Estimación de la susceptibilidad a movimientos en masa superficiales por medio de un análisis de regresión espacial local. Aplicación para un tramo de la cuenca media del río Chicamocha

dc.contributor.advisorMoreno Murillo, Juan Manuelspa
dc.contributor.authorVelásquez Giraldo, Diego Felipespa
dc.coverage.countryColombiaspa
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.date.accessioned2024-04-18T20:00:34Z
dc.date.available2024-04-18T20:00:34Z
dc.date.issued2024-04
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEn este trabajo de investigación se presenta la estimación de la susceptibilidad a movimientos en masa superficiales mediante un análisis de regresión espacial local, específicamente un modelo de regresión logística geográficamente ponderada (GWLR) que tiene en cuenta las relaciones no estacionarias de los factores que influyen en la ocurrencia de movimientos en masa en una zona. Se aplicó este método en un tramo de la cuenca media del río Chicamocha, ubicada en el departamento de Boyacá, que fue seleccionada debido a sus características geológicas y geomorfológicas, así como a la evidente inestabilidad observada en la región. Además, se calibró un modelo de regresión global (regresión logística convencional, LR) para determinar las ventajas y desventajas de cada método en estudios de susceptibilidad. Se consideraron variables independientes como la litología, proximidad a fallas, pendiente, curvatura, rugosidad del terreno, TWI, SPI, proximidad y densidad de drenaje, precipitación, proximidad a vías, cobertura de la tierra, NDVI y zonas con predominio de procesos erosivos. Las estimaciones revelan que el 28% del área de estudio presenta una alta y muy alta susceptibilidad a deslizamientos superficiales y un 25% a movimientos tipo flujo. Se encontraron diferencias significativas en el rendimiento entre los modelos de regresión locales y globales, de acuerdo con la mejora de los estadísticos de grado de ajuste (devianza, AIC y McFadden pseudo R2) y los valores de tasa de predicción (ROC-AUC). El análisis de regresión espacial local también revela que la contribución de las variables independientes en la ocurrencia de zonas inestables varia a lo largo de la zona de estudio. Los resultados permiten concluir que el modelo GWLR ofrece una mejora potencial en la estimación de la susceptibilidad a movimientos en masa en el contexto colombiano en comparación con los métodos convencionales de regresión global (LR). (Texto tomado de la fuente).spa
dc.description.abstractThis research presents the estimation of the susceptibility to shallow mass movements by means of a local spatial regression analysis, specifically a geographically weighted logistic regression model (GWLR) that considers the nonstationary relationships of the factors that influence the occurrence of mass movements. This method was applied in a section of the middle basin of the Chicamocha river, located in the department of Boyacá, which was selected due to its geological and geomorphological characteristics, as well as the evident instability observed in the region. In addition, a global regression model (conventional logistic regression, LR) was calibrated to determine the advantages and disadvantages of each method in susceptibility studies. Independent variables such as lithology, proximity to faults, slope, curvature, terrain roughness, TWI, SPI, drainage proximity and density, rainfall, proximity to roads, land use, NDVI and areas with mainly erosive processes were considered. Estimates reveal that 28% of the study area has high and very high susceptibility to shallow landslides and 25% to flows and avalanches (flow-type movements). Significant differences in performance were found between local and global regression models, according to improved goodness-of-fit criteria (deviance, AIC, and McFadden pseudo R2) and prediction rate values (ROC-AUC). The local spatial regression analysis also reveals that the contribution of the independent variables in the occurrence of unstable zones varies across the study area. The results allow us to conclude that the GWLR model offers a potential improvement in the estimation of susceptibility to mass movements in the colombian context compared to conventional global regression (LR) methods.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Geologíaspa
dc.description.researchareaGeología ambiental y geoamenazasspa
dc.format.extentxxii, 216 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85950
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAbbaszadeh Shahri, A., Spross, J., Johansson, F., & Larsson, S. (2019). Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena, 183(June), 104225. https://doi.org/10.1016/j.catena.2019.104225spa
dc.relation.referencesAkaike, H. (1973). Information theory and an extension of the maximum likelihood principle. Proceedings of the 2nd international symposium on information theory. Second International Symposium on Information Theory, 267–281.spa
dc.relation.referencesAkgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106. https://doi.org/10.1007/s10346-011-0283-7spa
dc.relation.referencesAkgün, A., & Bulut, F. (2007). GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology, 51(8), 1377–1387. https://doi.org/10.1007/s00254-006-0435-6spa
dc.relation.referencesAlbuquerque, P., Medina, F., & Da Silva, A. (2017). Geographically Weighted Logistic Regresiion Applied to Credit Scoring Models. Revista Contabilidade e Financas, 28(73), 93–112. https://doi.org/10.1590/1808-057x201703760spa
dc.relation.referencesAleotti, P., & Chowdhury, R. (1999). Landslide hazard assessment: Summary review and new perspectives. Bulletin of Engineering Geology and the Environment, 58(1), 21–44. https://doi.org/10.1007/s100640050066spa
dc.relation.referencesAlkhasawneh, M. S., Ngah, U. K., Tay, L. T., & Isa, N. A. M. (2014). Determination of importance for comprehensive topographic factors on landslide hazard mapping using artificial neural network. Environmental Earth Sciences, 72(3), 787–799. https://doi.org/10.1007/s12665-013-3003-xspa
dc.relation.referencesAlvarado, B., & Sarmiento, R. (1944). Informe geológico general sobre los yacimientos de hierro, carbón y caliza de la región de Paz de Río (Departamento de Boyacá) (p. 157). Servicio Geológico Nacional (SGNC).spa
dc.relation.referencesAnis, Z., Wissem, G., Vali, V., Smida, H., & Mohamed Essghaier, G. (2019). GIS-based landslide susceptibility mapping using bivariate statistical methods in North-western Tunisia. Open Geosciences, 11(1), 708–726. https://doi.org/10.1515/geo-2019-0056spa
dc.relation.referencesArabameri, A., Pradhan, B., & Rezaei, K. (2019). Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. Journal of Environmental Management, 232(November 2018), 928–942. https://doi.org/10.1016/j.jenvman.2018.11.110spa
dc.relation.referencesArabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., & Bui, D. T. (2020). Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sensing, 12(3). https://doi.org/10.3390/rs12030475spa
dc.relation.referencesASF DAAC. (2011). ALOS PALSAR_Radiometric_Terrain_Corrected_high_res. JAXA/METI. https://doi.org/10.5067/Z97HFCNKR6VAspa
dc.relation.referencesAtkinson, P. M., & Massari, R. (1998). Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy. Computers and Geosciences, 24(4), 373–385. https://doi.org/10.1016/S0098-3004(97)00117-9spa
dc.relation.referencesAtkinson, Peter M., German, S. E., Sear, D. A., & Clark, M. J. (2003). Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geographical Analysis, 35(1), 58–82. https://doi.org/10.1111/j.1538-4632.2003.tb01101.xspa
dc.relation.referencesAustin, P. C., & Tu, J. V. (2004). Bootstrap Methods for Developing Predictive Models. American Statistician, 58(2), 131–137. https://doi.org/10.1198/0003130043277spa
dc.relation.referencesAyalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1–2), 15–31. https://doi.org/10.1016/j.geomorph.2004.06.010spa
dc.relation.referencesBacchini, M., & Zannoni, A. (2003). Relations between rainfall and triggering of debris-flow: Case study of Cancia (Dolomites, Northeastern Italy). Natural Hazards and Earth System Science, 3(1–2), 71–79. https://doi.org/10.5194/nhess-3-71-2003spa
dc.relation.referencesBaeza, C., & Corominas, J. (2001). Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26(12), 1251–1263. https://doi.org/10.1002/esp.263spa
dc.relation.referencesBai, S. B., Wang, J., Lü, G. N., Zhou, P. G., Hou, S. S., & Xu, S. N. (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology, 115(1–2), 23–31. https://doi.org/10.1016/j.geomorph.2009.09.025spa
dc.relation.referencesBai, S., Wang, J., Thiebes, B., Cheng, C., & Yang, Y. (2014). Analysis of the relationship of landslide occurrence with rainfall: A case study of Wudu County, China. Arabian Journal of Geosciences, 7(4), 1277–1285. https://doi.org/10.1007/s12517-013-0939-9spa
dc.relation.referencesBegueria, S., & Lorente, A. (1999). Landslide Hazard Mapping By Multivariate Statistics : Comparison of Methods and Case Study in the Spanish Pyrenees. Damocles, 20.spa
dc.relation.referencesBeven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834spa
dc.relation.referencesBivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. Test, 27(3), 716–748. https://doi.org/10.1007/s11749-018-0599-xspa
dc.relation.referencesBoardman, J., Parsons, A. J., Holland, R., Holmes, P. J., & Washington, R. (2003). Development of badlands and gullies in the Sneeuberg, Great Karoo, South Africa. Catena, 50(2–4), 165–184. https://doi.org/10.1016/S0341-8162(02)00144-3spa
dc.relation.referencesBordoni, M., Giuseppina Persichillo, M., Meisina, C., Crema, S., Cavalli, M., Bartelletti, C., Galanti, Y., Barsanti, M., Giannecchini, R., & D’Amato Avanzi, G. (2018). Estimation of the susceptibility of a road network to shallow landslides with the integration of the sediment connectivity. Natural Hazards and Earth System Sciences, 18(6), 1735–1758. https://doi.org/10.5194/nhess-18-1735-2018spa
dc.relation.referencesBorgomeo, E., Hebditch, K. V., Whittaker, A. C., & Lonergan, L. (2014). Characterising the spatial distribution, frequency and geomorphic controls on landslide occurrence, Molise, Italy. Geomorphology, 226, 148–161. https://doi.org/10.1016/j.geomorph.2014.08.004spa
dc.relation.referencesBouayad, S., & de Bellefon, M.-P. (2018). Spatial autocorrelation indices. Handbook of Spatial Analysis, Theory and Application with R, 52–70.spa
dc.relation.referencesBroothaerts, N., Kissi, E., Poesen, J., Van Rompaey, A., Getahun, K., Van Ranst, E., & Diels, J. (2012). Spatial patterns, causes and consequences of landslides in the Gilgel Gibe catchment, SW Ethiopia. Catena, 97, 127–136. https://doi.org/10.1016/j.catena.2012.05.011spa
dc.relation.referencesBrunsdon, C., Fotheringham, A. S., & Charlton, M. E. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28(4), 281–298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.xspa
dc.relation.referencesBrunsdon, Chris, Fotheringham, S., & Charlton, M. (1998). Geographically Weigthed Regression-modelling spatial non-stationarity. 431–443.spa
dc.relation.referencesBrunsdon, Chris, Fotheringham, S., & Charlton, M. (2000). Geographically Weighted Regression as a Statistical Model. June 2013, 1–12.spa
dc.relation.referencesBuma, J., & Dehn, M. (1998). A method for predicting the impact of climate change on slope stability. Environmental Geology, 35(2–3), 190–196. https://doi.org/10.1007/s002540050305spa
dc.relation.referencesBurnham, K., & Anderson, D. (2004). Model Selection and Multimodel Inference. In K. P. Burnham & D. R. Anderson (Eds.), The Journal of Wildlife Management (Vol. 65, Issue 3). Springer New York. https://doi.org/10.1007/b97636spa
dc.relation.referencesBurnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65(1), 23–35. https://doi.org/10.1007/s00265-010-1029-6spa
dc.relation.referencesCalcaterra, D., & Parise, M. (2005). Landslide types and their relationships with weathering in a Calabrian basin, southern Italy. Bulletin of Engineering Geology and the Environment, 64(2), 193–207. https://doi.org/10.1007/s10064-004-0262-5spa
dc.relation.referencesCalcaterra, D., & Parise, M. (2010). Weathering as a predisposing factor to slope movements: An introduction. Geological Society Engineering Geology Special Publication, 23, 1–4. https://doi.org/10.1144/EGSP23.1spa
dc.relation.referencesCalderon Larrañaga, Y. (2013). Relaciones entre las amenazas naturales por movimientos en masa asociadas a la minería tradicional, con los procesos de urbanización en el municipio de Soacha Cundinamarca [Universidad Nacional de Colombia]. http://www.bdigital.unal.edu.co/45793/spa
dc.relation.referencesCano-Burgos, B. (2022). Zonificación de amenaza por avenida torrencial para la quebrada Colorada, producto de la rotura de una presa natural formada y sus efectos en el casco urbano del municipio de Paz de Río, Boyacá. Escuela Colombiana de Ingeniería Julio Garavito.spa
dc.relation.referencesCanuti, P., Garzonio, C. A., & Vannocci, P. (1992). Lateral spreads and landslide hazards to the Northern Appenine. The example of Mt. Fumaiolo (Emilia Romagna) and Chiusi della Verna (Tuscany). International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(1), A53. https://doi.org/10.1016/0148-9062(92)91472-hspa
dc.relation.referencesCardozo, O., García-Palomares, J., & Gutiérrez, J. (2012). Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Applied Geography, 34, 548–558. https://doi.org/10.1016/j.apgeog.2012.01.005spa
dc.relation.referencesCarrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., & Reichenbach, P. (1991). GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16(5), 427–445. https://doi.org/10.1002/esp.3290160505spa
dc.relation.referencesCarrara, Alberto, Crosta, G., & Frattini, P. (2003). Geomorphological and historical data in assessing landslide hazard. Earth Surface Processes and Landforms, 28(10), 1125–1142. https://doi.org/10.1002/esp.545spa
dc.relation.referencesCarrara, Alberto, Crosta, G., & Frattini, P. (2008). Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology, 94(3–4), 353–378. https://doi.org/10.1016/j.geomorph.2006.10.033spa
dc.relation.referencesCartus, A. R., Bodnar, L. M., & Naimi, A. I. (2020). The Impact of Undersampling on the Predictive Performance of Logistic Regression and Machine Learning Algorithms. Epidemiology, 31(5), e42–e44. https://doi.org/10.1097/EDE.0000000000001198spa
dc.relation.referencesCatani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11), 2815–2831. https://doi.org/10.5194/nhess-13-2815-2013spa
dc.relation.referencesCavanaugh, J. E., & Neath, A. A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3), 1–11. https://doi.org/10.1002/wics.1460spa
dc.relation.referencesCerri, R. I., Rosolen, V., Reis, F. A. G. V., Filho, A. J. P., Vemado, F., do Carmo Giordano, L., & Gabelini, B. M. (2020). The assessment of soil chemical, physical, and structural properties as landslide predisposing factors in the Serra do Mar mountain range (Caraguatatuba, Brazil). Bulletin of Engineering Geology and the Environment, 79(7), 3307–3320. https://doi.org/10.1007/s10064-020-01791-1spa
dc.relation.referencesChalkias, C., Kalogirou, S., & Ferentinou, M. (2014). Landslide susceptibility, Peloponnese Peninsula in South Greece. Journal of Maps, 10(2), 211–222. https://doi.org/10.1080/17445647.2014.884022spa
dc.relation.referencesChalkias, Christos, Kalogirou, S., & Ferentinou, M. (2011). Global and Local statistical modeling for landslide susceptibility assessment , a comparative analysis . Proceedings of the 17th European Colloquium on Quantitative and Theoretical Geography, September, 88–97.spa
dc.relation.referencesChalkias, Christos, Polykretis, C., Karymbalis, E., Soldati, M., Ghinoi, A., & Ferentinou, M. (2020). Exploring spatial non-stationarity in the relationships between landslide susceptibility and conditioning factors: a local modeling approach using geographically weighted regression. Bulletin of Engineering Geology and the Environment, 79(6), 2799–2814. https://doi.org/10.1007/s10064-020-01733-xspa
dc.relation.referencesCharlton, M., & Fotheringham, S. (2009). Geographically Weighted Regression - White Paper. National Centre for Geocomputation, 17. https://www.geos.ed.ac.uk/~gisteac/fspat/gwr/gwr_arcgis/GWR_WhitePaper.pdfspa
dc.relation.referencesChau, K. ., & Chan, J. . (2005a). Regional bias of landslide data in generating susceptibility maps using logistic refression: Case of Hong Kong Island. Landslides, 2(1), 280–290. https://doi.org/10.1007/s10346-015-0576-3spa
dc.relation.referencesChau, K. T., & Chan, J. E. (2005b). Regional bias of landslide data in generating susceptibility maps using logistic regression: Case of Hong Kong Island. Landslides, 2(4), 280–290. https://doi.org/10.1007/s10346-005-0024-xspa
dc.relation.referencesChau, K. T., Sze, Y. L., Fung, M. K., Wong, W. Y., Fong, E. L., & Chan, L. C. P. (2004). Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Computers and Geosciences, 30(4), 429–443. https://doi.org/10.1016/j.cageo.2003.08.013spa
dc.relation.referencesChen, C., He, W., Zhou, H., Xue, Y., & Zhu, M. (2020). A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-60698-9spa
dc.relation.referencesChen, H., Dadson, S., & Chi, Y. G. (2006). Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology, 77(1–2), 112–125. https://doi.org/10.1016/j.geomorph.2006.01.002spa
dc.relation.referencesChen, L., Guo, Z., Yin, K., Pikha Shrestha, D., & Jin, S. (2019). The influence of land use and land cover change on landslide susceptibility: A case study in Zhushan Town, Xuan’en County (Hubei, China). Natural Hazards and Earth System Sciences, 19(10), 2207–2228. https://doi.org/10.5194/nhess-19-2207-2019spa
dc.relation.referencesChen, T., Zhu, L., Niu, R. qing, Trinder, C. J., Peng, L., & Lei, T. (2020). Mapping landslide susceptibility at the Three Gorges Reservoir, China, using gradient boosting decision tree, random forest and information value models. Journal of Mountain Science, 17(3), 670–685. https://doi.org/10.1007/s11629-019-5839-3spa
dc.relation.referencesChen, W., Pourghasemi, H. R., & Naghibi, S. A. (2018). A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bulletin of Engineering Geology and the Environment, 77(2), 647–664. https://doi.org/10.1007/s10064-017-1010-yspa
dc.relation.referencesCheng, D., Cui, Y., Su, F., Jia, Y., & Choi, C. E. (2018). The characteristics of the Mocoa compound disaster event, Colombia. Landslides, 15(6), 1223–1232. https://doi.org/10.1007/s10346-018-0969-1spa
dc.relation.referencesChigira, M., & Kiho, K. (1994). Deep-seated rockslide-avalanches preceded by mass rock creep of sedimentary rocks in the Akaishi Mountains, central Japan. Engineering Geology, 38(3–4), 221–230. https://doi.org/10.1016/0013-7952(94)90039-6spa
dc.relation.referencesChung, C. J. F., & Fabbri, A. G. (1993). The representation of geoscience information for data integration. Nonrenewable Resources, 2(2), 122–139. https://doi.org/10.1007/BF02272809spa
dc.relation.referencesChung, C. J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2bspa
dc.relation.referencesColegial, J. (1989). Deslizamientos en el área urbana de Socotá Departamento de Boyacá (p. 24). Instituto Nacional de Investigaciones Geológico-Mineras.spa
dc.relation.referencesComber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lü, Y., Murakami, D., Nakaya, T., Wang, Y., & Harris, P. (2020). The GWR route map: a guide to the informed application of Geographically Weighted Regression. 1–34. http://arxiv.org/abs/2004.06070spa
dc.relation.referencesConforti, M., & Ietto, F. (2019). An integrated approach to investigate slope instability affecting infrastructures. Bulletin of Engineering Geology and the Environment, 78(4), 2355–2375. https://doi.org/10.1007/s10064-018-1311-9spa
dc.relation.referencesConforti, M., & Ietto, F. (2021). Modeling shallow landslide susceptibility and assessment of the relative importance of predisposing factors, through a gis‐based statistical analysis. Geosciences (Switzerland), 11(8), 1–28. https://doi.org/10.3390/geosciences11080333spa
dc.relation.referencesConforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236–250. https://doi.org/10.1016/j.catena.2013.08.006spa
dc.relation.referencesCongedo, L. (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172spa
dc.relation.referencesCopas, J. B. (1989). Unweighted Sum of Squares Test for Proportions. Applied Statistics, 38(1), 71. https://doi.org/10.2307/2347682spa
dc.relation.referencesCoppin, N. J., & Richards, I. (1990). Use of vegetation in civil engineering. https://doi.org/10.5860/CHOICE.28-2750spa
dc.relation.referencesCorominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. https://doi.org/10.1007/s10064-013-0538-8spa
dc.relation.referencesCORPOBOYACÁ, & UPTC. (2014). Zonificación de áreas de amenaza de origen natural y población en riesgo en el área urbana del municipio de Socotá (p. 190). Universidad Pedagogica y Tecnologica de Colombia. https://www.estadonacion.or.cr/files/biblioteca_virtual/021/politica/Alvarado_Conflicto_Moinspa
dc.relation.referencesCostanzo, D., Rotigliano, E., Irigaray, C., Jiménez-Perálvarez, J. D., & Chacón, J. (2012). Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: Application to the river Beiro basin (Spain). Natural Hazards and Earth System Science, 12(2), 327–340. https://doi.org/10.5194/nhess-12-327-2012spa
dc.relation.referencesCostanzo, Dario, Chacón, J., Conoscenti, C., Irigaray, C., & Rotigliano, E. (2014). Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy). Landslides, 11(4), 639–653. https://doi.org/10.1007/s10346-013-0415-3spa
dc.relation.referencesCrozier, M. (1986). Landslides: Causes, Consequences and Environment (C. Helm (ed.)).spa
dc.relation.referencesCruden, D. M., & Varnes, D. J. (1996a). Chapter 3 LANDSLIDE TYPES AND PROCESSES. In K. Turner & R. Schuster (Eds.), Landslides: Investigation and Mitigation (Issue Bell 1992, pp. 36–75). Transportation Research Board Special Report 247.spa
dc.relation.referencesCruden, D. M., & Varnes, D. J. (1996b). Landslide types and processes. Special Report - National Research Council, Transportation Research Board, 247(January 1996), 36–75.spa
dc.relation.referencesCruden, D., & VanDine, D. (2013). Classification, Description, Causes and Indirect Effects – Canadian Technical Guidelines and Best Practices related to Landslides. Geological Survey of Canada Open File, 7359, 315–322.spa
dc.relation.referencesD’Amato Avanzi, G., Giannecchini, R., & Puccinelli, A. (2004). The influence of the geological and geomorphological settings on shallow landslides. An example in a temperate climate environment: The June 19, 1996 event in northwestern Tuscany (Italy). Engineering Geology, 73(3–4), 215–228. https://doi.org/10.1016/j.enggeo.2004.01.005spa
dc.relation.referencesda Silva Henriques, C. (2014). Landslide Susceptibility Evaluation and Validation at a Regional Scale [Universidade de Lisboa]. http://hdl.handle.net/10451/11671spa
dc.relation.referencesDahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311–324. https://doi.org/10.1007/s00254-007-0818-3spa
dc.relation.referencesDai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3–4), 213–228. https://doi.org/10.1016/S0169-555X(01)00087-3spa
dc.relation.referencesDai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87. https://doi.org/10.1016/S0013-7952(01)00093-Xspa
dc.relation.referencesDaly, C., Neilson, R. P., & Phillips, D. L. (1994). A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology, 33(2), 140–158. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2spa
dc.relation.referencesDawod, G. M., & Abdel-Aziz, T. M. (2019). Utilization of geographically weighted regression for geoid modelling in Egypt. Journal of Applied Geodesy. https://doi.org/10.1515/jag-2019-0009spa
dc.relation.referencesDe-Graft, H. (2010). Comparison of Akaike information criterion (AIC) and Bayesian information criterion (BIC) in selection of an asymmetric price relationship. Journal of Development and Agricultural Economics, 2(1), 001–006. https://doi.org/10.5897/JDAE.9000032spa
dc.relation.referencesDe Guidi, G., & Scudero, S. (2013). Landslide susceptibility assessment in the Peloritani Mts. (Sicily, Italy) and clues for tectonic control of relief processes. Natural Hazards and Earth System Science, 13(4), 949–963. https://doi.org/10.5194/nhess-13-949-2013spa
dc.relation.referencesDelaney, K. B., & Evans, S. G. (2014). The 1997 Mount Munday landslide (British Columbia) and the behaviour of rock avalanches on glacier surfaces. Landslides, 11(6), 1019–1036. https://doi.org/10.1007/s10346-013-0456-7spa
dc.relation.referencesDeline, P., Alberto, W., Broccolato, M., Hungr, O., Noetzli, J., Ravanel, L., & Tamburini, A. (2011). The December 2008 Crammont rock avalanche, Mont Blanc massif area, Italy. Natural Hazards and Earth System Science, 11(12), 3307–3318. https://doi.org/10.5194/nhess-11-3307-2011spa
dc.relation.referencesDengo, C. A., & Covey, M. C. (1993). Structure of the Eastern Cordillera of Colombia: implications for trap styles and regional tectonics. In American Association of Petroleum Geologists Bulletin (Vol. 77, Issue 8, pp. 1spa
dc.relation.referencesDepicker, A., Govers, G., Jacobs, L., Campforts, B., Uwihirwe, J., & Dewitte, O. (2021). Interactions between deforestation, landscape rejuvenation, and shallow landslides in the North Tanganyika-Kivu rift region, Africa. Earth Surface Dynamics, 9(3), 445–462. https://doi.org/10.5194/esurf-9-445-2021spa
dc.relation.referencesdo Pinho, T. M., & Augusto-Filho, O. (2022). Landslide susceptibility mapping using the infinite slope, SHALSTAB, SINMAP, and TRIGRS models in Serra do Mar, Brazil. Journal of Mountain Science, 19(4), 1018–1036. https://doi.org/10.1007/s11629-021-7057-zspa
dc.relation.referencesDomencich, T., & McFadden, D. (1975). Statistical Estimation of Choice Probability Functions. In Urban Travel Demand: A Behavioral Analysis (pp. 101–125).spa
dc.relation.referencesDramis, F., & Sorriso-Valvo, M. (1994). Deep-seated gravitational slope deformations, related landslides and tectonics. Engineering Geology, 38(3–4), 231–243. https://doi.org/10.1016/0013-7952(94)90040-Xspa
dc.relation.referencesDrouillas, Y., Lebourg, T., Zerathe, S., Hippolyte, J. C., Chochon, R., Vidal, M., & Besso, R. (2021). Alpine deep-seated gravitational slope deformation and the Messinian Salinity Crisis. Landslides, 18(2), 539–549. https://doi.org/10.1007/s10346-020-01504-5spa
dc.relation.referencesDu, G. liang, Zhang, Y. shuang, Iqbal, J., Yang, Z. hua, & Yao, X. (2017). Landslide susceptibility mapping using an integrated model of information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China. Journal of Mountain Science, 14(2), 249–268. https://doi.org/10.1007/s11629-016-4126-9spa
dc.relation.referencesDu, Z., Zhang, B., Hu, H., Bao, J., & Li, W. (2020). Evaluation of Landslide Susceptibility Based on Logistic Regression Model. IOP Conference Series: Earth and Environmental Science, 440(5). https://doi.org/10.1088/1755-1315/440/5/052004spa
dc.relation.referencesDuman, T. Y., Can, T., Gokceoglu, C., Nefeslioglu, H. A., & Sonmez, H. (2006). Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey. Environmental Geology, 51(2), 241–256. https://doi.org/10.1007/s00254-006-0322-1spa
dc.relation.referencesEckey, H. F., Kosfeld, R., & Türck, M. (2007). Regional convergence in Germany: A geographically weighted regression approach. Spatial Economic Analysis, 2(1), 45–64. https://doi.org/10.1080/17421770701251905spa
dc.relation.referencesEhrlich, M., da Costa, D. P., & Silva, R. C. (2018). Behavior of a colluvial slope located in Southeastern Brazil. Landslides, 15(8), 1595–1613. https://doi.org/10.1007/s10346-018-0964-6spa
dc.relation.referencesEiras, C. G. S., Souza, J. R. G. de, Freitas, R. D. A. de, Barella, C. F., & Pereira, T. M. (2021). Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data. Natural Hazards, 107(2), 1427–1442. https://doi.org/10.1007/s11069-021-04638-4spa
dc.relation.referencesEpifânio, B., Zêzere, J. L., & Neves, M. (2014). Susceptibility assessment to different types of landslides in the coastal cliffs of Lourinhã (Central Portugal). Journal of Sea Research, 93, 150–159. https://doi.org/10.1016/j.seares.2014.04.006spa
dc.relation.referencesErener, A. (2009). An approach for landslide risk assessment by using geographic information systems (GIS) and remote sensing (RS) [Middle East Technical University]. http://dx.doi.org/10.1016/B978-0-12-849873-6.00001-7%0Ahttp://saber.ucv.ve/ojs/index.php/rev_venes/article/view/1112%0Ahttps://www.bps.go.id/dynamictable/2018/05/18/1337/persentase-panjang-jalan-tol-yang-beroperasi-menurut-operatornya-2014.htmlspa
dc.relation.referencesErener, A., & Düzgün, H. S. B. (2010). Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway). Landslides, 7(1), 55–68. https://doi.org/10.1007/s10346-009-0188-xspa
dc.relation.referencesErmini, L., Catani, F., & Casagli, N. (2005). Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology, 66(1-4 SPEC. ISS.), 327–343. https://doi.org/10.1016/j.geomorph.2004.09.025spa
dc.relation.referencesErsoz, T., Ersoz, F., & Merdin, D. (2018). Performance Measurement in Business Management with Information Technologies. Baltic Journal of Real Estate Economics and Construction Management, 6(1), 272–284. https://doi.org/10.2478/bjreecm-2018-0020spa
dc.relation.referencesEsposito, G., Carabella, C., Paglia, G., & Miccadei, E. (2021). Relationships between morphostructural/geological framework and landslide types: Historical landslides in the hilly piedmont area of abruzzo region (central Italy). Land, 10(3). https://doi.org/10.3390/land10030287spa
dc.relation.referencesEsquivel, J. (1992). Amenaza geológica y ambiental por la mineria del carbón en las veredas de Rucu y Coscativa (Socotá-Boyacá) (p. 31). Instituto de Investigaciones en Geociencias, Minería y Química (Ingeominas).spa
dc.relation.referencesEstrada, N. K. (2017). Landslide susceptibility prediction in a mountainous catchment: The Naranjo basin, western Guatemala. Liège Université.spa
dc.relation.referencesEtten, J. Van, Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., Busetto, L., Canty, M., Fasoli, B., Forrest, D., Golicher, D., Gray, J., Greenberg, J. A., Karney, C., Mattiuzzi, M., & Mosher, S. (2023). Package ‘ raster ’ R topics documented :spa
dc.relation.referencesEvans, S. G., Tutubalina, O. V., Drobyshev, V. N., Chernomorets, S. S., McDougall, S., Petrakov, D. A., & Hungr, O. (2009). Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002. Geomorphology, 105(3–4), 314–321. https://doi.org/10.1016/j.geomorph.2008.10.008spa
dc.relation.referencesFawcett, T. (2003). ROC Graphs: Notes and Practical Considerations for Data Mining Researchers ROC Graphs : Notes and Practical Considerations for Data Mining Researchers. HP Invent, 27. https://doi.org/10.1.1.10.9777spa
dc.relation.referencesFawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010spa
dc.relation.referencesFell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102(3–4), 85–98. https://doi.org/10.1016/j.enggeo.2008.03.022spa
dc.relation.referencesFeuillet, T., Coquin, J., Mercier, D., Cossart, E., Decaulne, A., Jónsson, H. P., & Sæmundssonthorsteinn, T. (2014). Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: Do paraglacial factors vary over space? Progress in Physical Geography, 38(3), 354–377. https://doi.org/10.1177/0309133314528944spa
dc.relation.referencesFlach, P. A. (2016). ROC Analysis. In Encyclopedia of Machine Learning and Data Mining (pp. 1–8). Springer US. https://doi.org/10.1007/978-1-4899-7502-7_739-1spa
dc.relation.referencesFonseca, A., & Torres, M. (1994). Recopilación y evaluación de información geológica de la cuenca carbonífera de Boyacá zona Sogamoso-Jericó sector II para la elaboración del mapa geológico regional (p. 237). “Ecocarbón” Empresa colombiana de carbón.spa
dc.relation.referencesForte, G., Pirone, M., Santo, A., Nicotera, M. V., & Urciuoli, G. (2019). Triggering and predisposing factors for flow-like landslides in pyroclastic soils: the case study of the Lattari Mts. (southern Italy). Engineering Geology, 257(May), 105137. https://doi.org/10.1016/j.enggeo.2019.05.014spa
dc.relation.referencesFotheringham, A. S., Charlton, M. E., & Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11), 1905–1927. https://doi.org/10.1068/a301905spa
dc.relation.referencesFotheringham, A. Stewart. (2009). “The problem of spatial autocorrelation” and local spatial statistics. Geographical Analysis, 41(4), 398–403. https://doi.org/10.1111/j.1538-4632.2009.00767.xspa
dc.relation.referencesFotheringham, A. Stewart, Crespo, R., & Yao, J. (2015). Geographical and Temporal Weighted Regression (GTWR). Geographical Analysis, 47(4), 431–452. https://doi.org/10.1111/gean.12071spa
dc.relation.referencesFotheringham, A. Stewart, & Oshan, T. M. (2016). Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems, 18(4), 303–329. https://doi.org/10.1007/s10109-016-0239-5spa
dc.relation.referencesFotheringham, S., Brunsdon, C., & Charlton, M. (2002). Geographically Weigthed Regression: the analysis of spatially varying relationships (1era ed.). John Wiley & Sons, LTD.spa
dc.relation.referencesFox, J. (1991). Regression Diagnostics: An Introduction (SAGE (ed.); Second Edi). SAGE Publications.spa
dc.relation.referencesFox, J., & Weisberg, S. (2019). An R Companion to Applied Regression. In Thousand Oaks CA: Sage. (Issue September 2012). http://socserv.socsci.mcmaster.ca/jfox/Books/Companionspa
dc.relation.referencesFujisawa, K., Marcato, G., Nomura, Y., & Pasuto, A. (2010). Management of a typhoon-induced landslide in Otomura (Japan). Geomorphology, 124(3–4), 150–156. https://doi.org/10.1016/j.geomorph.2010.09.027spa
dc.relation.referencesGarcía-Rodríguez, M. J., Malpica, J. A., Benito, B., & Díaz, M. (2008). Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology, 95(3–4), 172–191. https://doi.org/10.1016/j.geomorph.2007.06.001spa
dc.relation.referencesGarcía-Ruiz, J. M., Beguería, S., Arnáez, J., Sanjuán, Y., Lana-Renault, N., Gómez-Villar, A., Álvarez-Martínez, J., & Coba-Pérez, P. (2017). Deforestation induces shallow landsliding in the montane and subalpine belts of the Urbión Mountains, Iberian Range, Northern Spain. Geomorphology, 296, 31–44. https://doi.org/10.1016/j.geomorph.2017.08.016spa
dc.relation.referencesGeoestudios LTDA. (2006). Cartografía Geológica Cuenca Cordillera Oriental-Sector Soapaga (pp. 1–252). Geoestudios LTDA. https://doi.org/10.1007/978-1-62703-791_4spa
dc.relation.referencesGlade, T. (2003). Landslide occurrence as a response to land use change: A review of evidence from New Zealand. Catena, 51(3–4), 297–314. https://doi.org/10.1016/S0341-8162(02)00170-4spa
dc.relation.referencesGlade, T., & Crozier, M. J. (2005). The Nature of Landslide Hazard Impact. In T. Glade, M. Anderson, & M. J. Crozier (Eds.), Landslide Hazard and Risk (pp. 43–74). John Wiley & Sons, Ltd.spa
dc.relation.referencesGollini, I., Lu, B., Charlton, M., Brunsdon, C., & Harris, P. (2015). Gwmodel: An R package for exploring spatial heterogeneity using geographically weighted models. Journal of Statistical Software, 63(17), 1–50. https://doi.org/10.18637/jss.v063.i17spa
dc.relation.referencesGómez, H., & Kavzoglu, T. (2005). Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology, 78(1–2), 11–27. https://doi.org/10.1016/j.enggeo.2004.10.004spa
dc.relation.referencesGoovaerts, P. (1999). Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena, 34(3–4), 227–242. https://doi.org/10.1016/S0341-8162(98)00116-7spa
dc.relation.referencesGoovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1–2), 113–129. https://doi.org/10.1016/S0022-1694(00)00144-Xspa
dc.relation.referencesGorsevski, Pece V., Gessler, P. E., Foltz, R. B., & Elliot, W. J. (2006). Spatial prediction of landslide hazard using logistic regression and ROC analysis. Transactions in GIS, 10(3), 395–415. https://doi.org/10.1111/j.1467-9671.2006.01004.xspa
dc.relation.referencesGorsevski, Peter V, & Foltz, R. B. (2000). Spatial Prediction of Landslide Hazard Using Discriminant Analysis and GIS GIS in the Rockies 2000 Conference. Analysis, January 2000.spa
dc.relation.referencesGoyes-Peñafiel, P., & Hernandez-Rojas, A. (2021). Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia. Engineering Geology, 280, 105958. https://doi.org/10.1016/j.enggeo.2020.105958spa
dc.relation.referencesGuadagno, F. M., Forte, R., Revellino, P., Fiorillo, F., & Focareta, M. (2005). Some aspects of the initiation of debris avalanches in the Campania Region: The role of morphological slope discontinuities and the development of failure. Geomorphology, 66(1-4 SPEC. ISS.), 237–254. https://doi.org/10.1016/j.geomorph.2004.09.024spa
dc.relation.referencesGuevara, L., Maya, L., Gaya, C., Ciontescu, N., Martin, C., Gutierrez, T., Tovar, D., Cristancho, J., Peralta, B., Cerinza, A., Fandiño, N., Pachón, A., Bello, C., Hincapie, S., & Cortés, A. (2009). Formulación del plan de ordenación y manejo ambiental de la cuenca media del río Chicamocha (p. 82). Corporación Autónoma Regional de Boyacá - CORPOBOYACA. https://www.corpoboyaca.gov.co/cms/wp-content/uploads/2015/11/informe-formulacion-chicamocha.pdfspa
dc.relation.referencesGuns, M., & Vanacker, V. (2012). Logistic regression applied to natural hazards: Rare event logistic regression with replications. Natural Hazards and Earth System Science, 12(6), 1937–1947. https://doi.org/10.5194/nhess-12-1937-2012spa
dc.relation.referencesGuthrie, R. H., & Evans, S. G. (2004). Magnitude and frequency of landslides triggered by a storm event, Loughborough Inlet, British Columbia. Natural Hazards and Earth System Science, 4(3), 475–483. https://doi.org/10.5194/nhess-4-475-2004spa
dc.relation.referencesGuzmán, G. (2016). The Chicamocha River Canyon. In World Geomorphological Landscapes (pp. 73–83). Springer. https://doi.org/10.1007/978-3-319-11800-0_6spa
dc.relation.referencesGuzzetti, F., Cardinali, M., & Reichenbach, P. (1996). The Influence of Structural Setting and Lithology on Landslide Type and Pattern. Environmental & Engineering Geoscience, II(4), 531–555. https://doi.org/10.2113/gseegeosci.II.4.531spa
dc.relation.referencesGuzzetti, Fausto, Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 13(6), 1995.spa
dc.relation.referencesGuzzetti, Fausto, Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1–2), 42–66. https://doi.org/10.1016/j.earscirev.2012.02.001spa
dc.relation.referencesGuzzetti, Fausto, Reichenbach, P., Ardizzone, F., Cardinali, M., & Galli, M. (2006). Estimating the quality of landslide susceptibility models. Geomorphology, 81(1–2), 166–184. https://doi.org/10.1016/j.geomorph.2006.04.007spa
dc.relation.referencesHallet, D. (1999). Goodness of fit tests in Logistic Regression [University of Toronto]. https://doi.org/10.2307/j.ctvr7f6m7.7spa
dc.relation.referencesHarris, P., Fotheringham, A. S., Crespo, R., & Charlton, M. (2010). The Use of Geographically Weighted Regression for Spatial Prediction: An Evaluation of Models Using Simulated Data Sets. Mathematical Geosciences, 42(6), 657–680. https://doi.org/10.1007/s11004-010-9284-7spa
dc.relation.referencesHasekioğulları, G. D., & Ercanoglu, M. (2012). A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Natural Hazards, 63(2), 1157–1179. https://doi.org/10.1007/s11069-012-0218-1spa
dc.relation.referencesHeckmann, T., Gegg, K., Gegg, A., & Becht, M. (2014). Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows. Natural Hazards and Earth System Sciences, 14(2), 259–278. https://doi.org/10.5194/nhess-14-259-2014spa
dc.relation.referencesHemmert, G. A. J., Schons, L. M., Wieseke, J., & Schimmelpfennig, H. (2018). Log-likelihood-based Pseudo-R2 in Logistic Regression: Deriving Sample-sensitive Benchmarks. Sociological Methods and Research, 47(3), 507–531. https://doi.org/10.1177/0049124116638107spa
dc.relation.referencesHenriques, C., Zêzere, J. L., & Marques, F. (2015). The role of the lithological setting on the landslide pattern and distribution. Engineering Geology, 189, 17–31. https://doi.org/10.1016/j.enggeo.2015.01.025spa
dc.relation.referencesHiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W., & Heuvelink, G. B. M. (2009). Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers and Geosciences, 35(8), 1711–1721. https://doi.org/10.1016/j.cageo.2008.10.011spa
dc.relation.referencesHighland, L. M., & Bobrowsky, P. (2008). The landslide Handbook - A guide to understanding landslides. In US Geological Survey Circular (Issue 1325). https://doi.org/10.3133/cir1325spa
dc.relation.referencesHong, H., Pradhan, B., Sameen, M. I., Chen, W., & Xu, C. (2017). Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China). Geomatics, Natural Hazards and Risk, 8(2), 1997–2022. https://doi.org/10.1080/19475705.2017.1403974spa
dc.relation.referencesHosmer, D., & Lemeshow, S. (2000). Applied Logistic Regression (2nd Editio).spa
dc.relation.referencesHosmer, D. W., Hosmer, T., Le Cessie, S., & Lemeshow, S. (1997). A comparison of goodness-of-fit tests for the logistic regression model. Statistics in Medicine, 16(9), 965–980. https://doi.org/10.1002/(SICI)1097-0258(19970515)16:9<965::AID-SIM509>3.0.CO;2-Ospa
dc.relation.referencesHosmer, David W., & Hjort, N. L. (2002). Goodness-of-fit processes for logistic regression: simulation results. Statistics in Medicine, 21(18), 2723–2738. https://doi.org/10.1002/sim.1200spa
dc.relation.referencesHuang, F., Chen, J., Du, Z., Yao, C., Huang, J., & Jiang, Q. (2020). Landslide susceptibility prediction considering regional soil erosion based on machine-learning models. ISPRS International J, 24. https://www.mendeley.com/catalogue/56aaeba4-c7c9-3ede-8400-bea51e1eb8f5/?utm_source=desktop&utm_medium=1.19.8&utm_campaign=open_catalog&userDocumentId=%7B7094c671-c3b6-47ab-a9c3-be9c0e72bfa3%7Dspa
dc.relation.referencesHuang, F., Yao, C., Liu, W., Li, Y., & Liu, X. (2018). Landslide susceptibility assessment in the Nantian area of China: A comparison of frequency ratio model and support vector machine. Geomatics, Natural Hazards and Risk, 9(1), 919–938. https://doi.org/10.1080/19475705.2018.1482963spa
dc.relation.referencesHuang, P. H. (2017). Asymptotics of AIC, BIC, and RMSEA for Model Selection in Structural Equation Modeling. Psychometrika, 82(2), 407–426. https://doi.org/10.1007/s11336-017-9572-yspa
dc.relation.referencesHubach, E., & Alvarado, B. (1933). Destrucción de la población de Sativanorte, Boyacá, y el sitio para su reconstrucción. Servicio Geológico Nacional (SGNC).spa
dc.relation.referencesHughes, K. S., & Schulz, W. (2020). Map depicting susceptibility to landslides triggered by intense rainfall, Puerto Rico. Open-File Report. http://pubs.er.usgs.gov/publication/ofr20201022spa
dc.relation.referencesHungr, O., Evans, S. G., Bovis, M. J., & Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3), 221–238. https://doi.org/10.2113/gseegeosci.7.3.221spa
dc.relation.referencesHungr, Oldrich. (2005). Classification and terminology. In Debris-flow Hazards and Related Phenomena (First Edit, pp. 9–23). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-27129-5_2spa
dc.relation.referencesHungr, Oldrich, Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2), 167–194. https://doi.org/10.1007/s10346-013-0436-yspa
dc.relation.referencesIDEAM. (n.d.). Geoportal - IDEAM. Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM. http://visor.ideam.gov.co/geovisor/spa
dc.relation.referencesIglesias, T. (2012). Métodos de Bondad de Ajuste en Regresión Logística. Universidad de Granada.spa
dc.relation.referencesIlia, I., & Tsangaratos, P. (2016). Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides, 13(2), 379–397. https://doi.org/10.1007/s10346-015-0576-3spa
dc.relation.referencesIncitema. (2015). Estudio de Impacto Ambiental para el área de perforación exploratoria COR-15 (pp. 1–122).spa
dc.relation.referencesIrfan, T. Y. (1998). Structurally controlled landslides in saprolitic soils in Hong Kong. Geotechnical and Geological Engineering, 16(3), 215–238. https://doi.org/10.1023/A:1008805827178spa
dc.relation.referencesJaiswal, P., van Westen, C. J., & Jetten, V. (2011). Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides, 8(3), 279–291. https://doi.org/10.1007/s10346-011-0252-1spa
dc.relation.referencesJakob, M. (2000). The impacts of logging on landslide activity at Clayoquot Sound, British Columbia. Catena, 38(4), 279–300. https://doi.org/10.1016/S0341-8162(99)00078-8spa
dc.relation.referencesJames, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R (1st ed.). James, Witten, Hasten & Tibshirani.spa
dc.relation.referencesKanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85(3–4), 347–366. https://doi.org/10.1016/j.enggeo.2006.03.004spa
dc.relation.referencesKavzoglu, T., Kutlug Sahin, E., & Colkesen, I. (2015). Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Engineering Geology, 192, 101–112. https://doi.org/10.1016/j.enggeo.2015.04.004spa
dc.relation.referencesKayastha, Prabin, Dhital, M. R., & De Smedt, F. (2012). Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal. Natural Hazards, 63(2), 479–498. https://doi.org/10.1007/s11069-012-0163-zspa
dc.relation.referencesKimsey, M. J., Moore, J., & McDaniel, P. (2008). A geographically weighted regression analysis of Douglas-fir site index in north central Idaho. Forest Science, 54(3), 356–366. https://doi.org/10.1093/forestscience/54.3.356spa
dc.relation.referencesKing, J., Loveday, I., & Schuster, R. L. (1989). The 1985 Bairaman landslide dam and resulting debris flow, Papua New Guinea. Quarterly Journal of Engineering Geology, 22(4), 257–270. https://doi.org/10.1144/gsl.qjeg.1989.022.04.02spa
dc.relation.referencesKvalseth, T. O. (1985). Cautionary note about r2. American Statistician, 39(4), 279–285. https://doi.org/10.1080/00031305.1985.10479448spa
dc.relation.referencesLacerda, W. A. (2007). Landslide initiation in saprolite and colluvium in southern Brazil: Field and laboratory observations. Geomorphology, 87(3), 104–119. https://doi.org/10.1016/j.geomorph.2006.03.037spa
dc.relation.referencesLandínez, A., & Beltrán, D. (2019). Modelo de susceptibilidad a deslizamientos del departamento de Cundinamarca Colombia, fundamentado en las características topográficas del terreno [Universidad de la Salle, Facultad de Ingeniería]. https://ciencia.lasalle.edu.co/ing_civilspa
dc.relation.referencesLee, S., & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40(9), 1095–1113. https://doi.org/10.1007/s002540100310spa
dc.relation.referencesLee, Saro. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26(7), 1477–1491. https://doi.org/10.1080/01431160412331331012spa
dc.relation.referencesLee, Saro. (2007). Comparison of landslide susceptibility maps generated through multiple logistic regression for three test areas in Korea. Earth Surface Processes and Landforms, 32(14), 2133–2148. https://doi.org/10.1002/esp.1517spa
dc.relation.referencesLee, Saro, Hong, S. M., & Jung, H. S. (2017). A support vector machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability (Switzerland), 9(1), 15–19. https://doi.org/10.3390/su9010048spa
dc.relation.referencesLee, Saro, & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area , Cambodia using frequency ratio and logistic regression models. Environmental Geology, April. https://doi.org/10.1007/s00254-006-0256-7spa
dc.relation.referencesLee, Saro, & Talib, J. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 2005, 10. https://doi.org/10.1007/s00254-005-1228-zspa
dc.relation.referencesLehmann, P., von Ruette, J., & Or, D. (2019). Deforestation Effects on Rainfall-Induced Shallow Landslides: Remote Sensing and Physically-Based Modelling. Water Resources Research, 55(11), 9962–9976. https://doi.org/10.1029/2019WR025233spa
dc.relation.referencesLepore, C., Kamal, S. A., Shanahan, P., & Bras, R. L. (2012). Rainfall-induced landslide susceptibility zonation of Puerto Rico. Environmental Earth Sciences, 66(6), 1667–1681. https://doi.org/10.1007/s12665-011-0976-1spa
dc.relation.referencesLewandowska-Gwarda, K. (2018). Geographically weighted regression in the analysis of unemployment in Poland. ISPRS International Journal of Geo-Information, 7(1). https://doi.org/10.3390/ijgi7010017spa
dc.relation.referencesLi, Y., Liu, X., Han, Z., & Dou, J. (2020). Spatial proximity-based geographically weighted regression model for landslide susceptibility assessment: A case study of Qingchuan area, China. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10031107spa
dc.relation.referencesLila, R. (2018). Landslide Hazard Modeling in Ventura and Santa Barbara Counties, California Using Multi-Tiered Geospatial Data Analysis. Texas State University.spa
dc.relation.referencesLin, G. F., Chang, M. J., Huang, Y. C., & Ho, J. Y. (2017). Assessment of susceptibility to rainfall-induced landslides using improved self-organizing linear output map, support vector machine, and logistic regression. Engineering Geology, 224(April), 62–74. https://doi.org/10.1016/j.enggeo.2017.05.009spa
dc.relation.referencesLin, J. M., & Billa, L. (2021). Spatial prediction of flood-prone areas using geographically weighted regression. Environmental Advances, 6, 100118. https://doi.org/10.1016/j.envadv.2021.100118spa
dc.relation.referencesLin, Q., & Wang, Y. (2019). The application of a geograhically weighted logistic regression for earthquake-triggered landslide susceptibility mapping on different geographic scales. In Deep Rock Mechanics: From Research to Engineering (pp. 485–499).spa
dc.relation.referencesLiu, J. G., & Mason, P. J. (2009). Essential Image Processing and GIS for Remote Sensing (Vol. 5). Wiley. https://doi.org/10.1002/9781118687963spa
dc.relation.referencesLombardo, L., Cama, M., Conoscenti, C., Märker, M., & Rotigliano, E. (2015). Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messina (Sicily, southern Italy). Natural Hazards, 79(3), 1621–1648. https://doi.org/10.1007/s11069-015-1915-3spa
dc.relation.referencesLu, B., Harris, P., Charlton, M., & Brunsdon, C. (2014). The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo-Spatial Information Science, 17(2), 85–101. https://doi.org/10.1080/10095020.2014.917453spa
dc.relation.referencesMallick, J., Singh, R. K., Khan, R. A., Singh, C. K., Kahla, N. Ben, Warrag, E. I., Islam, S., & Rahman, A. (2018). Examining the rainfall–topography relationship using non-stationary modelling technique in semi-arid Aseer region, Saudi Arabia. Arabian Journal of Geosciences, 11(9). https://doi.org/10.1007/s12517-018-3580-9spa
dc.relation.referencesMartins, T., Vieira, B., Fernandes, N., Oka-Fiori, C., & Montgomery, D. (2017). Application of the SHALSTAB model for the identification of areas susceptible to landslides: Brazilian case studies. Revista de Geomorfologie, 19(1), 136–144. https://doi.org/10.21094/rg.2017.015spa
dc.relation.referencesMarzban, C. (2004). The ROC curve and the area under it as performance measures. Weather and Forecasting, 19(6), 1106–1114. https://doi.org/10.1175/825.1spa
dc.relation.referencesMatthias, J., & Hungr, O. (2005). Debris-flow Hazards and Related Phenomena. In Canadian Geotechnical Journal (Vol. 42, Issue 6). Springer Berlin Heidelberg. https://doi.org/10.1007/b138657spa
dc.relation.referencesMayfield, H. J., Lowry, J. H., Watson, C. H., Kama, M., Nilles, E. J., & Lau, C. L. (2018). Use of geographically weighted logistic regression to quantify spatial variation in the environmental and sociodemographic drivers of leptospirosis in Fiji: a modelling study. The Lancet Planetary Health, 2(5), e223–e232. https://doi.org/10.1016/S2542-5196(18)30066-4spa
dc.relation.referencesMcFadden, D. (1977). Quantitative methods for analysing travel behaviour ofindividuals: Some recent developments. Cowles Foundation Discussion Paper No. 474, 279–318.spa
dc.relation.referencesMedina, E., Castro, E., Navarro, S., Sandoval, A., Machuca, S., García, H., Rangel, M., Morales, J., Medina, D., Trejos, G., Valencia, M., Ramírez, K., Rodriguez, E., Barrera, L., & Gamboa, C. (2017). ZONIFICACIÓN DE SUSCEPTIBILIDAD Y AMENAZA POR MOVIMIENTOS EN MASA DE LAS SUBCUENCAS DE LAS QUEBRADAS TARUCA, TARUQUITA, SAN ANTONIO, EL CARMEN Y LOS RÍOS MULATO Y SANGOYACO DEL MUNICIPIO DE MOCOA – PUTUMAYO. Escala 1:25.000 (p. 239). Servicio Geológico Colombiano.spa
dc.relation.referencesMeinhardt, M., Fink, M., & Tünschel, H. (2015). Landslide susceptibility analysis in central Vietnam based on an incomplete landslide inventory: Comparison of a new method to calculate weighting factors by means of bivariate statistics. Geomorphology, 234, 80–97. https://doi.org/10.1016/j.geomorph.2014.12.042spa
dc.relation.referencesMennis, J. (2006). Mapping the results of geographically weighted regression. Cartographic Journal, 43(2), 171–179. https://doi.org/10.1179/000870406X114658spa
dc.relation.referencesMersha, T., & Meten, M. (2020). GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenvironmental Disasters, 7(1). https://doi.org/10.1186/s40677-020-00155-xspa
dc.relation.referencesMeusburger, K., & Alewell, C. (2008). Impacts of anthropogenic and environmental factors on the occurrence of shallow landslides in an alpine catchment (Urseren Valley, Switzerland). Natural Hazards and Earth System Science, 8(3), 509–520. https://doi.org/10.5194/nhess-8-509-2008spa
dc.relation.referencesMiddya, A. I., & Roy, S. (2021). Geographically varying relationships of COVID-19 mortality with different factors in India. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-86987-5spa
dc.relation.referencesMidi, H., Sarkar, S. K., & Rana, S. (2010). Collinearity diagnostics of binary logistic regression model. Journal of Interdisciplinary Mathematics, 13(3), 253–267. https://doi.org/10.1080/09720502.2010.10700699spa
dc.relation.referencesMiščević, P., Števanić, D., & Štambuk-Cvitanović, N. (2009). Slope instability mechanisms in dipping conglomerates over weathered marls: Bol landslide, Croatia. Environmental Geology, 56(7), 1417–1426. https://doi.org/10.1007/s00254-008-1236-xspa
dc.relation.referencesMontero, J. (2017). Clasificación de movimiento en masa y su distribución en terrenos geológicos de Colombia. In Clasificación de movimiento en masa y su distribución en terrenos geológicos de Colombia (Primera Ed). Servicio Geológico Colombiano (SGC). https://doi.org/10.32685/9789585978218spa
dc.relation.referencesMontes, N., Sandoval, A., & Vergara, N. (2000). Base de datos y mapa de fallas activas de Colombia. Ingeominas.spa
dc.relation.referencesMontgomery, D. R. (1994). Road surface drainage, channel initiation, and slope instability. Water Resources Research, 30(6), 1925–1932. https://doi.org/10.1029/94WR00538spa
dc.relation.referencesMoore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103spa
dc.relation.referencesMoran, P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17spa
dc.relation.referencesMorrissey, K. (2015). Exploring Spatial Variability in the Relationship between Long Term Limiting Illness and Area Level Deprivation at the City Level Using Geographically Weighted Regression. AIMS Public Health, 2(3), 426–440. https://doi.org/10.3934/publichealth.2015.3.426spa
dc.relation.referencesMousavi, S. Z., Kavian, A., Soleimani, K., Mousavi, S. R., & Shirzadi, A. (2011). GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics, Natural Hazards and Risk, 2(1), 33–50. https://doi.org/10.1080/19475705.2010.532975spa
dc.relation.referencesMoya, G. (2015). Memoria explicativa del mapa geomorfológico aplicado a movimientos en masa, escala 1:100000. Plancha 152 - Soatá.spa
dc.relation.referencesMugagga, F., Kakembo, V., & Buyinza, M. (2012). Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. Catena, 90, 39–46. https://doi.org/10.1016/j.catena.2011.11.004spa
dc.relation.referencesNefeslioglu, H. A., Gokceoglu, C., & Sonmez, H. (2008). An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97(3–4), 171–191. https://doi.org/10.1016/j.enggeo.2008.01.004spa
dc.relation.referencesNeuhäuser, B. (2014). Landslide Susceptibility and Climate Change Scenarios in Flysch Areas of the Eastern Alps [Julius-Maximilians-Universität Würzburg]. https://opus.bibliothek.uni-wuerzburg.de/opus4-wuerzburg/frontdoor/deliver/index/docId/10858/file/Dissertation_Neuhaeuser.pdfspa
dc.relation.referencesNguyen, V. V., Pham, B. T., Vu, B. T., Prakash, I., Jha, S., Shahabi, H., Shirzadi, A., Ba, D. N., Kumar, R., Chatterjee, J. M., & Bui, D. T. (2019). Hybrid machine learning approaches for landslide susceptibility modeling. Forests, 10(2). https://doi.org/10.3390/f10020157spa
dc.relation.referencesOhlmacher, G. C. (2007). Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Engineering Geology, 91(2–4), 117–134. https://doi.org/10.1016/j.enggeo.2007.01.005spa
dc.relation.referencesOhlmacher, G. C., & Davis, J. C. (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69(3–4), 331–343. https://doi.org/10.1016/S0013-7952(03)00069-3spa
dc.relation.referencesOilier, C. D. (2010). Very deep weathering and related landslides. Geological Society Engineering Geology Special Publication, 23, 5–14. https://doi.org/10.1144/EGSP23.2spa
dc.relation.referencesOmar, L., & Ivrissimtzis, I. (2019). Using theoretical ROC curves for analysing machine learning binary classifiers. Pattern Recognition Letters, 128, 447–451. https://doi.org/10.1016/j.patrec.2019.10.004spa
dc.relation.referencesOsanai, N., Yamada, T., Hayashi, S. ichiro, Kastura, S., Furuichi, T., Yanai, S., Murakami, Y., Miyazaki, T., Tanioka, Y., Takiguchi, S., & Miyazaki, M. (2019). Characteristics of landslides caused by the 2018 Hokkaido Eastern Iburi Earthquake. Landslides, 16(8), 1517–1528. https://doi.org/10.1007/s10346-019-01206-7spa
dc.relation.referencesOshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Stewart Fotheringham, A. (2019). MGWR: A python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6). https://doi.org/10.3390/ijgi8060269spa
dc.relation.referencesPachauri, A. K., & Pant, M. (1992). Landslide hazard mapping based on geological attributes. Engineering Geology, 32(1–2), 81–100. https://doi.org/10.1016/0013-7952(92)90020-Yspa
dc.relation.referencesPacheco, A. (1971). Informe sobre los deslizamientos del municipio de Paz de Río, Boyacá (p. 16). Instituto Nacional de Investigaciones Geológico-Mineras.spa
dc.relation.referencesPalenzuela-Baena, J. A., Scifoni, S., Marsella, M., De Astis, G., & Irigaray Fernández, C. (2019). Landslide susceptibility mapping on the islands of Vulcano and Lipari (Aeolian Archipelago, Italy), using a multi-classification approach on conditioning factors and a modified GIS matrix method for areas lacking in a landslide inventory. Landslides, 16(5), 969–982. https://doi.org/10.1007/s10346-019-01148-0spa
dc.relation.referencesPardo, M. E., & Moreno-Arias, R. (2018). El enclave seco del cañón del Chicamocha: biodiversidad y territorio. In Bogotá DC: Fundación Natura.spa
dc.relation.referencesPark, I., & Lee, S. (2014). Spatial prediction of landslide susceptibility using a decision tree approach: a case study of the Pyeongchang area, Korea. International Journal of Remote Sensing, 35(16), 6089–6112. https://doi.org/10.1080/01431161.2014.943326spa
dc.relation.referencesPark, S. J., Lee, C. W., Lee, S., & Lee, M. J. (2018). Landslide susceptibility mapping and comparison using decision tree models: A case study of Jumunjin Area, Korea. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101545spa
dc.relation.referencesPark, S., & Kim, J. (2015). A comparative analysis of landslide susceptibility assessment by using global and spatial regression methods in Inje area, Korea. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 33(6), 579–587. https://doi.org/10.7848/ksgpc.2015.33.6.579spa
dc.relation.referencesParrish, J. (2013). Factors Affecting Landslides in Forested Terrain. California Geological Survey, January, 1–6.spa
dc.relation.referencesPebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers and Geosciences, 30(7), 683–691. https://doi.org/10.1016/j.cageo.2004.03.012spa
dc.relation.referencesPedrazzini, A., Jaboyedoff, M., Loye, A., & Derron, M. H. (2013). From deep seated slope deformation to rock avalanche: Destabilization and transportation models of the Sierre landslide (Switzerland). Tectonophysics, 605, 149–168. https://doi.org/10.1016/j.tecto.2013.04.016spa
dc.relation.referencesPercival, J., Tsutsumida, N., Murakami, D., Yoshida, T., & Nakaya, T. (2021). gwpcorMapper: an interactive mapping tool for exploring geographically weighted correlation and partial correla-tion in high-dimensional geospatial datasets. January, 1–18.spa
dc.relation.referencesPerez, A., & Llinas, R. (1990). El deslizamiento de Coloradales - El Salitre en la zona de Paz de Rio, Boyacá. Geología Colombiana, 17, 169–182.spa
dc.relation.referencesPersichillo, M. G., Bordoni, M., Cavalli, M., Crema, S., & Meisina, C. (2018). The role of human activities on sediment connectivity of shallow landslides. Catena, 160(September 2017), 261–274. https://doi.org/10.1016/j.catena.2017.09.025spa
dc.relation.referencesPersichillo, M. G., Bordoni, M., & Meisina, C. (2017). The role of land use changes in the distribution of shallow landslides. Science of the Total Environment, 574, 924–937. https://doi.org/10.1016/j.scitotenv.2016.09.125spa
dc.relation.referencesPersichillo, M. G., Bordoni, M., Meisina, C., Bartelletti, C., Barsanti, M., Giannecchini, R., D’Amato Avanzi, G., Galanti, Y., Cevasco, A., Brandolini, P., & Galve, J. P. (2017). Shallow landslides susceptibility assessment in different environments. Geomatics, Natural Hazards and Risk, 8(2), 748–771. https://doi.org/10.1080/19475705.2016.1265011spa
dc.relation.referencesPham, B. T., Jaafari, A., Prakash, I., & Bui, D. T. (2019). A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 78(4), 2865–2886. https://doi.org/10.1007/s10064-018-1281-yspa
dc.relation.referencesPiacentini, D., Troiani, F., Soldati, M., Notarnicola, C., Savelli, D., Schneiderbauer, S., & Strada, C. (2012). Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology, 151–152, 196–206. https://doi.org/10.1016/j.geomorph.2012.02.003spa
dc.relation.referencesPiciullo, L., Calvello, M., & Cepeda, J. M. (2018). Territorial early warning systems for rainfall-induced landslides. Earth-Science Reviews, 179(February), 228–247. https://doi.org/10.1016/j.earscirev.2018.02.013spa
dc.relation.referencesPierson, T. C. (2007). Hyperconcentrated flow — transitional process between water flow and debris flow. In Debris-flow Hazards and Related Phenomena (pp. 159–202). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-27129-5_8spa
dc.relation.referencesPoudyal, C. P., Chang, C., Oh, H. J., & Lee, S. (2010). Landslide susceptibility maps comparing frequency ratio and artificial neural networks: A case study from the Nepal Himalaya. Environmental Earth Sciences, 61(5), 1049–1064. https://doi.org/10.1007/s12665-009-0426-5spa
dc.relation.referencesPourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran. Journal of Earth System Science, 122(2), 349–369. https://doi.org/10.1007/s12040-013-0282-2spa
dc.relation.referencesPradhan, B., Chaudhari, A., Adinarayana, J., & Buchroithner, M. F. (2012). Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: A case study at Penang Island, Malaysia. Environmental Monitoring and Assessment, 184(2), 715–727. https://doi.org/10.1007/s10661-011-1996-8spa
dc.relation.referencesPradhan, B., & Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling and Software, 25(6), 747–759. https://doi.org/10.1016/j.envsoft.2009.10.016spa
dc.relation.referencesPropastin, P., Kappas, M., & Erasmi, S. (2007). Application of Geographically Weighted Regression to Investigate the Impact of Scale on Prediction Uncertainty by Modelling Relationship between Vegetaion and Climate. International Journal of Spatial Infrastructures Research, 3, 1–22. https://doi.org/10.2902/1725-0463.2008.03.art6spa
dc.relation.referencesRahmati, O., Haghizadeh, A., Pourghasemi, H. R., & Noormohamadi, F. (2016). Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Natural Hazards, 82(2), 1231–1258. https://doi.org/10.1007/s11069-016-2239-7spa
dc.relation.referencesRefice, A., & Capolongo, D. (2002). Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Computers and Geosciences, 28(6), 735–749. https://doi.org/10.1016/S0098-3004(01)00104-2spa
dc.relation.referencesRegmi, A. D., Yoshida, K., Dhital, M. R., & Devkota, K. (2013). Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides, 10(1), 1–13. https://doi.org/10.1007/s10346-011-0311-7spa
dc.relation.referencesRegmi, N. (2010). Hillslope dynamics in the Paonia-McClure Pass area, Colorado, USA (Issue August) [Texas A&M University]. https://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8573spa
dc.relation.referencesRegmi, N. R., Giardino, J. R., McDonald, E. V., & Vitek, J. D. (2014). A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides, 11(2), 247–262. https://doi.org/10.1007/s10346-012-0380-2spa
dc.relation.referencesRegmi, N. R., Giardino, J. R., & Vitek, J. D. (2014). Characteristics of landslides in western Colorado, USA. Landslides, 11(4), 589–603. https://doi.org/10.1007/s10346-013-0412-6spa
dc.relation.referencesReichenbach, P., Busca, C., Mondini, A. C., & Rossi, M. (2014). The Influence of Land Use Change on Landslide Susceptibility Zonation: The Briga Catchment Test Site (Messina, Italy). Environmental Management, 54(6), 1372–1384. https://doi.org/10.1007/s00267-014-0357-0spa
dc.relation.referencesReyes, I. (1983). Tectónica gravitacional en la Cordillera Oriental al este de la Falla de Boyacá (Departamento de Boyacá). In Boletín de Geología, Universidad Industrial de Santander (Vol. 16, Issue 30, pp. 103–117).spa
dc.relation.referencesReyes, Italo. (1984). Geología de la región de Duitama - Sogamoso - Paz del Río (Departamento de Boyacá). Universidad Pedagogica y Tecnologica de Colombia.spa
dc.relation.referencesRiley, S. J., DeGloria, S. D., & Elliot, R. (1999). A Terrain Ruggedness Index that Qauntifies Topographic Heterogeneity. Intermountain Journal of Sciences, 5(1–4), 23–27.spa
dc.relation.referencesRincón, L. C. B. (2019). Elaboración de un inventario de movimientos en masa mediante técnicas geomáticas en el municipio de Villeta Cundinamarca. In 2019 (Issue 8). https://doi.org/10.1088/1751-8113/44/8/085201spa
dc.relation.referencesRizopoulos, D. (2022). Package ‘ bootStepAIC .’ https://cran.r-project.org/web/packages/bootStepAIC/bootStepAIC.pdfspa
dc.relation.referencesRobin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011). pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(1), 77. https://doi.org/10.1186/1471-2105-12-77spa
dc.relation.referencesRoccati, A., Paliaga, G., Luino, F., Faccini, F., & Turconi, L. (2021). GIS-Based Landslide Susceptibility Mapping for Land Use Planning and Risk Assessment. Land, 10(2), 162. https://doi.org/10.3390/land10020162spa
dc.relation.referencesRodrigues, M., de la Riva, J., & Fotheringham, S. (2014). Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weightedlogistic regression. Applied Geography, 48, 52–63. https://doi.org/10.1016/j.apgeog.2014.01.011spa
dc.relation.referencesRodríguez, A. (1987). Estudio geológico y mapa de riesgos quebrada La Chapa área de los municipios de Socha, Tasco y Paz de Río Depto. de Boyacá (p. 38). Instituto Nacional de Investigaciones Geológico-Mineras.spa
dc.relation.referencesRomer, C., & Ferentinou, M. (2016). Shallow landslide susceptibility assessment in a semiarid environment - A Quaternary catchment of KwaZulu-Natal, South Africa. Engineering Geology, 201, 29–44. https://doi.org/10.1016/j.enggeo.2015.12.013spa
dc.relation.referencesRong, G., Alu, S., Li, K., Su, Y., Zhang, J., Zhang, Y., & Li, T. (2020). Rainfall Induced Landslide Susceptibility Mapping Based on Bayesian Optimized Random Forest and Gradient Boosting Decision Tree Models—A Case Study of Shuicheng County, China. Water, 12(11), 3066. https://doi.org/10.3390/w12113066spa
dc.relation.referencesRozos, D., Bathrellos, G. D., & Skillodimou, H. D. (2011). Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: A case study from the Eastern Achaia County of Peloponnesus, GREECE. Environmental Earth Sciences, 63(1), 49–63. https://doi.org/10.1007/s12665-010-0687-zspa
dc.relation.referencesSahin, E. (2020). Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto International, 0(0), 000. https://doi.org/10.1080/10106049.2020.1831623spa
dc.relation.referencesSahin, E., & Colkesen, I. (2021). Performance analysis of advanced decision tree-based ensemble learning algorithms for landslide susceptibility mapping. Geocarto International, 36(11), 1253–1275. https://doi.org/10.1080/10106049.2019.1641560spa
dc.relation.referencesSahin, E. K. (2020). Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto International, 0(0), 000. https://doi.org/10.1080/10106049.2020.1831623spa
dc.relation.referencesSajinkumar, K. S., Anbazhagan, S., Pradeepkumar, A. P., & Rani, V. R. (2011). Weathering and landslide occurrences in parts of Western Ghats, Kerala. Journal of the Geological Society of India, 78(3), 249–257. https://doi.org/10.1007/s12594-011-0089-1spa
dc.relation.referencesSalas, F. (2018). Elaboración de mapas de amenaza por procesos de remoción en masa a partir de la modelación de respuesta hidrológica en cuencas [Universidad Nacional de Colombia, Facultad de Ingeniería]. http://bdigital.unal.edu.co/70672/spa
dc.relation.referencesSalazar, L. (2018). Susceptibilidad y amenaza a los movimientos en masa de suelos de laderas en zonas cafeteras colombianas. Universidad Nacional de Colombia, Sede Palmira, Facultad de Ciencias Agropecuarias.spa
dc.relation.referencesSangelantoni, L., Gioia, E., & Marincioni, F. (2018). Impact of climate change on landslides frequency: the Esino river basin case study (Central Italy). In Natural Hazards (Vol. 93, Issue 2). Springer Netherlands. https://doi.org/10.1007/s11069-018-3328-6spa
dc.relation.referencesSantacana, N. (2001). Análisis de la susceptibilidad del terreno a la formación de deslizamientos superficiales y grandes deslizamientos mediante el uso de sistemas de información geográfica. Aplicación a la cuenca alta del río Llobregat. [Universitat Politècnica de Catalunya]. https://www.tesisenred.net/handle/10803/6213#page=1spa
dc.relation.referencesSantacana, N., Baeza, B., Corominas, J., De Paz, A., & Marturiá, J. (2003). A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Natural Hazards, 30(3), 281–295. https://doi.org/10.1023/B:NHAZ.0000007169.28860.80spa
dc.relation.referencesSasaki, Y., Fujii, A., & Asai, K. (2000). Soil creep process and its role in debris slide generation-field measurements on the north side of Tsukuba Mountain in Japan. Developments in Geotechnical Engineering, 84(C), 199–219. https://doi.org/10.1016/S0165-1250(00)80017-6spa
dc.relation.referencesSchicker, R., & Moon, V. (2012). Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology, 161–162, 40–57. https://doi.org/10.1016/j.geomorph.2012.03.036spa
dc.relation.referencesSGC. (2015). Memoria explicativa de la zonificación de la susceptibilidad y la amenaza relativa por movimientos en masa escala 1:100000, Plancha 152 - Soatá, Departamento de Boyacá. (p. 46). Servicio Geológico Colombiano (SGC).spa
dc.relation.referencesSGC, & IDEAM. (2016). Memoria explicativa de la zonificación de susceptibilidad y amenaza relativa por movimientos en masa escala 1:100.000 Plancha 172 – Paz de Río (p. 53). Servicio Geológico Colombiano (SGC) e Instituto de Hidrología, Metereología y Estudios Ambientales (IDEAM).spa
dc.relation.referencesSidle, R. C., Pearce, A. J., & O’Loughlin, C. L. (1985). Hillslope Stability and Land Use (Vol. 11, Issue 1). American Geophysical Union. https://doi.org/10.1029/WM011spa
dc.relation.referencesSidle, R. C., & Ziegler, A. D. (2012). The dilemma of mountain roads. Nature Geoscience, 5(7), 437–438. https://doi.org/10.1038/ngeo1512spa
dc.relation.referencesSignorell, A., Abo, K., Anderegg, N., Aragon, T., Arachechige, C., Arppe, A., Barton, K., & Bolker, B. (2023). Package “DescTools.” https://cran.r-project.org/web/packages/DescTools/index.htmlspa
dc.relation.referencesSing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2005). ROCR: Visualizing classifier performance in R. Bioinformatics, 21(20), 3940–3941. https://doi.org/10.1093/bioinformatics/bti623spa
dc.relation.referencesSingh, N. S., Gupta, S. K., Dubey, C. S., & Shukla, D. P. (2021). An Ordinal Scale Weighting Approach for Susceptibility Mapping Around Tehri Dam, Uttarakhand, India (Vol. 2). https://doi.org/10.1007/978-3-030-60227-7_18spa
dc.relation.referencesSkilodimou, H. D., Bathrellos, G. D., Koskeridou, E., Soukis, K., & Rozos, D. (2018). Physical and anthropogenic factors related to landslide activity in the northern Peloponnese, Greece. Land, 7(3). https://doi.org/10.3390/land7030085spa
dc.relation.referencesSoeters, R., & Van Westen, C. J. (1996). Slope instability recognition, analysis, and zonation. Special Report - National Research Council, Transportation Research Board, 247(January 1996), 129–177.spa
dc.relation.referencesSonoda, M., & Kurashige, Y. (2017). Characteristics of surface soil creep on a forest slope in Japan. Geomorphology, 288, 1–11. https://doi.org/10.1016/j.geomorph.2017.03.006spa
dc.relation.referencesSørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1), 101–112. https://doi.org/10.5194/hess-10-101-2006spa
dc.relation.referencesSoto, J. (2018). Análisis de la peligrosidad frente a los movimientos de ladera en la Cuenca de Loja (Ecuador). [Universidad de Granada]. http://hdl.handle.net/10481/51128spa
dc.relation.referencesSun, D., Wen, H., Zhang, Y., & Xue, M. (2021). An optimal sample selection-based logistic regression model of slope physical resistance against rainfall-induced landslide. Natural Hazards, 105(2), 1255–1279. https://doi.org/10.1007/s11069-020-04353-6spa
dc.relation.referencesSun, X., Chen, J., Bao, Y., Han, X., Zhan, J., & Peng, W. (2018). Landslide susceptibility mapping using logistic regression analysis along the Jinsha river and its tributaries close to Derong and Deqin County, southwestern China. ISPRS International Journal of Geo-Information, 7(11), 1–29. https://doi.org/10.3390/ijgi7110438spa
dc.relation.referencesSüzen, M. L., & Doyuran, V. (2004). Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey. Engineering Geology, 71(3–4), 303–321. https://doi.org/10.1016/S0013-7952(03)00143-1spa
dc.relation.referencesSüzen, M. L., & Kaya, B. Ş. (2012). Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. International Journal of Digital Earth, 5(4), 338–355. https://doi.org/10.1080/17538947.2011.586443spa
dc.relation.referencesSwanston, D. N. (1971). Slope Stability Problems Associated with Timber Harvesting in Mountainous Regions of the Western United States. USDA Forest Service General Technical Report PNW-21. https://doi.org/10.1.1.486.6343spa
dc.relation.referencesSwets, J. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293. https://doi.org/10.1126/science.3287615spa
dc.relation.referencesTaalab, K., Cheng, T., & Zhang, Y. (2018). Mapping landslide susceptibility and types using Random Forest. Big Earth Data, 2(2), 159–178. https://doi.org/10.1080/20964471.2018.1472392spa
dc.relation.referencesTaboada, A., Dimate, C., & Fuenzalida, A. (1998). Sismotectónica de Colombia: deformación continental activa y subducción. Journal of Volcanology and Geothermal Research, 10, 110–147.spa
dc.relation.referencesTanyu, B. F., Abbaspour, A., Alimohammadlou, Y., & Tecuci, G. (2021). Landslide susceptibility analyses using Random Forest, C4.5, and C5.0 with balanced and unbalanced datasets. Catena, 203(April 2020), 105355. https://doi.org/10.1016/j.catena.2021.105355spa
dc.relation.referencesTehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79. https://doi.org/10.1016/j.jhydrol.2013.09.034spa
dc.relation.referencesTemme, A. J. A. M. (2021). Relations Between Soil Development and Landslides. In Geophysical Monograph Series (pp. 177–185). https://doi.org/10.1002/9781119563952.ch9spa
dc.relation.referencesTerlien, M. T. J. (1998). The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environmental Geology, 35(2–3), 124–130. https://doi.org/10.1007/s002540050299spa
dc.relation.referencesTien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology, 171–172, 12–29. https://doi.org/10.1016/j.geomorph.2012.04.023spa
dc.relation.referencesToro, J. (1990). The termination of the bucaramanga fault in the Cordillera Oriental, Colombia [The University of Arizona]. http://hdl.handle.net/10150/558140spa
dc.relation.referencesUlloa, C., Guerra, A., & Escovar, R. (2003). Geología de la Plancha 172 Paz de Río (p. 1). Servicio Geológico Colombiano (SGC).spa
dc.relation.referencesUlloa, C., Rodriguez, E., & Rodríguez, G. (2003). Memoria explicativa Plancha 172 Paz de Río.spa
dc.relation.referencesUPTC. (2015). Determinación de zonas de amenaza y escenarios de riesgo por deslizamiento en el municipio de Jericó, departamento de Boyacá. In Universidad Pedagógica y Tecnológico de Colombia.spa
dc.relation.referencesValencia Ortiz, J. A., & Martínez-Graña, A. M. (2023). Morphometric Evaluation and Its Incidence in the Mass Movements Present in the Chicamocha Canyon, Colombia. Sustainability, 15(2), 1140. https://doi.org/10.3390/su15021140spa
dc.relation.referencesVan Asch, T. W. J., Buma, J., & Van Beek, L. P. H. (1999). A view on some hydrological triggering systems in landslides. Geomorphology, 30(1–2), 25–32. https://doi.org/10.1016/S0169-555X(99)00042-2spa
dc.relation.referencesvan Beek, L., & van Asch, T. (2004). Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Natural Hazards, 31(1), 289–304. https://doi.org/10.1023/B:NHAZ.0000020267.39691.39spa
dc.relation.referencesVan Den Eeckhaut, M., Hervás, J., Jaedicke, C., Malet, J. P., Montanarella, L., & Nadim, F. (2012). Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides, 9(3), 357–369. https://doi.org/10.1007/s10346-011-0299-zspa
dc.relation.referencesVan Den Eeckhaut, M., Marre, A., & Poesen, J. (2010). Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology, 115(1–2), 141–155. https://doi.org/10.1016/j.geomorph.2009.09.042spa
dc.relation.referencesVan Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., & Vandekerckhove, L. (2006). Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium). Geomorphology, 76(3–4), 392–410. https://doi.org/10.1016/j.geomorph.2005.12.003spa
dc.relation.referencesvan Westen, C. J., & Terlien, M. T. J. (1996). An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes and Landforms, 21(9), 853–868. https://doi.org/10.1002/(SICI)1096-9837(199609)21:9<853::AID-ESP676>3.0.CO;2-Cspa
dc.relation.referencesVan Westen, C. (1997). Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide. ITC Publication, 2, 73–84. http://www.adpc.net/casita/Case_studies/Landslide hazard assessment/Statistical landslide susceptibility assessmen landslide index method CS Chinchina Colombia/Statistical_landslide_susceptibility_analysis.pdfspa
dc.relation.referencesvan Westen, Cees. (1993). Application of Geographic information systems to Landslide Hazard Zonation.spa
dc.relation.referencesvan Westen, Cees. (1994). GIS in landslide hazard zonation: a review, with examples from the Andes Colombia. Mountain Environment and Geographic Information Systems, May, 135–165.spa
dc.relation.referencesVargas, R., Arias, A., Jaramillo, L., & Tellez, N. (1987). Plancha 152 - Soatá (p. 1). Instituto Nacional de Investigaciones Geológico-Mineras.spa
dc.relation.referencesVarnes, D. (1958). Landslide types and processes. In Landslides and Engineering Practice (Vol. 29, pp. 20–47).spa
dc.relation.referencesVarnes, D. (1978). Slope movement types and processes. Landslides: Analysis and Control. Transportation Research Board Special Report 176, 11–33.spa
dc.relation.referencesVelandia, F. (2005). Interpretación De Transcurrencia De Las Fallas Soapaga Y Boyacá a Partir De Imágenes Landsat Tm. Boletín de Geología, 27(1), 81–94.spa
dc.relation.referencesVijith, H., & Madhu, G. (2008). Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environmental Geology, 55(7), 1397–1405. https://doi.org/10.1007/s00254-007-1090-2spa
dc.relation.referencesWang, Gonghui, Sassa, K., & Fukuoka, H. (2003). Downslope volume enlargement of a debris slide-debris flow in the 1999 Hiroshima, Japan, rainstorm. Engineering Geology, 69(3–4), 309–330. https://doi.org/10.1016/S0013-7952(02)00289-2spa
dc.relation.referencesWang, Guirong, Chen, X., & Chen, W. (2020). Spatial prediction of landslide susceptibility based on GIS and discriminant functions. ISPRS International Journal of Geo-Information, 9(3). https://doi.org/10.3390/ijgi9030144spa
dc.relation.referencesWang, J., & Xiao, L. (2014). Landslide susceptibility assessment based on GIS and weighted information value: A case study of Wanzhou district, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 33(4), 13.spa
dc.relation.referencesWheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161–187. https://doi.org/10.1007/s10109-005-0155-6spa
dc.relation.referencesWieczorek, G. F. (1996). Chapter 4:Landslide Triggering Mechanisms. In R. L. Schuster & A. K. Turner (Eds.), Landslides: Investigation and Mitigation (pp. 76–90). Transportation Research Board: National Research Council.spa
dc.relation.referencesWilson, J. P., & Gallant, J. C. (2000). Terrain analysis: principles and applications (J. P. Wilson & J. C. Gallant (eds.)). Wiley. https://www.wiley.com/en-ie/Terrain+Analysis:+Principles+and+Applications-p-9780471321880spa
dc.relation.referencesWilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C., & Grehan, A. J. (2007). Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. In Marine Geodesy (Vol. 30, Issues 1–2). https://doi.org/10.1080/01490410701295962spa
dc.relation.referencesWu, C., & Qiao, J. (2009). Relationship between landslides and lithology in the Three Gorges Reservoir area based on GIS and information value model. Frontiers of Forestry in China, 4(2), 165–170. https://doi.org/10.1007/s11461-009-0030-6spa
dc.relation.referencesXian-Qin Hu, & Cruden, D. M. (1992). Rock mass movements across bedding in Kananaskis Country, Alberta. Canadian Geotechnical Journal, 29(4), 675–685. https://doi.org/10.1139/t92-074spa
dc.relation.referencesXin, P., Liu, Z., Wu, S. ren, Liang, C., & Lin, C. (2018). Rotational–translational landslides in the neogene basins at the northeast margin of the Tibetan Plateau. Engineering Geology, 244(August), 107–115. https://doi.org/10.1016/j.enggeo.2018.07.024spa
dc.relation.referencesXu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145–146, 70–80. https://doi.org/10.1016/j.geomorph.2011.12.040spa
dc.relation.referencesXu, Q., Fan, X., Huang, R., Yin, Y., Hou, S., Dong, X., & Tang, M. (2010). A catastrophic rockslide-debris flow in Wulong, Chongqing, China in 2009: Background, characterization, and causes. Landslides, 7(1), 75–87. https://doi.org/10.1007/s10346-009-0179-yspa
dc.relation.referencesYalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274–287. https://doi.org/10.1016/j.catena.2011.01.014spa
dc.relation.referencesYalcin, Ali. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72(1), 1–12. https://doi.org/10.1016/j.catena.2007.01.003spa
dc.relation.referencesYoon, S. S., & Bae, D. H. (2013). Optimal rainfall estimation by considering elevation in the Han River Basin, South Korea. Journal of Applied Meteorology and Climatology, 52(4), 802–818. https://doi.org/10.1175/JAMC-D-11-0147.1spa
dc.relation.referencesZêzere, J. L., Pereira, S., Melo, R., Oliveira, S. C., & Garcia, R. A. C. (2017). Mapping landslide susceptibility using data-driven methods. Science of the Total Environment, 589, 250–267. https://doi.org/10.1016/j.scitotenv.2017.02.188spa
dc.relation.referencesZêzere, José Luís, De Brum Ferreira, A., & Rodrigues, M. L. (1999). The role of conditioning and triggering factors in the occurrence of landslides: A case study in the area north of Lisbon (Portugal). Geomorphology, 30(1–2), 133–146. https://doi.org/10.1016/S0169-555X(99)00050-1spa
dc.relation.referencesZhang, D., Ren, N., & Hou, X. (2018). An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping. Geoscientific Model Development, 11(6), 2525–2539. https://doi.org/10.5194/gmd-11-2525-2018spa
dc.relation.referencesZhu, L., & Huang, J. F. (2006). GIS-based logistic regression method for landslide susceptibility mapping in regional scale. Journal of Zhejiang University: Science, 7(12), 2007–2017. https://doi.org/10.1631/jzus.2006.A2007spa
dc.relation.referencesZizioli, D., Meisina, C., Valentino, R., & Montrasio, L. (2013). Comparison between different approaches to modeling shallow landslide susceptibility: A case history in Oltrepo Pavese, Northern Italy. Natural Hazards and Earth System Sciences, 13(3), 559–573. https://doi.org/10.5194/nhess-13-559-2013spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaspa
dc.subject.proposalSusceptibilidadspa
dc.subject.proposalMovimiento en masaspa
dc.subject.proposalGeomorfologíaspa
dc.subject.proposalAmenazas naturalesspa
dc.subject.proposalDeslizamientosspa
dc.subject.proposalSusceptibilityeng
dc.subject.proposalMass movementeng
dc.subject.proposalGeomorphologyeng
dc.subject.proposalNatural hazardseng
dc.subject.proposalLandslideseng
dc.subject.wikidataCorrimiento de tierraspa
dc.subject.wikidatalandslideeng
dc.subject.wikidataAnálisis de la regresiónspa
dc.subject.wikidataregression analysiseng
dc.subject.wikidataRiesgo naturalspa
dc.subject.wikidatanatural riskeng
dc.titleEstimación de la susceptibilidad a movimientos en masa superficiales por medio de un análisis de regresión espacial local. Aplicación para un tramo de la cuenca media del río Chicamochaspa
dc.title.translatedEstimation of shallow landslide susceptibility by means of a local spatial regression analysis. Application to a section of the middle Chicamocha River basineng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016073493.2024.pdf
Tamaño:
14.26 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: