of Manufacturing Science and Technology. https://doi.org/10.1016/j.cirpj.2017.04.004 | spa |
| dc.relation.references | Tetra Pak. (2004). The Orange Book (Ulla Ringblom (ed.); 2nd ed.). Tetra Pak Processing Systems AB. | spa |
| dc.relation.references | Valdez Tantani, V., Cordova Huaracha, V., Condori Flores, S. S., Cordova Hancco, Y. L., Soria Miranda, L. A., Cardenas Malaga, M. A., Medina de Miranda, E. A., Miranda Zanardi, L. F., & Alencastre Medrano, Y. A. (2016). Evaluación Integrada Con Criterios de Sustentabilidad, del Proceso de Extracción por Arrastre de Vapor de Aceite Esencial de Cáscara de Naranja (Citrus Sinensis) de los Valles de la Provincia de Arequipa, en la Perspectiva de su Utilización Comercial (p. 16). | spa |
| dc.relation.references | Virot, M., Tomao, V., Ginies, C., Visinoni, F., & Chemat, F. (2008). Green procedure with a green solvent for fats and oils’ determination. Microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation. Journal of Chromatography A, 1196–1197(1–2), 147–152. https://doi.org/10.1016/j.chroma.2008.04.035 | spa |
| dc.relation.references | Waheed, M. A., Jekayinfa, S. O., Ojediran, J. O., & Imeokparia, O. E. (2008). Energetic analysis of fruit juice processing operations in Nigeria. Energy, 33(1), 35–45. https://doi.org/10.1016/j.energy.2007.09.001 | spa |
| dc.relation.references | Wankat, P. C. (1988). Separations in chemical yield and chemical composition of the essential oil of satureja hortensis. Equilibrium Staged Separation, 99, 19–23. Woodard, K. (1998). Stationary Source Control Techniques Document for Fine Particulate Matter (Vol. 1). | spa |
| dc.relation.references | Wu, J., & Wang, N. (2020). Exploring avoidable carbon emissions by reducing exergy destruction based on advanced exergy analysis: A case study. Energy. https://doi.org/10.1016/j.energy.2020.118246 | spa |
| dc.relation.references | Xiao, H., Wang, J., Liu, Z., & Liu, W. (2019). Turbulent heat transfer optimization for solar air heater with variation method based on exergy destruction minimization principle. International Journal of Heat and Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.071 | spa |
| dc.relation.references | Yan, C., Lv, L., Wei, S., Eslamimanesh, A., & Shen, W. (2019). Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2019.03.128 | spa |
| dc.relation.references | Zapata, B., Balmaseda, J., Fregoso-Israel, E., & Torres-García, E. (2009). Thermo-kinetics study of orange peel in air. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-009-0146-9 | spa |
| dc.relation.references | Zhang, Y., Yao, E., Tian, Z., Gao, W., & Yang, K. (2020). Exergy destruction analysis of a low-temperature Compressed Carbon dioxide Energy Storage system based on conventional and advanced exergy methods. Applied Thermal Engineering, 116421. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116421 | spa |
| dc.relation.references | Zhou, Y. (2018). Evaluation of renewable energy utilization efficiency in buildings with exergy analysis. Applied Thermal Engineering, 137(March), 430–439. https://doi.org/10.1016/j.applthermaleng.2018.03.064 | spa |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
| dc.subject.ddc | 660 - Ingeniería química::664 - Tecnología de alimentos | spa |
| dc.subject.lemb | Plantas piloto | |
| dc.subject.lemb | Plantas procesadoras de naranjas | |
| dc.subject.proposal | Exergía destruida | spa |
| dc.subject.proposal | Naranja | spa |
| dc.subject.proposal | Casos de estudio | spa |
| dc.subject.proposal | Study cases | eng |
| dc.subject.proposal | Orange | eng |
| dc.subject.proposal | Destroyed Exergy, | eng |
| dc.title | Optimización de una planta piloto de aprovechamiento integral de naranja en términos energéticos y exergéticos | spa |
| dc.title.translated | Optimization of a pilot plant for the integral use of orange in energy and exergy terms | |
| dc.type | Trabajo de grado - Maestría | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
| dc.type.content | Text | spa |
| dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1065000205.2021.pdf
- Tamaño:
- 4.29 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería Mecánica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.87 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:

