Optimización de una planta piloto de aprovechamiento integral de naranja en términos energéticos y exergéticos

dc.contributor.advisorVelásquez Arredondo, Héctor Iván
dc.contributor.authorArango Meneses, Juan Fernando
dc.date.accessioned2021-04-19T19:22:50Z
dc.date.available2021-04-19T19:22:50Z
dc.date.issued2021-04-10
dc.description.abstractLa falta de políticas económico-productivas efectivas y la problemática ambiental ha conllevado a la implementación de técnicas que permitan llevar a cabo procesos productivos de aprovechamiento de manera efectiva, sin causar defectos en la producción. En este trabajo de investigación se llevó a cabo una evaluación de diferentes casos de estudios propuestos con el fin de optimizar una planta de aprovechamiento integral de naranja., desde el punto de vista energético y exergético. Para ello se estableció un caso base a partir de la información del proyecto de Evaluación Integrada con Criterios de Sustentabilidad, del Proceso de Extracción por Arrastre de Vapor de Aceite Esencial de Cáscara de Naranja (Citrus Sinensis) de los Valles de la Provincia de Arequipa, en la Perspectiva de su Utilización Comercial. Al final de la investigación, se estableció la condición ideal que minimiza la exergía destruida con un valor de 17.14%, y así mismo otros elementos como el consumo de combustible del sistema. Finalmente, como un añadido a esta investigación, se desarrolló un análisis termoeconómico que permita establecer los efectos de las configuraciones planteadas, en los costos exergéticos del sistema., y de esta forma comprobar que la minimización de la exergía destruida conlleva a una disminución en los costos exergéticos.spa
dc.description.abstractThe lack of effective economic-productive policies and the environmental problem has caused the implementation of techniques that allows to carry out productive processes of effective use, without causing defects in production. In this research, an evaluation of different case studies proposed was carried out, in order to optimize a plant for the integral use of orange, from the energy and exergy point of view. For this, a base case was established based on the information from Evaluación Integrada con Criterios de Sustentabilidad, del Proceso de Extracción por Arrastre de Vapor de Aceite Esencial de Cáscara de Naranja (Citrus Sinensis) de los Valles de la Provincia de Arequipa, en la Perspectiva de su Utilización Comercial. At the end of this research, the ideal condition that minimizes the exergy destroyed was established with a value of 17.14%, as well as other elements such as the fuel consumption of the system. Finally, as an addition to this research, a thermoeconomic analysis was developed that allows to establish the effects of the proposed configurations on the exergetic costs of the system, and in this way to verify that the minimization of the destroyed exergy leads to a decrease in the exergy costs.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaSistemas energéticosspa
dc.description.technicalinfoOptimización exergética.
dc.format.extent144 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombia -Sede Medellínspa
dc.identifier.reponameRepositorio Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps:/repositorio.una.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79404
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería Mecánicaspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellínspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánicaspa
dc.relation.referencesAkbari Vakilabadi, M., Bidi, M., & Najafi, A. F. (2018). Energy, Exergy analysis and optimization of solar thermal power plant with adding heat and water recovery system. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2018.06.094spa
dc.relation.referencesAkbarpour Ghiasi, R., Fallah, M., Lotfan, S., & Rosen, M. A. (2020). A new approach for optimization of combined cycle system based on first level of exergy destruction splitting. Sustainable Energy Technologies and Assessments. https://doi.org/10.1016/j.seta.2019.100600spa
dc.relation.referencesAllaf, T., Tomao, V., Besombes, C., & Chemat, F. (2013). Thermal and mechanical intensification of essential oil extraction from orange peel via instant autovaporization. Chemical Engineering and Processing: Process Intensification, 72. https://doi.org/10.1016/j.cep.2013.06.005spa
dc.relation.referencesÁlvarez Hincapié, C., & Velásquez Arredondo, H. (2013). Exergía en sistemas biológicos: Aproximación holística para el estudio de ecosistemas y el manejo ambiental. Producción + Limpia.spa
dc.relation.referencesBaron, R. D., Pérez, L. L., Salcedo, J. M., Córdoba, L. P., & Sobral, P. J. do A. (2017). Production and characterization of films based on blends of chitosan from blue crab (Callinectes sapidus) waste and pectin from Orange (Citrus sinensis Osbeck) peel. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2017.02.004spa
dc.relation.referencesBasu, P. (2010). Biomass gasification and pyrolysis practical design and theory. In Elseiver (p. 376). https://doi.org/10.1016/B978-0-12-374988-8.00001-5spa
dc.relation.referencesBejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal Design and Optimization. In Thermal Design and Optimization. https://doi.org/10.1016/S0140-7007(97)87632-3spa
dc.relation.referencesCao, Y., Mihardjo, L. W., Farhang, B., Ghaebi, H., & Parikhani, T. (2020). Development, assessment and comparison of three high-temperature geothermal-driven configurations for power and hydrogen generation: Energy, exergy thermoeconomic and optimization. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.09.013spa
dc.relation.referencesCatrini, P., Cipollina, A., Micale, G., Piacentino, A., & Tamburini, A. (2017). Exergy analysis and thermoeconomic cost accounting of a Combined Heat and Power steam cycle integrated with a Multi Effect Distillation-Thermal Vapour Compression desalination plant. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2017.04.032spa
dc.relation.referencesCengel, Y., & Michael A, B. (2014). Termodinámica. In Mc Graw Hill (Vol. 7). https://doi.org/10.1007/s13398-014-0173-7.2spa
dc.relation.referencesCheméo. (2018). Chemical Properties of D-Limonene. https://www.chemeo.com/cid/32-729-7/D-Limonene#ref-jobackspa
dc.relation.referencesCypriano, D. Z., da Silva, L. L., & Tasic, L. (2018). High value-added products from the orange juice industry waste. Waste Management. https://doi.org/10.1016/j.wasman.2018.07.028spa
dc.relation.referencesDANE. (2016). INSUMOS Y FACTORES ASOCIADOS A LA PRODUCCIÓN AGROPECUARIA: El cultivo de la naranja Valencia (Citrus sinensis [L.] Osbeck) y su producción como respuesta a la aplicación de correctivos y fertilizantes y al efecto de la polinización dirigida con abeja Apis. 99. https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_oct_2016.pdfspa
dc.relation.referencesDeng, J., Wang, R., Wu, J., Han, G., Wu, D., & Li, S. (2008). Exergy cost analysis of a micro-trigeneration system based on the structural theory of thermoeconomics. Energy. https://doi.org/10.1016/j.energy.2008.05.001spa
dc.relation.referencesDincer, I., Midilli, A., & Kucuk, H. (2014). Progress in exergy, energy, and the environment. In Progress in Exergy, Energy, and the Environment. https://doi.org/10.1007/978-3-319-04681-5spa
dc.relation.referencesDincer, I., & Rosen, M. A. (2013). Chapter 9 - Exergy Analysis of Thermal Energy Storage Systems. In I. Dincer & M. A. Rosen (Eds.), Exergy (Second Edition) (Second Edi, pp. 133–166).spa
dc.relation.referencesElsevier. https://doi.org/https://doi.org/10.1016/B978-0-08-097089-9.00009-7 Ebrahimgol, H., Aghaie, M., Zolfaghari, A., & Naserbegi, A. (2020). A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Annals of Nuclear Energy. https://doi.org/10.1016/j.anucene.2020.107540spa
dc.relation.referencesFallah, M., Ghiasi, R. A., & Mokarram, N. H. (2018). A comprehensive comparison among different types of geothermal plants from exergy and thermoeconomic points of view. Thermal Science and Engineering Progress. https://doi.org/10.1016/j.tsep.2017.10.017spa
dc.relation.referencesFlórez-Orrego, D., & de Oliveira Junior, S. (2017). Modeling and optimization of an industrial ammonia synthesis unit: An exergy approach. Energy, 137, 234–250. https://doi.org/10.1016/j.energy.2017.06.157spa
dc.relation.referencesFood and Agriculture Organization of the United Nations. (2017). FAO Statistics. www.fao.orgspa
dc.relation.referencesGalaverna, G., & Dall’Asta, C. (2014). Production Processes of Orange Juice and Effects on Antioxidant Components. In Processing and Impact on Antioxidants in Beverages. https://doi.org/10.1016/B978-0-12-404738-9.00021-0spa
dc.relation.referencesGeankoplis, C. J. (2003). Transport Processes and Separation Process Principles. In Transport processes and separation process principles (p. 696). https://doi.org/10.1053/j.ajkd.2008.04.005spa
dc.relation.referencesGupta, R., Asgari, S., Moazamigoodarzi, H., Pal, S., & Puri, I. K. (2020). Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction. Energy. https://doi.org/10.1016/j.energy.2020.117625spa
dc.relation.referencesHan, T., Wang, C., Zhu, C., & Che, D. (2018). Optimization of waste heat recovery power generation system for cement plant by combining pinch and exergy analysis methods. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2018.05.039spa
dc.relation.referencesHosseini, S. S., Khodaiyan, F., & Yarmand, M. S. (2016). Aqueous extraction of pectin from sour orange peel and its preliminary physicochemical properties. International Journal of Biological Macromolecules, 82, 920–926. https://doi.org/10.1016/j.ijbiomac.2015.11.007spa
dc.relation.referencesKotas, T. J. (1985a). Appendix A - Chemical exergy and enthalpy of devaluation. In T. J. B. T.-T. E. M. of T. P. A. Kotas (Ed.), The Exergy Method of Thermal Plant Analysis (pp. 236–262). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-408-01350-5.50014-3spa
dc.relation.referencesKotas, T. J. (1985b). Chapter 2 - Basic exergy concepts. In T. J. B. T.-T. E. M. of T. P. A. Kotas (Ed.), The Exergy Method of Thermal Plant Analysis (pp. 29–56). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-408-01350-5.50009-Xspa
dc.relation.referencesKotas, T. J. (1985c). Chapter 6 - Thermoeconomic applications of exergy. In T. J. Kotas (Ed.), The Exergy Method of Thermal Plant Analysis (pp. 197–235). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-408-01350-5.50013-1spa
dc.relation.referencesKutz, M. (2019). Handbook of farm, dairy and food machinery engineering. In Handbook of Farm, Dairy and Food Machinery Engineering. https://doi.org/10.1016/C2017-0-01578-1 León Ruiz, Y., & Moréno Sepulveda, J. C. (2006). EVALUACIÓN DEL EFECTO DE LA POLINIZACIÓN DIRIGIDA A CULTIVOS DE NARANJA (Citrus sinensis VALENCIA " Y " OMBLIGON CON EL USO DE LA ABEJA Apis mellifera EN EL MUNICIPIO DE SASAIMA, CUNDINAMARCA.spa
dc.relation.referencesLiu, C., Xie, Z., Sun, F., & Chen, L. (2017). Exergy analysis and optimization of coking process. Energy, 139, 694–705. https://doi.org/10.1016/j.energy.2017.08.006spa
dc.relation.referencesLiu, D., Wang, H., Liu, H., Zheng, Z., Zhang, Y., & Yao, M. (2020). Identification of factors affecting exergy destruction and engine efficiency of various classes of fuel. Energy. https://doi.org/10.1016/j.energy.2020.118897spa
dc.relation.referencesLopez-Velazquez, M. A., Santes, V., Balmaseda, J., & Torres-Garcia, E. (2013). Pyrolysis of orange waste: A thermo-kinetic study. Journal of Analytical and Applied Pyrolysis, 99, 170–177. https://doi.org/10.1016/j.jaap.2012.09.016spa
dc.relation.referencesMata-Torres, C., Zurita, A., Cardemil, J. M., & Escobar, R. A. (2019). Exergy cost and thermoeconomic analysis of a Rankine Cycle + Multi-Effect Distillation plant considering time-varying conditions. Energy Conversion and Management. https://doi.org/10.1016/j.enconman.2019.04.023spa
dc.relation.referencesMeramo-Hurtado, S. I., & González-Delgado, Á. D. (2019). Biorefinery synthesis and design using sustainability parameters and hierarchical/3D multi-objective optimization. Journal of Cleaner Production, 240, 118134. https://doi.org/10.1016/j.jclepro.2019.118134spa
dc.relation.referencesMinisterio de Agricultura y Riego del Perú. (2018). Serie de Estadísticas de Producción Agrícola (SEPA). http://frenteweb.minagri.gob.pe/sisca/?mod=consulta_cultspa
dc.relation.referencesMirjalili, S., & Lewis, A. (2016). The Whale Optimization Algorithm. Adva nces in Engineering Software. https://doi.org/10.1016/j.advengsoft.2016.01.008spa
dc.relation.referencesMoncada, J., Tamayo, J. A., & Cardona, C. A. (2014). Techno-economic and environmental assessment of essential oil extraction from Citronella (Cymbopogon winteriana) and Lemongrass (Cymbopogon citrus): A Colombian case to evaluate different extraction technologies. Industrial Crops and Products, 54, 175–184. https://doi.org/10.1016/j.indcrop.2014.01.035spa
dc.relation.referencesMoncada, J., Tamayo, J. A., & Cardona, C. A. (2016). Techno-economic and environmental assessment of essential oil extraction from Oregano (Origanum vulgare) and Rosemary (Rosmarinus officinalis) in Colombia. Journal of Cleaner Production, 112, 172–181. https://doi.org/10.1016/j.jclepro.2015.09.067spa
dc.relation.referencesMoran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. (2010). Fundamentals of Engineering Thermodynamics. In John Wiley & Sons, Inc. http://books.google.com/books?id=oyt8iW6B4aUC&pgis=1spa
dc.relation.referencesNisar, T., Wang, Z. C., Yang, X., Tian, Y., Iqbal, M., & Guo, Y. (2018). Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. International Journal of Biological Macromolecules, 106, 670–680. https://doi.org/10.1016/j.ijbiomac.2017.08.068spa
dc.relation.referencesRashidi, H., & Khorshidi, J. (2018). Exergy analysis and multiobjective optimization of a biomass gasification based multigeneration system. International Journal of Hydrogen Energy, 43(5), 2631–2644. https://doi.org/10.1016/j.ijhydene.2017.12.073spa
dc.relation.referencesRewatkar, P. M., & Basavaraj, M. (2020). Determination of Specific Heat of Nagpur Orange Fruit (Citrus-Sinesis L) as a Function of Temperature and Moisture Content. In ICRRM 2019 – System Reliability, Quality Control, Safety, Maintenance and Management. https://doi.org/10.1007/978-981-13-8507-0_14spa
dc.relation.referencesSaberian, H., Hamidi-Esfahani, Z., Ahmadi Gavlighi, H., & Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification. https://doi.org/10.1016/j.cep.2017.03.025spa
dc.relation.referencesSahoo, U., Kumar, R., Singh, S. K., & Tripathi, A. K. (2018). Energy, exergy, economic analysis and optimization of polygeneration hybrid solar-biomass system. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2018.09.093spa
dc.relation.referencesSánchez Villafana, E. D., & Vargas Machuca Bueno, J. P. (2019). Thermoeconomic and environmental analysis and optimization of the supercritical CO 2 cycle integration in a simple cycle power plant. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2019.02.052spa
dc.relation.referencesSingh, K., & Das, R. (2017). Exergy optimization of cooling tower for HGSHP and HVAC applications. Energy Conversion and Management, 136, 418–430. https://doi.org/10.1016/j.enconman.2017.01.024spa
dc.relation.referencesSrivastava, A. K. (2012). Advances in citrus nutrition. In Advances in Citrus Nutrition. https://doi.org/10.1007/978-94-007-4171-3spa
dc.relation.referencesSucheta, Rai, S. K., Chaturvedi, K., & Yadav, S. K. (2019). Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocolloids. https://doi.org/10.1016/j.foodhyd.2019.01.022spa
dc.relation.referencesSukumaran, S., & Sudhakar, K. (2018). Performance analysis of solar powered airport based on energy and exergy analysis. Energy, 149, 1000–1009. https://doi.org/10.1016/j.energy.2018.02.095spa
dc.relation.referencesSzargut, J., Morris, D. R., & Steward, F. R. (1987). Exergy analysis of thermal, chemical, and metallurgical processes. Hemisphere Publishing,New York, NY. https://www.osti.gov/biblio/6157620spa
dc.relation.referencesTaheri, K., & Gadow, R. (2017). Industrial compressed air system analysis: Exergy and thermoeconomic analysis. In CIRP Journal of Manufacturing Science and Technology. https://doi.org/10.1016/j.cirpj.2017.04.004spa
dc.relation.referencesTetra Pak. (2004). The Orange Book (Ulla Ringblom (ed.); 2nd ed.). Tetra Pak Processing Systems AB.spa
dc.relation.referencesValdez Tantani, V., Cordova Huaracha, V., Condori Flores, S. S., Cordova Hancco, Y. L., Soria Miranda, L. A., Cardenas Malaga, M. A., Medina de Miranda, E. A., Miranda Zanardi, L. F., & Alencastre Medrano, Y. A. (2016). Evaluación Integrada Con Criterios de Sustentabilidad, del Proceso de Extracción por Arrastre de Vapor de Aceite Esencial de Cáscara de Naranja (Citrus Sinensis) de los Valles de la Provincia de Arequipa, en la Perspectiva de su Utilización Comercial (p. 16).spa
dc.relation.referencesVirot, M., Tomao, V., Ginies, C., Visinoni, F., & Chemat, F. (2008). Green procedure with a green solvent for fats and oils’ determination. Microwave-integrated Soxhlet using limonene followed by microwave Clevenger distillation. Journal of Chromatography A, 1196–1197(1–2), 147–152. https://doi.org/10.1016/j.chroma.2008.04.035spa
dc.relation.referencesWaheed, M. A., Jekayinfa, S. O., Ojediran, J. O., & Imeokparia, O. E. (2008). Energetic analysis of fruit juice processing operations in Nigeria. Energy, 33(1), 35–45. https://doi.org/10.1016/j.energy.2007.09.001spa
dc.relation.referencesWankat, P. C. (1988). Separations in chemical yield and chemical composition of the essential oil of satureja hortensis. Equilibrium Staged Separation, 99, 19–23. Woodard, K. (1998). Stationary Source Control Techniques Document for Fine Particulate Matter (Vol. 1).spa
dc.relation.referencesWu, J., & Wang, N. (2020). Exploring avoidable carbon emissions by reducing exergy destruction based on advanced exergy analysis: A case study. Energy. https://doi.org/10.1016/j.energy.2020.118246spa
dc.relation.referencesXiao, H., Wang, J., Liu, Z., & Liu, W. (2019). Turbulent heat transfer optimization for solar air heater with variation method based on exergy destruction minimization principle. International Journal of Heat and Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.071spa
dc.relation.referencesYan, C., Lv, L., Wei, S., Eslamimanesh, A., & Shen, W. (2019). Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant. Applied Thermal Engineering. https://doi.org/10.1016/j.applthermaleng.2019.03.128spa
dc.relation.referencesZapata, B., Balmaseda, J., Fregoso-Israel, E., & Torres-García, E. (2009). Thermo-kinetics study of orange peel in air. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-009-0146-9spa
dc.relation.referencesZhang, Y., Yao, E., Tian, Z., Gao, W., & Yang, K. (2020). Exergy destruction analysis of a low-temperature Compressed Carbon dioxide Energy Storage system based on conventional and advanced exergy methods. Applied Thermal Engineering, 116421. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116421spa
dc.relation.referencesZhou, Y. (2018). Evaluation of renewable energy utilization efficiency in buildings with exergy analysis. Applied Thermal Engineering, 137(March), 430–439. https://doi.org/10.1016/j.applthermaleng.2018.03.064spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembPlantas piloto
dc.subject.lembPlantas procesadoras de naranjas
dc.subject.proposalExergía destruidaspa
dc.subject.proposalNaranjaspa
dc.subject.proposalCasos de estudiospa
dc.subject.proposalStudy caseseng
dc.subject.proposalOrangeeng
dc.subject.proposalDestroyed Exergy,eng
dc.titleOptimización de una planta piloto de aprovechamiento integral de naranja en términos energéticos y exergéticosspa
dc.title.translatedOptimization of a pilot plant for the integral use of orange in energy and exergy terms
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1065000205.2021.pdf
Tamaño:
4.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Mecánica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: