Methodology for the formulation and solution of optimization problems regarding the operation of distribution networks with battery storage systems
dc.contributor.advisor | Rosero García, Javier Alveiro | spa |
dc.contributor.author | Mendoza Osorio, Diego Felipe | spa |
dc.contributor.cvlac | Mendoza Osorio, Diego [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001683613] | spa |
dc.contributor.orcid | Mendoza Osorio, Diego [0000-0002-5430-155X] | spa |
dc.contributor.researchgate | Mendoza Osorio, Diego [https://www.researchgate.net/profile/Diego-Osorio-30] | spa |
dc.contributor.researchgroup | Electrical Machines & Drives, Em&D | spa |
dc.date.accessioned | 2025-02-24T15:33:28Z | |
dc.date.available | 2025-02-24T15:33:28Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas, tablas | spa |
dc.description.abstract | En este documento se implementa una metodología para la optimización de recursos energéticos distribuidos en redes de distribución eléctrica, basada en la implementación de varias estrategias de modelado, diferentes formulaciones convexas y no convexas acopladas a intérpretes y solucionadores (solvers) adecuados, consideraciones sobre la incertidumbre, la calidad de la solución y la eficiencia computacional. Se comienza con una revisión del estado del arte en el modelado de recursos energéticos distribuidos (sistemas fotovoltaicos y almacenamiento por baterías), la implementación de estos recursos en redes de distribución, el modelado de la demanda, el tratamiento de la incertidumbre, objetivos y técnicas de optimización iterativas y metaheurísticas. Posteriormente se exploran múltiples formulaciones del problema de flujo de potencia, incluyendo formulaciones tradicionales complejas y en componentes rectangulares y polares, formulaciones que aprovechan la estructura radial de los sistemas (modelo de inyección de nodos y modelo de flujo de ramas), y reformulaciones que permiten implementar relajaciones convexas. Luego se realiza el modelado matemático de los recursos energéticos distribuidos, incluyendo reformulaciones de restricciones enteras mixtas para la ubicación, un enfoque estocástico para el tratamiento de la incertidumbre en la irradiancia y en la demanda, la agrupación de datos de demanda para identificar patrones y el ajuste de los datos a distribuciones estadísticas para modelar su comportamiento aleatorio. A continuación, se presentan estudios de caso en los cuales se pueden aplicar tanto las formulaciones, como los modelos realizados, i.e., flujo de potencia en periodos sencillos y múltiples, la asignación de generadores fotovoltaicos en condiciones deterministas y estocásticas y la operación óptima de sistemas de almacenamiento por baterías móviles ideales y no-ideales en marcos de trabajo probabilísticos. Para cada aplicación se utilizaron diferentes sistemas de prueba ubicados en diferentes regiones de Colombia (Bogotá, Jamundí y Popayán). Los resultados muestran que las formulaciones no convexas, particularmente la formulación polar, son las que entregan las mejores soluciones con buena calidad, mientras que las formulaciones convexas presentaron una buena eficiencia computacional, aunque en problemas grandes mostraron problemas de convergencia. Por otro lado, las formulaciones adecuadas a las técnicas metaheuristicas, presentaron excelentes resultados en calidad de la solución y en eficiencia computacional, pero solo ocasionalmente presentaban la mejor solución. Por otro lado, los resultados muestran que la integración de sistemas de almacenamiento de energía por baterías puede mejorar significativamente la eficiencia de la red, reduciendo las pérdidas de potencia y mejorando la estabilidad del voltaje, tanto en contextos deterministas como estocásticos, demostrando su capacidad para mitigar incertidumbres, bajo esquemas de operación óptimos (Texto tomado de la fuente). | spa |
dc.description.abstract | This document implements a methodology for the optimization of distributed energy resources in electrical distribution networks. It is based on several modeling strategies, different convex and non-convex formulations coupled with suitable interpreters and solvers, as well as considerations of uncertainty, solution quality, and computational efficiency. Fristly, a review of the state of the art is presented on the modeling of distributed energy resources (photovoltaic systems and battery storage), their implementations in distribution networks, demand modeling, uncertainty treatment, optimization objectives, and iterative and metaheuristic optimization techniques. Then, multiple formulations of the power flow problem are explored, including complex traditional formulations (in rectangular and polar components), formulations that take advantage of the radial structure of systems (node injection model and branch flow model), and reformulations that allow for convex relaxations. Next, mathematical modeling of distributed energy resources is conducted, including reformulations of mixed integer constraints for the location of these systems, a stochastic approach for the treatment of uncertainty in renewable energy generation and demand, demand patterns identification via clustring, and the fitting of data to statistical distributions to model their random behavior. Lastly, case studies are presented where the formulations and models generated can be applied, such as power flow in single and multiple periods, the allocation of photovoltaic generators under deterministic and stochastic conditions, and the optimal operation of ideal and non-ideal mobile battery storage systems within probabilistic frameworks. Different test systems located in various regions of Colombia (Bogotá, Jamundí, and Popayán) were used for each application. The results show that non-convex formulations, particularly the polar formulation of power flow constraints, provide the best solutions with good quality, while convex formulations exhibited good computational efficiency, although they faced convergence issues for large problems. On the other hand, formulations suited for metaheuristic techniques demonstrated excellent results in solution quality and computational efficiency, but only yielding the best solution occasionally. Results also suggest that integrating battery energy storage systems can significantly improve the efficiency of the distribution network by reducing power losses and enhancing voltage stability in both deterministic and stochastic contexts, demonstrating their ability to mitigate uncertainties under optimal operating schemes. | eng |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.researcharea | Sistemas de generación de energía renovable e integración a redes inteligentes | spa |
dc.format.extent | xxi, 291 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87540 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica | spa |
dc.relation.references | Gagnon, P. et al. 2022 Standard Scenarios Report: A U.S. Electricity Sector Outlook tech. rep. (Nrel,2022). www.nrel.gov/publications | spa |
dc.relation.references | Ahlqvist, V., Holmberg, P. & Tangerås, T. A survey comparing centralized and decentralized electricity markets. Energy Strategy Reviews 40, 100812. issn: 2211467X. https://linkinghub.elsevier.com/retrieve/pii/S2211467X22000128 (Mar. 2022). | spa |
dc.relation.references | Caballero-Peña, J., Cadena-Zarate, C., Parrado-Duque, A. & Osma-Pinto, G. Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts. International Journal of Electrical Power & Energy Systems 138, 107900. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061521011133 (June 2022). | spa |
dc.relation.references | Lee, D., Han, C., Kang, S. & Jang, G. Chance-constrained optimization for active distribution networks with virtual power lines. Electric Power Systems Research 221, 109449. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779623003383 (Aug. 2023). | spa |
dc.relation.references | Mendoza Osorio, D. & Rosero Garcia, J. Optimization of Distributed Energy Resources in Distribution Networks: Applications of Convex Optimal Power Flow Formulations in Distribution Networks. International Transactions on Electrical Energy Systems 2023 (ed Hampannavar, S.) 1–16. issn: 2050-7038. https://www.hindawi.com/journals/itees/2023/1000512/ (Apr. 2023). | spa |
dc.relation.references | Zarei, S. F. & Khankalantary, S. Protection of active distribution networks with conventional and inverter-based distributed generators. International Journal of Electrical Power & Energy Systems 129, 106746. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061520342915 (July 2021). | spa |
dc.relation.references | Sirviö, K. H., Laaksonen, H., Kauhaniemi, K. & Hatziargyriou, N. Evolution of the Electricity Distribution Networks—Active Management Architecture Schemes and Microgrid Control Functionalities. Applied Sciences 11, 2793. issn: 2076-3417. https://www.mdpi.com/2076-3417/11/6/2793 (Mar. 2021). | spa |
dc.relation.references | Rodziewicz, T., Rajfur, M., Teneta, J., Świsłowski, P. & Wacławek, M. Modelling and analysis of the influence of solar spectrum on the efficiency of photovoltaic modules. Energy Reports 7, 565–574. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484721000147 (Nov. 2021). | spa |
dc.relation.references | Benda, V. & Černá, L. PV cells and modules – State of the art, limits and trends. Heliyon 6, e05666. issn: 24058440. https://linkinghub.elsevier.com/retrieve/pii/S2405844020325093 (Dec. 2020). | spa |
dc.relation.references | El Hammoumi, A., Chtita, S., Motahhir, S. & El Ghzizal, A. Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Reports 8, 11992–12010. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722017784 (Nov. 2022). | spa |
dc.relation.references | Tifidat, K., Maouhoub, N., Askar, S. & Abouhawwash, M. Numerical procedure for accurate simulation of photovoltaic modules performance based on the identification of the single-diode model parameters. Energy Reports 9, 5532–5544. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723007412 (Dec. 2023). | spa |
dc.relation.references | Lidaighbi, S. et al. A new hybrid method to estimate the single-diode model parameters of solar photovoltaic panel. Energy Conversion and Management: X 15, 100234. issn: 25901745. https://linkinghub.elsevier.com/retrieve/pii/S2590174522000575 (Aug. 2022). | spa |
dc.relation.references | Schweighofer, B., Buchroithner, A., Felsberger, R. & Wegleiter, H. Optimized selection of component models for photovoltaic and energy storage system simulations. Solar Energy 249, 559–568. issn:0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X22008787 (Jan. 2023). | spa |
dc.relation.references | Rehman, N., Mufti, M. u. d. & Gupta, N. Analytical index-based allocation and sizing of Lambert-W modeled PV in an active distribution network. Energy Conversion and Management: X 17. issn: 25901745 (Jan. 2023). | spa |
dc.relation.references | Seapan, M., Hishikawa, Y., Yoshita, M. & Okajima, K. Temperature and irradiance dependences of the current and voltage at maximum power of crystalline silicon PV devices. Solar Energy 204, 459–465. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X20305089 (July 2020). | spa |
dc.relation.references | Gil-González, W., Garces, A., Montoya, O. D. & Hernández, J. C. A Mixed-Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks. Applied Sciences 11, 627. issn: 2076-3417. https://www.mdpi.com/2076-3417/11/2/627 (Jan. 2021). | spa |
dc.relation.references | Mendoza Osorio, D. & Rosero Garcia, J. Convex Stochastic Approaches for the Optimal Allocation of Distributed Energy Resources in AC Distribution Networks with Measurements Fitted to a Continuous Probability Distribution Function. Energies 16, 5566. issn: 1996-1073. https://www.mdpi.com/1996-1073/16/14/5566 (July 2023). | spa |
dc.relation.references | Bouhorma, N., Martín, H., de la Hoz, J. & Coronas, S. A Comprehensive Methodology for the Statistical Characterization of Solar Irradiation: Application to the Case of Morocco. Applied Sciences 13, 3365. issn: 2076-3417. https://www.mdpi.com/2076-3417/13/5/3365 (Mar. 2023). | spa |
dc.relation.references | Singh, N., Jena, S. & Panigrahi, C. K. A novel application of Decision Tree classifier in solar irradiance prediction. Materials Today: Proceedings 58, 316–323. issn: 22147853. https://linkinghub.elsevier.com/retrieve/pii/S2214785322008124 (Jan. 2022). | spa |
dc.relation.references | Hou, X., Ju, C. & Wang, B. Prediction of solar irradiance using convolutional neural network and attention mechanism-based long short-term memory network based on similar day analysis and an attention mechanism. Heliyon 9, e21484. issn: 24058440. https://linkinghub.elsevier.com/retrieve/pii/S2405844023086929 (Nov. 2023). | spa |
dc.relation.references | Jeon, B.-K. & Kim, E.-J. Solar irradiance prediction using reinforcement learning pre-trained with limited historical data. Energy Reports 10, 2513–2524. issn: 23524847. https : / / linkinghub .elsevier.com/retrieve/pii/S2352484723012866 (Nov. 2023). | spa |
dc.relation.references | Gao, Y., Li, P., Yang, H. & Wang, J. A solar radiation intelligent forecasting framework based on feature selection and multivariable fuzzy time series. Engineering Applications of Artificial Intelligence 126, 106986. issn: 09521976. https://linkinghub.elsevier.com/retrieve/pii/S0952197623011703 (Nov. 2023). | spa |
dc.relation.references | Haro-Larrode, M. & Bayod-Rújula, Á. A. A coordinated control hybrid MPPT algorithm for a grid-tied PV system considering a VDCIQ control structure. Electric Power Systems Research 221, 109426. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779623003152 (Aug.2023). | spa |
dc.relation.references | Lefevre, B., Herteleer, B., Breucker, S. D. & Driesen, J. Bayesian inference based MPPT for dynamic irradiance conditions. Solar Energy 174, 1153–1162. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X18308636 (Nov. 2018). | spa |
dc.relation.references | Çırak, C. R. & Çalık, H. Hotspots in maximum power point tracking algorithms for photovoltaic systems – A comprehensive and comparative review. Engineering Science and Technology, an International Journal 43, 101436. issn: 22150986. https://linkinghub.elsevier.com/retrieve/pii/S2215098623001143 (July 2023). | spa |
dc.relation.references | Chandra Mahato, G., Ranjan Biswal, S., Roy Choudhury, T., Nayak, B. & Bikash Santra, S. Review of active power control techniques considering the impact of MPPT and FPPT during high PV penetration. Solar Energy 251, 404–419. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X23000415 (Feb. 2023). | spa |
dc.relation.references | Başoğlu, M. E. Comprehensive review on distributed maximum power point tracking: Submodule level and module level MPPT strategies. Solar Energy 241, 85–108. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X2200370X (July 2022). | spa |
dc.relation.references | Mishra, V. L., Chauhan, Y. K. & Verma, K. A critical review on advanced reconfigured models and metaheuristics-based MPPT to address complex shadings of solar array. Energy Conversion and Management 269, 116099. issn: 01968904. https://linkinghub.elsevier.com/retrieve/pii/S0196890422008858 (Oct. 2022). | spa |
dc.relation.references | Kumar, B. R. & Malarvizhi, D. M. An improved three phase cascaded multilevel inverter for maximum power point tracking application. Microprocessors and Microsystems 98, 104736. issn: 01419331. https://linkinghub.elsevier.com/retrieve/pii/S0141933122002654 (Apr. 2023). | spa |
dc.relation.references | Mathew, D. & Naidu, R. C. A review on single-phase boost inverter technology for low power grid integrated solar PV applications. Ain Shams Engineering Journal, 102365. issn: 20904479. https://linkinghub.elsevier.com/retrieve/pii/S209044792300254X (June 2023). | spa |
dc.relation.references | Mehta, S. & Puri, V. A review of different multi-level inverter topologies for grid integration of solar photovoltaic system. Renewable Energy Focus 43, 263–276. issn: 17550084. https://linkinghub.elsevier.com/retrieve/pii/S1755008422000825 (Dec. 2022). | spa |
dc.relation.references | C., D., Sanjeevikumar, P. & Muyeen, S. A structural overview on transformer and transformer-less multi level inverters for renewable energy applications. Energy Reports 8, 10299–10333. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722014317 (Nov. 2022). | spa |
dc.relation.references | Ezhilarasan, G. et al. An empirical survey of topologies, evolution, and current developments in multilevel inverters. Alexandria Engineering Journal 83, 148–194. issn: 11100168. https://linkinghub.elsevier.com/retrieve/pii/S1110016823009511 (Nov. 2023). | spa |
dc.relation.references | Memarzadeh, G. & Keynia, F. A new hybrid CBSA-GA optimization method and MRMI-LSTM forecasting algorithm for PV-ESS planning in distribution networks. Journal of Energy Storage 72, 108582. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X23019795 (Nov. 2023). | spa |
dc.relation.references | David, M., Boland, J., Cirocco, L., Lauret, P. & Voyant, C. Value of deterministic day-ahead forecasts of PV generation in PV + Storage operation for the Australian electricity market. Solar Energy 224, 672–684. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X21004862 (Aug. 2021). | spa |
dc.relation.references | Adewuyi, O. B., Shigenobu, R., Senjyu, T., Lotfy, M. E. & Howlader, A. M. Multiobjective mix generation planning considering utility-scale solar PV system and voltage stability: Nigerian case study. Electric Power Systems Research 168, 269–282. issn: 03787796 (Mar. 2019). | spa |
dc.relation.references | Yang, J. et al. A spatio-temporality-enabled parallel multi-agent-based real-time dynamic dispatch for hydro-PV-PHS integrated power system. Energy 278, 127915. issn: 03605442. https://linkinghub.elsevier.com/retrieve/pii/S0360544223013099 (Sept. 2023). | spa |
dc.relation.references | Michael, N. E., Hasan, S., Al-Durra, A. & Mishra, M. Economic scheduling of virtual power plant in dayahead and real-time markets considering uncertainties in electrical parameters. Energy Reports 9, 3837–3850. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723002378 (Dec. 2023). | spa |
dc.relation.references | Mendoza Osorio, D. Revisión de la optimización de Bess en sistemas de potencia. TecnoLógicas 26, e2426. issn: 2256-5337. https://revistas.itm.edu.co/index.php/tecnologicas/article/view/ 2426 (Dec. 2022). | spa |
dc.relation.references | Zecchino, A., Yuan, Z., Sossan, F., Cherkaoui, R. & Paolone, M. Optimal provision of concurrent primary frequency and local voltage control from a BESS considering variable capability curves: Modelling and experimental assessment. Electric Power Systems Research 190, 106643. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779620304466 (Jan. 2021). | spa |
dc.relation.references | Stecca, M., Ramirez Elizondo, L., Batista Soeiro, T., Bauer, P. & Palensky, P. A Comprehensive Review of the Integration of Battery Energy Storage Systems into Distribution Networks. IEEE Open Journal of the Industrial Electronics Society 1, 1–1. issn: 2644-1284. https://ieeexplore.ieee.org/document/9040552/ (2020). | spa |
dc.relation.references | Hadjipaschalis, I., Poullikkas, A. & Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renewable and Sustainable Energy Reviews 13, 1513–1522. issn: 13640321. https://linkinghub.elsevier.com/retrieve/pii/S1364032108001664 (Aug.2009). | spa |
dc.relation.references | Aneke, M. & Wang, M. Energy storage technologies and real life applications – A state of the art review. Applied Energy 179, 350–377. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261916308728 (Oct. 2016). | spa |
dc.relation.references | Zubi, G., Dufo-López, R., Carvalho, M. & Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews 89, 292–308. issn: 13640321. https://linkinghub.elsevier.com/retrieve/pii/S1364032118300728 (June 2018). | spa |
dc.relation.references | Maeyaert, L., Vandevelde, L. & Döring, T. Battery Storage for Ancillary Services in Smart Distribution Grids. Journal of Energy Storage 30, 101524. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X19310898 (Aug. 2020). | spa |
dc.relation.references | Sakipour, R. & Abdi, H. Voltage stability improvement of wind farms by self-correcting static volt-ampere reactive compensator and energy storage. International Journal of Electrical Power & Energy Systems 140, 108082. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061522001247 (Sept. 2022). | spa |
dc.relation.references | Mohamed Amine, H., Mouaz, A. K., Messaoud, H., Othmane, A. & Saad, M. Contribution to strengthening Bus voltage stability and power exchange balance of a decentralized DC-multi-microgrids: Performance assessment of classical, optimal, and nonlinear controllers for hybridized energy storage systems control. Sustainable Cities and Society 96, 104647. issn: 22106707. https://linkinghub.elsevier.com/retrieve/pii/S2210670723002585 (Sept. 2023). | spa |
dc.relation.references | Khalid, H. A., Al-Emadi, N. A., Ben-Brahim, L., Gastli, A. & Cecati, C. A novel model predictive control with an integrated SOC and floating DC-link voltage balancing for 3-phase 7-level PUC converter-based MV BESS. International Journal of Electrical Power & Energy Systems 130, 106895. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061521001356 (Sept.2021). | spa |
dc.relation.references | N., R. B., M., V. G. R. & R., S. R. Battery energy integrated active power filter for harmonic compensation and active power injection. Sustainable Computing: Informatics and Systems 35, 100664. issn: 22105379. https://linkinghub.elsevier.com/retrieve/pii/S2210537922000087 (Sept.2022). | spa |
dc.relation.references | Fahad, S., Goudarzi, A., Li, Y. & Xiang, J. A coordination control strategy for power quality enhancement of an active distribution network. Energy Reports 8, 5455–5471. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722007776 (Nov. 2022). | spa |
dc.relation.references | Li, Y., Zhang, L., Lai, K. & Zhang, X. Dynamic state estimation method for multiple battery energy storage systems with droop-based consensus control. International Journal of Electrical Power & Energy Systems 134, 107328. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061521005676 (Jan. 2022). | spa |
dc.relation.references | Bizon, N. Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system. Applied Energy 229, 459–473. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261918311681 (Nov. 2018). | spa |
dc.relation.references | Abianeh, A. J. & Ferdowsi, F. Sliding Mode Control Enabled Hybrid Energy Storage System for Islanded DC Microgrids with Pulsing Loads. Sustainable Cities and Society 73, 103117. issn: 22106707. https://linkinghub.elsevier.com/retrieve/pii/S2210670721003991 (Oct. 2021). | spa |
dc.relation.references | Liu, J. et al. PV-based virtual synchronous generator with variable inertia to enhance power system transient stability utilizing the energy storage system. Protection and Control of Modern Power Systems 2, 39. issn: 2367-2617. https://pcmp.springeropen.com/articles/10.1186/s41601-017-0070-0 (Dec. 2017). | spa |
dc.relation.references | Okafor, C. E. & Folly, K. A. Optimal placement of BESS in a power system network for frequency support during contingency. Energy Reports 10, 3681–3695. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723014506 (Nov. 2023). | spa |
dc.relation.references | Liang, L. & Lin, L. A resilience enhanced hierarchical strategy of battery energy storage for frequency regulation. Energy Reports 9, 625–636. issn: 23524847. https : / / linkinghub.elsevier. com/retrieve/pii/S2352484723004699 (Sept. 2023). | spa |
dc.relation.references | Akpinar, K. N., Gundogdu, B., Ozgonenel, O. & Gezegin, C. An intelligent power management controller for grid-connected battery energy storage systems for frequency response service: A battery cycle life approach. Electric Power Systems Research 216, 109040. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622010896 (Mar. 2023). | spa |
dc.relation.references | Xing, W. et al. An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids. Energy 233, 121155. issn: 03605442. https://linkinghub.elsevier.com/ retrieve/pii/S0360544221014031 (Oct. 2021). | spa |
dc.relation.references | Sati, S. E., Al-Durra, A., Zeineldin, H., EL-Fouly, T. H. & El-Saadany, E. F. A novel virtual inertiabased damping stabilizer for frequency control enhancement for islanded microgrid. International Journal of Electrical Power & Energy Systems 155, 109580. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061523006373 (Jan. 2024). | spa |
dc.relation.references | Alonso Sørensen, D., Vázquez Pombo, D. & Torres Iglesias, E. Energy storage sizing for virtual inertia contribution based on ROCOF and local frequency dynamics. Energy Strategy Reviews 47, 101094. issn: 2211467X. https://linkinghub.elsevier.com/retrieve/pii/S2211467X23000445 (May.2023). | spa |
dc.relation.references | Rancilio, G., Bovera, F. & Merlo, M. Revenue Stacking for BESS: Fast Frequency Regulation and Balancing Market Participation in Italy. International Transactions on Electrical Energy Systems 2022 (ed Gao, C. W.) 1–18. issn: 2050-7038. https://www.hindawi.com/journals/itees/2022/1894003/ (June 2022). | spa |
dc.relation.references | Zhang, S., Liu, H., Wang, F., Yan, T. & Wang, K. Secondary frequency control strategy for BESS considering their degree of participation. Energy Reports 6, 594–602. issn: 23524847. https:// linkinghub.elsevier.com/retrieve/pii/S2352484720316085 (Dec. 2020). | spa |
dc.relation.references | Zhao, Y. et al. Energy storage for black start services: A review. International Journal of Minerals, Metallurgy and Materials 29, 691–704. issn: 1674-4799. https://link.springer.com/10.1007/s12613-022-2445-0 (Apr. 2022). | spa |
dc.relation.references | Izadkhast, S., Cossent, R., Frías, P., García-González, P. & Rodríguez-Calvo, A. Performance Evaluation of a BESS Unit for Black Start and Seamless Islanding Operation. Energies 15, 1736. issn: 1996-1073. https://www.mdpi.com/1996-1073/15/5/1736 (Feb. 2022). | spa |
dc.relation.references | Marchgraber, J. & Gawlik, W. Investigation of Black-Starting and Islanding Capabilities of a Battery Energy Storage System Supplying a Microgrid Consisting of Wind Turbines, Impedance- and Motor-Loads. Energies 13, 5170. issn: 1996-1073. https://www.mdpi.com/1996-1073/13/19/5170 (Oct.2020). | spa |
dc.relation.references | Hassanzadeh, M. E., Nayeripour, M., Hasanvand, S. & Waffenschmidt, E. Decentralized control strategy to improve dynamic performance of micro-grid and reduce regional interactions using BESS in the presence of renewable energy resources. Journal of Energy Storage 31, 101520. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X19311454 (Oct. 2020). | spa |
dc.relation.references | Aziz, T., Masood, N.-A., Deeba, S. R., Tushar, W. & Yuen, C. A methodology to prevent cascading contingencies using BESS in a renewable integrated microgrid. International Journal of Electrical Power & Energy Systems 110, 737–746. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061518329685 (Sept. 2019). | spa |
dc.relation.references | Khunkitti, S., Boonluk, P. & Siritaratiwat, A. Optimal Location and Sizing of BESS for Performance Improvement of Distribution Systems with High DG Penetration. International Transactions on Electrical Energy Systems 2022 (ed Rizzo, S. A.) 1–16. issn: 2050-7038. https://www.hindawi.com/journals/itees/2022/6361243/ (June 2022). | spa |
dc.relation.references | Adewuyi, O. B., Shigenobu, R., Ooya, K., Senjyu, T. & Howlader, A. M. Static voltage stability improvement with battery energy storage considering optimal control of active and reactive power injection. Electric Power Systems Research 172, 303–312. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779619301312 (July 2019). | spa |
dc.relation.references | Khan, H. A., Zuhaib, M. & Rihan, M. Voltage fluctuation mitigation with coordinated OLTC and energy storage control in high PV penetrating distribution network. Electric Power Systems Research 208, 107924. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622001547 (July 2022). | spa |
dc.relation.references | Ahmadi, B., Ceylan, O. & Ozdemir, A. Voltage Profile Improving And Peak Shaving Using Multi-type Distributed Generators And Battery Energy Storage Systems In Distribution Networks in 2020 55th International Universities Power Engineering Conference (UPEC) (IEEE, Sept. 2020), 1–6. isbn: 978-1-7281-1078-3. https://ieeexplore.ieee.org/document/9209880/. | spa |
dc.relation.references | Shakrina, Y., Al Sobbahi, R. & Margossian, H. Optimal BESS Sizing for Industrial Facilities Participating in RTP DR. International Transactions on Electrical Energy Systems 2023 (ed Sun, Q.) 1–12. issn: 2050-7038. https://www.hindawi.com/journals/itees/2023/8857061/ (Oct. 2023). | spa |
dc.relation.references | Gupta, S. K., Ghose, T. & Chatterjee, K. Coordinated control of Incentive-Based Demand Response Program and BESS for frequency regulation in low inertia isolated grid. Electric Power Systems Research 209, 108037. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622002620 (Aug. 2022). | spa |
dc.relation.references | Sharma, S., Niazi, K., Verma, K. & Rawat, T. Coordination of different DGs, BESS and demand response for multi-objective optimization of distribution network with special reference to Indian power sector. International Journal of Electrical Power & Energy Systems 121, 106074. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061519327322 (Oct. 2020). | spa |
dc.relation.references | Pusceddu, E., Zakeri, B. & Castagneto Gissey, G. Synergies between energy arbitrage and fast frequency response for battery energy storage systems. Applied Energy 283, 116274. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261920316640 (Feb. 2021). | spa |
dc.relation.references | Mustafa, M. B. et al. Evaluation of a battery energy storage system in hospitals for arbitrage and ancillary services. Journal of Energy Storage 43, 103183. issn: 2352152X. https://linkinghub. elsevier.com/retrieve/pii/S2352152X21008835 (Nov. 2021). | spa |
dc.relation.references | García-Miguel, P. L. C., Asensio, A. P., Merino, J. L. & Plaza, M. G. Analysis of cost of use modelling impact on a battery energy storage system providing arbitrage service. Journal of Energy Storage 50, 104203. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X22002341 (June 2022). | spa |
dc.relation.references | Bai, Y., Wang, J. & He, W. Energy arbitrage optimization of lithium-ion battery considering shortterm revenue and long-term battery life loss. Energy Reports 8, 364–371. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S235248472202145X (Dec. 2022). | spa |
dc.relation.references | Feng, L. et al. Optimization analysis of energy storage application based on electricity price arbitrage and ancillary services. Journal of Energy Storage 55, 105508. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X22015006 (Nov. 2022). | spa |
dc.relation.references | Xie, R. et al. BESS frequency regulation strategy on the constraints of planned energy arbitrage using chance-constrained programming. Energy Reports 8, 73–80. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722009751 (Nov. 2022). | spa |
dc.relation.references | Zhang, R. et al. A new starting capability assessment method for induction motors in an industrial islanded microgrid with diesel generators and energy storage systems. Electric Power Systems Research 210, 108099. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622003236 (Sept. 2022). | spa |
dc.relation.references | Sanjareh, M. B., Nazari, M. H., Gharehpetian, G. B., Ahmadiahangar, R. & Rosin, A. Optimal scheduling of HVACs in islanded residential microgrids to reduce BESS size considering effect of discharge duration on voltage and capacity of battery cells. Sustainable Energy, Grids and Networks 25, 100424. issn: 23524677. https://linkinghub.elsevier.com/retrieve/pii/S2352467720303556 (Mar. 2021). | spa |
dc.relation.references | Rana, M. M., Romlie, M. F., Abdullah, M. F., Uddin, M. & Sarkar, M. R. A novel peak load shaving algorithm for isolated microgrid using hybrid PV-BESS system. Energy 234, 121157. issn: 03605442. https://linkinghub.elsevier.com/retrieve/pii/S0360544221014055 (Nov. 2021). | spa |
dc.relation.references | Mendoza, D. & Rosero Garcia, J. Multi-Objective Optimization of a Microgrid Considering MBESS Efficiencies, the Initial State of Charge, and Storage Capacity. International Review of Electrical Engineering (IREE) 17, 273. issn: 2533-2244. https://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=article&op=view&path%5B%5D=26585 (June 2022). | spa |
dc.relation.references | Cortés-Caicedo, B., Grisales-Noreña, L. F., Montoya, O. D. & Bolaños, R. I. Optimization of BESS placement, technology selection, and operation in microgrids for minimizing energy losses and CO2 emissions: A hybrid approach. Journal of Energy Storage 73. issn: 2352152X (Dec. 2023). | spa |
dc.relation.references | Ahlawat, A. & Das, D. Optimal sizing and scheduling of battery energy storage system with solar and wind DG under seasonal load variations considering uncertainties. Journal of Energy Storage 74, 109377. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X23027755 (Dec. 2023). | spa |
dc.relation.references | González-Moreno, A., Marcos, J., de la Parra, I. & Marroyo, L. Control method to coordinate inverters and batteries for power ramp-rate control in large PV plants: Minimizing energy losses and battery charging stress. Journal of Energy Storage 72, 108621. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X23020182 (Nov. 2023). | spa |
dc.relation.references | Hazra, J., Padmanaban, M., Zaini, F. & De Silva, L. C. Congestion relief using grid scale batteries in 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) 2 (IEEE,Feb. 2015), 1–5. isbn: 978-1-4799-1785-3. http://ieeexplore.ieee.org/document/7131789/. | spa |
dc.relation.references | Ranamuka, D., Muttaqi, K. M. & Sutanto, D. Flexible AC Power Flow Control in Distribution Systems by Coordinated Control of Distributed Solar-PV and Battery Energy Storage Units. IEEE Transactions on Sustainable Energy 11, 2054–2062. issn: 1949-3029. https://ieeexplore.ieee.org/document/8801919/ (Oct. 2020). | spa |
dc.relation.references | Paladin, A. et al. Micro market based optimisation framework for decentralised management of distributed flexibility assets. Renewable Energy 163, 1595–1611. issn: 09601481. https://linkinghub.elsevier.com/retrieve/pii/S096014812031569X (Jan. 2021). | spa |
dc.relation.references | Mehrjerdi, H., Rakhshani, E. & Iqbal, A. Substation expansion deferral by multi-objective battery storage scheduling ensuring minimum cost. Journal of Energy Storage 27, 101119. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X19312034 (Feb. 2020). | spa |
dc.relation.references | Li, C., Zhou, H., Li, J. & Dong, Z. Economic dispatching strategy of distributed energy storage for deferring substation expansion in the distribution network with distributed generation and electric vehicle. Journal of Cleaner Production 253, 119862. issn: 09596526. https://linkinghub.elsevier.com/retrieve/pii/S0959652619347328 (Apr. 2020). | spa |
dc.relation.references | Saboori, H. & Jadid, S. Mobile and self-powered battery energy storage system in distribution networks–Modeling, operation optimization, and comparison with stationary counterpart. Journal of Energy Storage 42, 103068. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X21007763 (Oct. 2021). | spa |
dc.relation.references | Saboori, H. & Jadid, S. Optimal scheduling of mobile utility-scale battery energy storage systems in electric power distribution networks. Journal of Energy Storage 31, 101615. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X20314523 (Oct. 2020). | spa |
dc.relation.references | Rajabzadeh, M. & Kalantar, M. Improving the resilience of distribution network in coming across seismic damage using mobile battery energy storage system. Journal of Energy Storage 52, 104891. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X22008982 (Aug.2022). | spa |
dc.relation.references | Mossaddek, M. et al. Nonlinear modeling of lithium-ion battery. Materials Today: Proceedings 66, 80–84. issn: 22147853. https://linkinghub.elsevier.com/retrieve/pii/S2214785322016418 (2022). | spa |
dc.relation.references | Kamruzzaman, M., Zhang, X., Abdelmalak, M., Shi, D. & Benidris, M. A data-driven accurate battery model to use in probabilistic analyses of power systems. Journal of Energy Storage 44, 103292. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X21009841 (Dec. 2021). | spa |
dc.relation.references | Krieger, E. M. & Arnold, C. B. Effects of undercharge and internal loss on the rate dependence of battery charge storage efficiency. Journal of Power Sources 210, 286–291. issn: 03787753. https://linkinghub.elsevier.com/retrieve/pii/S0378775312006283 (July 2012). | spa |
dc.relation.references | Allahham, A., Greenwood, D., Patsios, C. & Taylor, P. Adaptive receding horizon control for battery energy storage management with age-and-operation-dependent efficiency and degradation. Electric Power Systems Research 209, 107936. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622001663 (Aug. 2022). | spa |
dc.relation.references | Eskandarnia, E., Al-Ammal, H. M. & Ksantini, R. An embedded deep-clustering-based load profiling framework. Sustainable Cities and Society 78, 103618. issn: 22106707. https://linkinghub.elsevier.com/retrieve/pii/S2210670721008829 (Mar. 2022). | spa |
dc.relation.references | Yi Wang et al. Load profiling and its application to demand response: A review. Tsinghua Science and Technology 20, 117–129. issn: 1007-0214. http://ieeexplore.ieee.org/document/7085625/ (Apr. 2015). | spa |
dc.relation.references | Duarte, O. G., Rosero, J. A. & Pegalajar, M. d. C. Data Preparation and Visualization of Electricity Consumption for Load Profiling. Energies 15, 7557. issn: 1996-1073. https://www.mdpi.com/1996-1073/15/20/7557 (Oct. 2022). | spa |
dc.relation.references | Xiao, W. & Hu, J. A Survey of Parallel Clustering Algorithms Based on Spark. Scientific Programming 2020, 1–12. issn: 1058-9244. https://www.hindawi.com/journals/sp/2020/8884926/ (Sept. 2020). | spa |
dc.relation.references | Weber, C., Ray, D., Valverde, A., Clark, J. & Sharma, K. Gaussian mixture model clustering algorithms for the analysis of high-precision mass measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1027, 166299. issn: 01689002. https://linkinghub.elsevier.com/retrieve/pii/S0168900221011190 (Mar. 2022). | spa |
dc.relation.references | Jiao, L., Denoeux, T., Liu, Z.-g. & Pan, Q. EGMM: An evidential version of the Gaussian mixture model for clustering. Applied Soft Computing 129, 109619. issn: 15684946. https://linkinghub.elsevier.com/retrieve/pii/S1568494622006688 (Nov. 2022). | spa |
dc.relation.references | Wills, A. G., Hendriks, J., Renton, C. & Ninness, B. A Numerically Robust Bayesian Filtering Algorithm for Gaussian Mixture Models. IFAC-PapersOnLine 56, 67–72. issn: 24058963. https: //linkinghub.elsevier.com/retrieve/pii/S2405896323002008 (Jan. 2023). | spa |
dc.relation.references | Park, J., Park, K. V., Yoo, S., Choi, S. O. & Han, S. W. Development of the WEEE grouping system in South Korea using the hierarchical and non-hierarchical clustering algorithms. Resources, Conservation and Recycling 161, 104884. issn: 09213449. https://linkinghub.elsevier.com/retrieve/pii/S0921344920302020 (Oct. 2020). | spa |
dc.relation.references | Tso, W. W., Demirhan, C. D., Heuberger, C. F., Powell, J. B. & Pistikopoulos, E. N. A hierarchical clustering decomposition algorithm for optimizing renewable power systems with storage. Applied Energy 270, 115190. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261920307029 (July 2020). | spa |
dc.relation.references | Liang, K. et al. Characteristic analysis of 10 kV bus load based on integrated clustering technology. Energy Reports 8, 413–419. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/ S2352484722022296 (Nov. 2022). | spa |
dc.relation.references | Pang, Y., Zhou, X., Zhang, J., Sun, Q. & Zheng, J. Hierarchical electricity time series prediction with cluster analysis and sparse penalty. Pattern Recognition 126, 108555. issn: 00313203. https://linkinghub.elsevier.com/retrieve/pii/S003132032200036X (June 2022). | spa |
dc.relation.references | Bustos-Brinez, O. A., Duarte, J. E., Zambrano-Pinto, A., González, F. A. & Rosero-Garcia, J. A Method for the Characterization of the Energy Demand Aggregate Based on Electricity Data Provided by AMI Systems and Metering in Substations. Energies 17, 87. issn: 1996-1073. https://www.mdpi.com/1996-1073/17/1/87 (Dec. 2023). | spa |
dc.relation.references | Atif, M. et al. Monitoring Changes in Clustering Solutions: A Review of Models and Applications. Journal of Probability and Statistics 2023 (ed Ahsan, M.) 1–15. issn: 1687-9538. https://www.hindawi.com/journals/jps/2023/7493623/ (Nov. 2023). | spa |
dc.relation.references | Cook, E. et al. Density-based clustering algorithm for associating transformers with smart meters via GPS-AMI data. International Journal of Electrical Power & Energy Systems 142, 108291. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061522003118 (Nov. 2022). | spa |
dc.relation.references | Amjad, F., Agyekum, E. B., Shah, L. A. & Abbas, A. Site location and allocation decision for onshore wind farms, using spatial multi-criteria analysis and density-based clustering. A techno-economicenvironmental assessment, Ghana. Sustainable Energy Technologies and Assessments 47, 101503. issn: 22131388. https://linkinghub.elsevier.com/retrieve/pii/S2213138821005142 (Oct. 2021). | spa |
dc.relation.references | Chen, Y., Huang, M. & Tao, Y. Density-based clustering multiple linear regression model of energy consumption for electric vehicles. Sustainable Energy Technologies and Assessments 53, 102614. issn: 22131388. https://linkinghub.elsevier.com/retrieve/pii/S2213138822006646 (Oct. 2022). | spa |
dc.relation.references | Nikseresht, A. & Amindavar, H. Energy demand forecasting using adaptive ARFIMA based on a novel dynamic structural break detection framework. Applied Energy 353, 122069. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261923014332 (Jan. 2024). | spa |
dc.relation.references | Lizhen, W., Yifan, Z., Gang, W. & Xiaohong, H. A novel short-term load forecasting method based on mini-batch stochastic gradient descent regression model. Electric Power Systems Research 211, 108226. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622004345 (Oct. 2022). | spa |
dc.relation.references | Chang, C.-H., Chen, Z.-B. & Huang, S.-F. Forecasting of high-resolution electricity consumption with stochastic climatic covariates via a functional time series approach. Applied Energy 309, 118418. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261921016500 (Mar. 2022). | spa |
dc.relation.references | Munkhammar, J., van der Meer, D. & Widén, J. Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model. Applied Energy 282, 116180. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261920315816 (Jan. 2021). | spa |
dc.relation.references | Luo, J., Hong, T., Gao, Z. & Fang, S.-C. A robust support vector regression model for electric load forecasting. International Journal of Forecasting 39, 1005–1020. issn: 01692070. https:// linkinghub.elsevier.com/retrieve/pii/S0169207022000528 (Apr. 2023). | spa |
dc.relation.references | Bashiri Behmiri, N., Fezzi, C. & Ravazzolo, F. Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks. Energy 278, 127831. issn: 03605442. https://linkinghub.elsevier.com/retrieve/pii/S0360544223012252 (Sept. 2023). | spa |
dc.relation.references | Emami Javanmard, M. & Ghaderi, S. Energy demand forecasting in seven sectors by an optimization model based on machine learning algorithms. Sustainable Cities and Society 95, 104623. issn: 22106707. https://linkinghub.elsevier.com/retrieve/pii/S2210670723002342 (Aug. 2023). | spa |
dc.relation.references | Wang, J., Wang, K., Li, Z., Lu, H. & Jiang, H. Short-term power load forecasting system based on rough set, information granule and multi-objective optimization. Applied Soft Computing 146, 110692. issn: 15684946. https://linkinghub.elsevier.com/retrieve/pii/S156849462300710X (Oct. 2023). | spa |
dc.relation.references | Zulfiqar, M., Kamran, M., Rasheed, M., Alquthami, T. & Milyani, A. A hybrid framework for short term load forecasting with a navel feature engineering and adaptive grasshopper optimization in smart grid. Applied Energy 338, 120829. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261923001939 (May 2023). | spa |
dc.relation.references | Li, S. et al. Short-term electrical load forecasting using hybrid model of manta ray foraging optimization and support vector regression. Journal of Cleaner Production 388, 135856. issn: 09596526. https://linkinghub.elsevier.com/retrieve/pii/S0959652623000148 (Feb. 2023). | spa |
dc.relation.references | Lu, C., Liang, J., Jiang, W., Teng, J. & Wu, C. High-resolution probabilistic load forecasting: A learning ensemble approach. Journal of the Franklin Institute 360, 4272–4296. issn: 00160032. https://linkinghub.elsevier.com/retrieve/pii/S0016003223000911 (Apr. 2023). | spa |
dc.relation.references | Gilbert, C., Browell, J. & Stephen, B. Probabilistic load forecasting for the low voltage network: Forecast fusion and daily peaks. Sustainable Energy, Grids and Networks 34, 100998. issn: 23524677. https://linkinghub.elsevier.com/retrieve/pii/S2352467723000061 (June 2023). | spa |
dc.relation.references | Qiu, Y., He, Z., Zhang, W., Yin, X. & Ni, C. MSGCN-ISTL: A multi-scaled self-attention-enhanced graph convolutional network with improved STL decomposition for probabilistic load forecasting. Expert Systems with Applications 238, 121737. issn: 09574174. https://linkinghub.elsevier.com/retrieve/pii/S095741742302239X (Mar. 2024). | spa |
dc.relation.references | Wang, H. et al. Comprehensive review of load forecasting with emphasis on intelligent computing approaches. Energy Reports 8, 13189–13198. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722019540 (Nov. 2022). | spa |
dc.relation.references | Mahdi Noori R.A., S., Scott, P., Mahmoodi, M. & Attarha, A. Data-driven adjustable robust solution to voltage-regulation problem in PV-rich distribution systems. International Journal of Electrical Power & Energy Systems 141, 108118. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061522001600 (Oct. 2022). | spa |
dc.relation.references | Chen, C., Shen, X., Guo, Q. & Sun, H. Robust planning-operation co-optimization of energy hub considering precise model of batteries’ economic efficiency. Energy Procedia 158, 6496–6501. issn: 18766102. https://linkinghub.elsevier.com/retrieve/pii/S1876610219301213 (Feb. 2019). | spa |
dc.relation.references | Mahmood, D., Javaid, N., Ahmed, G., Khan, S. & Monteiro, V. A review on optimization strategies integrating renewable energy sources focusing uncertainty factor – Paving path to eco-friendly smart cities. Sustainable Computing: Informatics and Systems 30, 100559. issn: 22105379. https : / /linkinghub.elsevier.com/retrieve/pii/S2210537921000500 (June 2021). | spa |
dc.relation.references | Liao, X. et al. Extended affine arithmetic-based global sensitivity analysis for power flow with uncertainties. International Journal of Electrical Power & Energy Systems 115, 105440. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061519306775 (Feb. 2020). | spa |
dc.relation.references | Yu, X., Dong, X., Pang, S., Zhou, L. & Zang, H. Energy Storage Sizing Optimization and Sensitivity Analysis Based on Wind Power Forecast Error Compensation. Energies 12, 4755. issn: 1996-1073. https://www.mdpi.com/1996-1073/12/24/4755 (Dec. 2019). | spa |
dc.relation.references | Yi, Y. & Verbič, G. Fair operating envelopes under uncertainty using chance constrained optimal power flow. Electric Power Systems Research 213, 108465. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622005995 (Dec. 2022). | spa |
dc.relation.references | Engels, J., Claessens, B. & Deconinck, G. Combined Stochastic Optimization of Frequency Control and Self-Consumption With a Battery. IEEE Transactions on Smart Grid 10, 1971–1981. issn: 1949-3053. https://ieeexplore.ieee.org/document/8226863/ (Mar. 2019). | spa |
dc.relation.references | Wang, Y., Rousis, A. O., Qiu, D. & Strbac, G. A stochastic distributed control approach for load restoration of networked microgrids with mobile energy storage systems. International Journal of Electrical Power & Energy Systems 148, 108999. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S014206152300056X (June 2023). | spa |
dc.relation.references | Vahid-Ghavidel, M. et al. Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system. Energy 265, 126289. issn: 03605442. https://linkinghub.elsevier.com/retrieve/pii/S0360544222031759 (Feb. 2023). | spa |
dc.relation.references | Moradi, S., Zizzo, G., Favuzza, S. & Massaro, F. A stochastic approach for self-healing capability evaluation in active islanded AC/DC hybrid microgrids. Sustainable Energy, Grids and Networks 33, 100982. issn: 23524677. https://linkinghub.elsevier.com/retrieve/pii/S2352467722002272 (Mar. 2023). | spa |
dc.relation.references | Singh, V., Moger, T. & Jena, D. Uncertainty handling techniques in power systems: A critical review. Electric Power Systems Research 203, 107633. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779621006143 (Feb. 2022). | spa |
dc.relation.references | Kim, H.-Y., Kim, M.-K. & Kim, S. Multi-Objective Scheduling Optimization Based on a Modified Non-Dominated Sorting Genetic Algorithm-II in Voltage Source ConverterMulti-Terminal High Voltage DC Grid-Connected Offshore Wind Farms with Battery Energy Storage Systems. Energies 10, 986. issn: 1996-1073. http://www.mdpi.com/1996-1073/10/7/986 (July 2017). | spa |
dc.relation.references | Korjani, S., Mureddu, M., Facchini, A. & Damiano, A. Aging Cost Optimization for Planning and Management of Energy Storage Systems. Energies 10, 1916. issn: 1996-1073. http://www.mdpi.com/1996-1073/10/11/1916 (Nov. 2017). | spa |
dc.relation.references | Xu, B., Oudalov, A., Ulbig, A., Andersson, G. & Kirschen, D. S. Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Transactions on Smart Grid 9, 1131–1140. issn: 1949-3053. http://ieeexplore.ieee.org/document/7488267/ (Mar. 2018). | spa |
dc.relation.references | Radosavljević, J., Ktena, A., Gajić, M., Milovanović, M. & Živić, J. Dynamic Optimal Power Dispatch in Unbalanced Distribution Networks with Single-Phase Solar PV Units and BESS. Energies 16, 4356. issn: 1996-1073. https://www.mdpi.com/1996-1073/16/11/4356 (May 2023). | spa |
dc.relation.references | Montoya, O. D., Gil-González, W., Serra, F. M., Hernández, J. C. & Molina-Cabrera, A. A Second-Order Cone Programming Reformulation of the Economic Dispatch Problem of BESS for Apparent Power Compensation in AC Distribution Networks. Electronics 9, 1677. issn: 2079-9292. https://www.mdpi.com/2079-9292/9/10/1677 (Oct. 2020). | spa |
dc.relation.references | Mansuwan, K., Jirapong, P. & Thararak, P. Optimal battery energy storage planning and control strategy for grid modernization using improved genetic algorithm. Energy Reports 9, 236–241. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723012532 (Oct. 2023). | spa |
dc.relation.references | Boyd, S. & Vandenberghe, L. Convex Optimization isbn: 978-0521833783 (Cambridge University Press, 2004). | spa |
dc.relation.references | Chankong, S., Phaochoo, P., Charongrattanasakul, P. & Thongpool, N. A class of derivative free three-term descent Hestenes-Stiefel conjugate gradient algorithms for constrained nonlinear problems. Results in Control and Optimization, 100372. issn: 26667207. https://linkinghub.elsevier.com/retrieve/pii/S266672072400002X (Jan. 2024). | spa |
dc.relation.references | Yousif, O. O., Mohammed, M. A., Saleh, M. A. & Elbashir, M. K. A criterion for the global convergence of conjugate gradient methods under strong Wolfe line search. Journal of King Saud University - Science 34, 102281. issn: 10183647. https://linkinghub.elsevier.com/retrieve/pii/S1018364722004621 (Nov. 2022). | spa |
dc.relation.references | Abubakar, A. B. et al. A Liu-Storey-type conjugate gradient method for unconstrained minimization problem with application in motion control. Journal of King Saud University - Science 34, 101923. issn: 10183647. https://linkinghub.elsevier.com/retrieve/pii/S1018364722001045 (June 2022). | spa |
dc.relation.references | Yi, X. et al. Iterative quantum algorithm for combinatorial optimization based on quantum gradient descent. Results in Physics 56, 107204. issn: 22113797. https://linkinghub.elsevier.com/ retrieve/pii/S221137972300997X (Jan. 2024). | spa |
dc.relation.references | Qu, Z. et al. Two-step proximal gradient descent algorithm for photoacoustic signal unmixing. Photoacoustics 27, 100379. issn: 22135979. https://linkinghub.elsevier.com/retrieve/pii/ S2213597922000441 (Sept. 2022). | spa |
dc.relation.references | Namsak, S., Petrot, N. & Nimana, N. A distributed proximal gradient method with time-varying delays for solving additive convex optimizations. Results in Applied Mathematics 18, 100370. issn: 25900374. https://linkinghub.elsevier.com/retrieve/pii/S259003742300016X (May 2023). | spa |
dc.relation.references | Wang, Y. et al. Estimated position correction algorithm of surface-mounted permanent-magnet synchronous motor based on variable gain steepest gradient descent method. Energy Reports 9, 1154–1162. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723009289 (Oct. 2023). | spa |
dc.relation.references | Dvurechensky, P., Shtern, S. & Staudigl, M. First-Order Methods for Convex Optimization. EURO Journal on Computational Optimization 9, 100015. issn: 21924406. https://linkinghub.elsevier.com/retrieve/pii/S2192440621001428 (Jan. 2021). | spa |
dc.relation.references | Fiacco, A. V., McCormick, G. P. & Danskin, J. M. The Sequential Unconstrained Minimization Technique (SUMT) without Parameters. Operations Research 15, 820–829. issn: 0030364X, 15265463. http://www.jstor.org/stable/168637 (1967). | spa |
dc.relation.references | Kennedy, J. in Encyclopedia of Machine Learning 760–766 (Springer US, Boston, MA, 2011). https://link.springer.com/10.1007/978-0-387-30164-8_630. | spa |
dc.relation.references | Chen, B., Zhang, R., Chen, L. & Long, S. Adaptive Particle Swarm Optimization with Gaussian Perturbation and Mutation. Scientific Programming 2021 (ed Li, W.) 1–14. issn: 1875-919X. https://www.hindawi.com/journals/sp/2021/6676449/ (Feb. 2021). | spa |
dc.relation.references | Bangyal, W. H., Hameed, A., Alosaimi, W. & Alyami, H. A New Initialization Approach in Particle Swarm Optimization for Global Optimization Problems. Computational Intelligence and Neuroscience 2021 (ed Dourado, A.) 1–17. issn: 1687-5273. https://www.hindawi.com/journals/cin/2021/6628889/ (May 2021). | spa |
dc.relation.references | Wang, S., Liu, Y., Zou, K., Li, N. & Wu, Y. Multiobjective Particle Swarm Optimization Based on Ideal Distance. Discrete Dynamics in Nature and Society 2022 (ed Do, T. V.) 1–16. issn: 1607-887X. https://www.hindawi.com/journals/ddns/2022/3515566/ (Apr. 2022). | spa |
dc.relation.references | Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning 1st. isbn: 978-0201157673 (Addison-Wesley Longman Publishing Co., Inc., USA, 1989). | spa |
dc.relation.references | Chen, Q. & Hu, X. Design of intelligent control system for agricultural greenhouses based on adaptive improved genetic algorithm for multi-energy supply system. Energy Reports 8, 12126–12138. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722017413 (Nov. 2022). | spa |
dc.relation.references | Kirchner-Bossi, N. & Porté-Agel, F. Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm. Renewable Energy 220, 119524. issn: 09601481. https://linkinghub.elsevier.com/retrieve/pii/S0960148123014398 (Jan. 2024). | spa |
dc.relation.references | Manna, A., Roy, A., Maity, S., Mondal, S. & Nielsen, I. E. A multi-parent genetic algorithm for solving longitude–latitude-based 4D traveling salesman problems under uncertainty. Decision Analytics Journal 8, 100287. issn: 27726622. https://linkinghub.elsevier.com/retrieve/pii/S2772662223001273 (Sept. 2023). | spa |
dc.relation.references | Deb, K. & Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation 18, 577–601. issn: 1089-778X. http://ieeexplore.ieee.org/document/6600851/ (Aug. 2014). | spa |
dc.relation.references | Wu, P., Zou, D., Yu, N., Zhang, G. & Kong, L. An improved NSGA-III for the dynamic economic emission dispatch considering reliability. Energy Reports 8, 14304–14317. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722022740 (Nov. 2022). | spa |
dc.relation.references | Zhou, W. et al. An intelligent optimization method for the HCSB blanket based on an improved multi-objective NSGA-III algorithm and an adaptive BP neural network. Nuclear Engineering and Technology 55, 3150–3163. issn: 17385733. https://linkinghub.elsevier.com/retrieve/pii/S1738573323002504 (Sept. 2023). | spa |
dc.relation.references | Mirjalili, S., Mirjalili, S. M. & Lewis, A. Grey Wolf Optimizer. Advances in Engineering Software 69, 46–61. issn: 09659978. https://linkinghub.elsevier.com/retrieve/pii/S0965997813001853 (Mar. 2014). | spa |
dc.relation.references | Pawan & Dhiman, R. Motor imagery signal classification using Wavelet packet decomposition and modified binary grey wolf optimization. Measurement: Sensors 24. issn: 26659174 (Dec. 2022). | spa |
dc.relation.references | Chandran, V. & Mohapatra, P. Enhanced opposition-based grey wolf optimizer for global optimization and engineering design problems. Alexandria Engineering Journal 76, 429–467. issn: 11100168. https://linkinghub.elsevier.com/retrieve/pii/S1110016823005173 (Aug. 2023). | spa |
dc.relation.references | Abdulhasan Salim, J., Albaker, B. M., Shyaa Alwan, M. & Hasanuzzaman, M. Hybrid MPPT approach using Cuckoo Search and Grey Wolf Optimizer for PV systems under variant operating conditions. Global Energy Interconnection 5, 627–644. issn: 20965117. https://linkinghub.elsevier.com/retrieve/pii/S2096511722001141 (Dec. 2022). | spa |
dc.relation.references | Soliman, M. A., Hasanien, H. M., Turky, R. A. & Muyeen, S. Hybrid African vultures–grey wolf optimizer approach for electrical parameters extraction of solar panel models. Energy Reports 8, 14888–14900. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722023368 (Nov. 2022). | spa |
dc.relation.references | Hoballah, A. & Azmy, A. M. Constrained economic dispatch following generation outage for hot spinning reserve allocation using hybrid grey wolf optimizer. Alexandria Engineering Journal 62, 169–180. issn: 11100168. https://linkinghub.elsevier.com/retrieve/pii/S1110016822004902 (Jan. 2023). | spa |
dc.relation.references | Mirjalili, S. & Lewis, A. The Whale Optimization Algorithm. Advances in Engineering Software 95, 51–67. issn: 09659978. https://linkinghub.elsevier.com/retrieve/pii/S0965997816300163 (May 2016). | spa |
dc.relation.references | Mostafa Bozorgi, S. & Yazdani, S. IWOA: An improved whale optimization algorithm for optimization problems. Journal of Computational Design and Engineering 6, 243–259. issn: 2288-5048. https://academic.oup.com/jcde/article/6/3/243/5732340 (July 2019). | spa |
dc.relation.references | Syama, S., Ramprabhakar, J., Anand, R. & Guerrero, J. M. A hybrid Extreme Learning Machine model with Lévy flight Chaotic Whale Optimization Algorithm for Wind Speed Forecasting. Results in Engineering 19, 101274. issn: 25901230. https://linkinghub.elsevier.com/retrieve/pii/S2590123023004012 (Sept. 2023). | spa |
dc.relation.references | Heidari, A. A. et al. Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems 97, 849–872. issn: 0167739X. https://linkinghub.elsevier.com/retrieve/ pii/S0167739X18313530 (Aug. 2019). | spa |
dc.relation.references | Yang, X.-S. Nature-inspired metaheuristic algorithms: Second edition 2nd ed. isbn: 1905986289 (Luniver Press, Frome, England, 2010). | spa |
dc.relation.references | Ayinla, S. L. et al. Optimal Control of DC Motor using Leader-based Harris Hawks Optimization Algorithm. Franklin Open, 100058. issn: 27731863. https://linkinghub.elsevier.com/retrieve/ pii/S277318632300052X (Nov. 2023). | spa |
dc.relation.references | Hussien, A. G. et al. Recent Advances in Harris Hawks Optimization: A Comparative Study and Applications. Electronics 11, 1919. issn: 2079-9292. https://www.mdpi.com/2079-9292/11/12/1919 (June 2022). | spa |
dc.relation.references | Low, S. H. Convex Relaxation of Optimal Power Flow—Part I: Formulations and Equivalence. IEEE Transactions on Control of Network Systems 1, 15–27. issn: 2325-5870. http://ieeexplore.ieee. org/document/6756976/ (Mar. 2014). | spa |
dc.relation.references | Montoya, O. D., Garces, A. & Gil-González, W. Three-Phase Power Flow Tool for Electric Distribution Grids: A Julia Implementation for Electrical Engineering Students. Ingeniería 28. https://doi.org/10.14483/23448393.21419 (2023). | spa |
dc.relation.references | Baran, M. & Wu, F. Optimal capacitor placement on radial distribution systems. IEEE Transactions on Power Delivery 4, 725–734. issn: 08858977. http://ieeexplore.ieee.org/document/19265/ (Dec. 1989). | spa |
dc.relation.references | Zohrizadeh, F. et al. A survey on conic relaxations of optimal power flow problem. European Journal of Operational Research 287, 391–409. issn: 03772217. https://linkinghub.elsevier.com/retrieve/pii/S0377221720300552 (Dec. 2020). | spa |
dc.relation.references | Bose, S., Low, S. H., Teeraratkul, T. & Hassibi, B. Equivalent Relaxations of Optimal Power Flow. IEEE Transactions on Automatic Control 60, 729–742. issn: 0018-9286. http://ieeexplore.ieee.org/document/6897933/ (Mar. 2015). | spa |
dc.relation.references | Sagnol, G. A class of semidefinite programs with rank-one solutions. Linear Algebra and its Applications 435, 1446–1463. issn: 00243795. https://linkinghub.elsevier.com/retrieve/pii/ S0024379511002515 (Sept. 2011). | spa |
dc.relation.references | Jabr, R. Radial Distribution Load Flow Using Conic Programming. IEEE Transactions on Power Systems 21, 1458–1459. issn: 0885-8950. http://ieeexplore.ieee.org/document/1664986/ (Aug. 2006). | spa |
dc.relation.references | Montoya, O. D., Gil-González, W. & Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Engineering Journal 11, 409–418. issn: 20904479. https://linkinghub.elsevier.com/retrieve/pii/S2090447919301200 (June 2020). | spa |
dc.relation.references | Khodr, H., Olsina, F., Jesus, P. D. O.-D. & Yusta, J. Maximum savings approach for location and sizing of capacitors in distribution systems. Electric Power Systems Research 78, 1192–1203. issn:03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779607002143 (July 2008). | spa |
dc.relation.references | Diamond, S. & Boyd, S. CVXPY: A Python-Embedded Modeling Language for Convex Optimization tech. rep. (2016), 1–5. http://www.cvxpy.org/. | spa |
dc.relation.references | Gurobi Optimization, L. Gurobi Optimizer Reference Manual 2024. https://www.gurobi.com. | spa |
dc.relation.references | Postek, K., Zocca, A., Gromicho, J. & Kantor, J. Hands-On Mathematical Optimization with AMPL in Python https://ampl.com/mo-book (Online, 2024). | spa |
dc.relation.references | MOSEK ApS. MOSEK Optimizer API for Python manual. Version 10.1 2024. https://docs.mosek.com/latest/pythonapi/index.html. | spa |
dc.relation.references | Wächter, A. & Biegler, L. T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 25–57. issn: 0025-5610. http://link.springer.com/10.1007/s10107-004-0559-y (Mar. 2006). | spa |
dc.relation.references | Achterberg, T., Berthold, T., Koch, T. & Wolter, K. in Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems 6–20 (Springer Berlin Heidelberg, Berlin, Heidelberg). http://link.springer.com/10.1007/978-3-540-68155-7_4. | spa |
dc.relation.references | Bonami, P. et al. An Algorithmic Framework for Convex Mixed Integer Nonlinear Programs tech. rep. (IBM Research Division, Nov. 2005). http://egon.cheme.cmu.edu/ibm/files/IBMReseReprc23771. pdf. | spa |
dc.relation.references | Zimmerman, R. D., Murillo-Sanchez, C. E. & Thomas, R. J. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems 26, 12–19. issn: 0885-8950. http://ieeexplore.ieee.org/document/5491276/ (Feb. 2011). | spa |
dc.relation.references | The MathWorks Inc. MATLAB Natick, Massachusetts, 2023. https://www.mathworks.com. | spa |
dc.relation.references | Mirjalili, S. Grey Wolf Optimizer (GWO) 2024. https://www.mathworks.com/matlabcentral/fileexchange/44974-grey-wolf-optimizer-gwo. | spa |
dc.relation.references | Mirjalili, S. The Whale Optimization Algorithm 2024. https://www.mathworks.com/matlabcentral/fileexchange/55667-the-whale-optimization-algorithm. | spa |
dc.relation.references | Wali, S. B. et al. Battery storage systems integrated renewable energy sources: A biblio metric analysis towards future directions. Journal of Energy Storage 35, 102296. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X21000608 (Mar. 2021). | spa |
dc.relation.references | Fischer, D., Chen, X., Handschuch, I., Zhang, D. & Zhang, H. Enhancing China’s ETS for Carbon Neutrality: Focus on Power Sector Co-ordinating climate and renewable energy policy tech. rep. (Institute of Energy, Environment and Economy, 2022). www.iea.org/t&c/. | spa |
dc.relation.references | Duman, A. C., Erden, H. S., Gönül, Ö. & Güler, Ö. Optimal sizing of PV-BESS units for home energy management system-equipped households considering day-ahead load scheduling for demand response and self-consumption. Energy and Buildings 267, 112164. issn: 03787788. https://linkinghub.elsevier.com/retrieve/pii/S0378778822003358 (July 2022). | spa |
dc.relation.references | Wagner, L. P., Reinpold, L. M., Kilthau, M. & Fay, A. A systematic review of modeling approaches for flexible energy resources. Renewable and Sustainable Energy Reviews 184, 113541. issn: 13640321. https://linkinghub.elsevier.com/retrieve/pii/S1364032123003982 (Sept. 2023). | spa |
dc.relation.references | Toledo-Cortés, S., Lara, J. S., Zambrano, A., González Osorio, F. A. & Rosero Garcia, J. Characterization of electricity demand based on energy consumption data from Colombia. International Journal of Electrical and Computer Engineering (IJECE) 13, 4798. issn: 2722-2578. https://ijece.iaescore.com/index.php/IJECE/article/view/30681 (Oct. 2023). | spa |
dc.relation.references | Climate-Data.org. Climate Data: Colombia https://en.climate- data.org/south- america/colombia-133/. | spa |
dc.relation.references | Taskesen, E. Distfit is a python library for probability density fitting. Jan. 2020. https://erdogant.github.io/distfit. | spa |
dc.relation.references | Nadeem, T. B., Siddiqui, M., Khalid, M. & Asif, M. Distributed energy systems: A review of classification, technologies, applications, and policies. Energy Strategy Reviews 48, 101096. issn: 2211467X. https://linkinghub.elsevier.com/retrieve/pii/S2211467X23000469 (July 2023). | spa |
dc.relation.references | Singh, P., Meena, N. K., Yang, J., Vega-Fuentes, E. & Bishnoi, S. K. Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks. Applied Energy 278, 115723. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261920312149 (Nov. 2020). | spa |
dc.relation.references | Suresh, M. & Shatheesh Sam, I. Optimized interesting region identification for video steganography using Fractional Grey Wolf Optimization along with multi-objective cost function. Journal of King Saud University - Computer and Information Sciences 34, 3489–3496. issn: 13191578. https://linkinghub.elsevier.com/retrieve/pii/S1319157820304456 (June 2022). | spa |
dc.relation.references | Su, Y., Li, Y. & Xuan, S. Prediction of complex public opinion evolution based on improved multiobjective grey wolf optimizer. Egyptian Informatics Journal 24, 149–160. issn: 11108665. https://linkinghub.elsevier.com/retrieve/pii/S1110866523000117 (July 2023). | spa |
dc.relation.references | Vinod Kumar, T. & Kumar Injeti, S. Probabilistic optimal planning of dispatchable distributed generator units in distribution systems using a multi-objective velocity-based butterfly optimization algorithm. Renewable Energy Focus 43, 191–209. issn: 17550084. https://linkinghub.elsevier.com/retrieve/pii/S1755008422000813 (Dec. 2022). | spa |
dc.relation.references | Li, T., Han, X., Wu, W. & Sun, H. Robust expansion planning and hardening strategy of meshed multi-energy distribution networks for resilience enhancement. Applied Energy 341, 121066. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261923004300 (July 2023). | spa |
dc.relation.references | Bai, C. et al. Weighted matrix based distributed optimization method for economic dispatch of microgrids via multi-step gradient descent. Energy Reports 8, 177–187. issn: 23524847. https ://linkinghub.elsevier.com/retrieve/pii/S2352484722020248 (Nov. 2022). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería | spa |
dc.subject.ddc | 621.3192 | spa |
dc.subject.lemb | ABASTECIMIENTO DE ENERGIA | spa |
dc.subject.lemb | Energy supply | eng |
dc.subject.lemb | REDES ELECTRICAS | spa |
dc.subject.lemb | Electric networks | eng |
dc.subject.lemb | DISTRIBUCION DE ENERGIA ELECTRICA | spa |
dc.subject.lemb | Electric power distribution | eng |
dc.subject.lemb | SISTEMAS DE INTERCONEXION ELECTRICA-AUTOMATIZACION | spa |
dc.subject.lemb | Interconnected electric utility systems -- Automation | eng |
dc.subject.proposal | Battery energy storage systems (BESS) | eng |
dc.subject.proposal | Active distribution networks | eng |
dc.subject.proposal | Probability density functions (PDF) | eng |
dc.subject.proposal | Uncertainty | eng |
dc.subject.proposal | Power flow analysis (PF) | eng |
dc.subject.proposal | Metaheuristics | eng |
dc.subject.proposal | Non convex optimization | eng |
dc.subject.proposal | Convex optimization | eng |
dc.subject.proposal | Redes activas de distribución | spa |
dc.subject.proposal | Funciones de densidad de probabilidad (PDF) | spa |
dc.subject.proposal | Incertidumbre | spa |
dc.subject.proposal | Análisis de flujo de potencia (PF) | spa |
dc.subject.proposal | Metaheuristicas | spa |
dc.subject.proposal | Optimización no convexa | spa |
dc.subject.proposal | Optimización convexa | spa |
dc.subject.proposal | Energía solar fotovoltaica (PV) | spa |
dc.subject.proposal | Sistemas de almacenamiento de energía con baterías (BESS) | spa |
dc.subject.proposal | Photovoltaics (PV) | eng |
dc.title | Methodology for the formulation and solution of optimization problems regarding the operation of distribution networks with battery storage systems | eng |
dc.title.translated | Metodología para la formulación y solución de problemas de optimización sobre la operación de redes de distribución con sistemas de almacenamiento por baterías | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Becas del bicentenario, Corte 1: Formación de capital humano de alto nivel Universidad Nacional de Colombia | spa |
oaire.fundername | Ministerio de Ciencia y Tecnología | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032419833_2025.pdf
- Tamaño:
- 12.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Doctorado en Ingeniería - Ingeniería Eléctrica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: