Methodology for the formulation and solution of optimization problems regarding the operation of distribution networks with battery storage systems

dc.contributor.advisorRosero García, Javier Alveirospa
dc.contributor.authorMendoza Osorio, Diego Felipespa
dc.contributor.cvlacMendoza Osorio, Diego [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001683613]spa
dc.contributor.orcidMendoza Osorio, Diego [0000-0002-5430-155X]spa
dc.contributor.researchgateMendoza Osorio, Diego [https://www.researchgate.net/profile/Diego-Osorio-30]spa
dc.contributor.researchgroupElectrical Machines & Drives, Em&Dspa
dc.date.accessioned2025-02-24T15:33:28Z
dc.date.available2025-02-24T15:33:28Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEn este documento se implementa una metodología para la optimización de recursos energéticos distribuidos en redes de distribución eléctrica, basada en la implementación de varias estrategias de modelado, diferentes formulaciones convexas y no convexas acopladas a intérpretes y solucionadores (solvers) adecuados, consideraciones sobre la incertidumbre, la calidad de la solución y la eficiencia computacional. Se comienza con una revisión del estado del arte en el modelado de recursos energéticos distribuidos (sistemas fotovoltaicos y almacenamiento por baterías), la implementación de estos recursos en redes de distribución, el modelado de la demanda, el tratamiento de la incertidumbre, objetivos y técnicas de optimización iterativas y metaheurísticas. Posteriormente se exploran múltiples formulaciones del problema de flujo de potencia, incluyendo formulaciones tradicionales complejas y en componentes rectangulares y polares, formulaciones que aprovechan la estructura radial de los sistemas (modelo de inyección de nodos y modelo de flujo de ramas), y reformulaciones que permiten implementar relajaciones convexas. Luego se realiza el modelado matemático de los recursos energéticos distribuidos, incluyendo reformulaciones de restricciones enteras mixtas para la ubicación, un enfoque estocástico para el tratamiento de la incertidumbre en la irradiancia y en la demanda, la agrupación de datos de demanda para identificar patrones y el ajuste de los datos a distribuciones estadísticas para modelar su comportamiento aleatorio. A continuación, se presentan estudios de caso en los cuales se pueden aplicar tanto las formulaciones, como los modelos realizados, i.e., flujo de potencia en periodos sencillos y múltiples, la asignación de generadores fotovoltaicos en condiciones deterministas y estocásticas y la operación óptima de sistemas de almacenamiento por baterías móviles ideales y no-ideales en marcos de trabajo probabilísticos. Para cada aplicación se utilizaron diferentes sistemas de prueba ubicados en diferentes regiones de Colombia (Bogotá, Jamundí y Popayán). Los resultados muestran que las formulaciones no convexas, particularmente la formulación polar, son las que entregan las mejores soluciones con buena calidad, mientras que las formulaciones convexas presentaron una buena eficiencia computacional, aunque en problemas grandes mostraron problemas de convergencia. Por otro lado, las formulaciones adecuadas a las técnicas metaheuristicas, presentaron excelentes resultados en calidad de la solución y en eficiencia computacional, pero solo ocasionalmente presentaban la mejor solución. Por otro lado, los resultados muestran que la integración de sistemas de almacenamiento de energía por baterías puede mejorar significativamente la eficiencia de la red, reduciendo las pérdidas de potencia y mejorando la estabilidad del voltaje, tanto en contextos deterministas como estocásticos, demostrando su capacidad para mitigar incertidumbres, bajo esquemas de operación óptimos (Texto tomado de la fuente).spa
dc.description.abstractThis document implements a methodology for the optimization of distributed energy resources in electrical distribution networks. It is based on several modeling strategies, different convex and non-convex formulations coupled with suitable interpreters and solvers, as well as considerations of uncertainty, solution quality, and computational efficiency. Fristly, a review of the state of the art is presented on the modeling of distributed energy resources (photovoltaic systems and battery storage), their implementations in distribution networks, demand modeling, uncertainty treatment, optimization objectives, and iterative and metaheuristic optimization techniques. Then, multiple formulations of the power flow problem are explored, including complex traditional formulations (in rectangular and polar components), formulations that take advantage of the radial structure of systems (node injection model and branch flow model), and reformulations that allow for convex relaxations. Next, mathematical modeling of distributed energy resources is conducted, including reformulations of mixed integer constraints for the location of these systems, a stochastic approach for the treatment of uncertainty in renewable energy generation and demand, demand patterns identification via clustring, and the fitting of data to statistical distributions to model their random behavior. Lastly, case studies are presented where the formulations and models generated can be applied, such as power flow in single and multiple periods, the allocation of photovoltaic generators under deterministic and stochastic conditions, and the optimal operation of ideal and non-ideal mobile battery storage systems within probabilistic frameworks. Different test systems located in various regions of Colombia (Bogotá, Jamundí, and Popayán) were used for each application. The results show that non-convex formulations, particularly the polar formulation of power flow constraints, provide the best solutions with good quality, while convex formulations exhibited good computational efficiency, although they faced convergence issues for large problems. On the other hand, formulations suited for metaheuristic techniques demonstrated excellent results in solution quality and computational efficiency, but only yielding the best solution occasionally. Results also suggest that integrating battery energy storage systems can significantly improve the efficiency of the distribution network by reducing power losses and enhancing voltage stability in both deterministic and stochastic contexts, demonstrating their ability to mitigate uncertainties under optimal operating schemes.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaSistemas de generación de energía renovable e integración a redes inteligentesspa
dc.format.extentxxi, 291 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87540
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctricaspa
dc.relation.referencesGagnon, P. et al. 2022 Standard Scenarios Report: A U.S. Electricity Sector Outlook tech. rep. (Nrel,2022). www.nrel.gov/publicationsspa
dc.relation.referencesAhlqvist, V., Holmberg, P. & Tangerås, T. A survey comparing centralized and decentralized electricity markets. Energy Strategy Reviews 40, 100812. issn: 2211467X. https://linkinghub.elsevier.com/retrieve/pii/S2211467X22000128 (Mar. 2022).spa
dc.relation.referencesCaballero-Peña, J., Cadena-Zarate, C., Parrado-Duque, A. & Osma-Pinto, G. Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts. International Journal of Electrical Power & Energy Systems 138, 107900. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061521011133 (June 2022).spa
dc.relation.referencesLee, D., Han, C., Kang, S. & Jang, G. Chance-constrained optimization for active distribution networks with virtual power lines. Electric Power Systems Research 221, 109449. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779623003383 (Aug. 2023).spa
dc.relation.referencesMendoza Osorio, D. & Rosero Garcia, J. Optimization of Distributed Energy Resources in Distribution Networks: Applications of Convex Optimal Power Flow Formulations in Distribution Networks. International Transactions on Electrical Energy Systems 2023 (ed Hampannavar, S.) 1–16. issn: 2050-7038. https://www.hindawi.com/journals/itees/2023/1000512/ (Apr. 2023).spa
dc.relation.referencesZarei, S. F. & Khankalantary, S. Protection of active distribution networks with conventional and inverter-based distributed generators. International Journal of Electrical Power & Energy Systems 129, 106746. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061520342915 (July 2021).spa
dc.relation.referencesSirviö, K. H., Laaksonen, H., Kauhaniemi, K. & Hatziargyriou, N. Evolution of the Electricity Distribution Networks—Active Management Architecture Schemes and Microgrid Control Functionalities. Applied Sciences 11, 2793. issn: 2076-3417. https://www.mdpi.com/2076-3417/11/6/2793 (Mar. 2021).spa
dc.relation.referencesRodziewicz, T., Rajfur, M., Teneta, J., Świsłowski, P. & Wacławek, M. Modelling and analysis of the influence of solar spectrum on the efficiency of photovoltaic modules. Energy Reports 7, 565–574. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484721000147 (Nov. 2021).spa
dc.relation.referencesBenda, V. & Černá, L. PV cells and modules – State of the art, limits and trends. Heliyon 6, e05666. issn: 24058440. https://linkinghub.elsevier.com/retrieve/pii/S2405844020325093 (Dec. 2020).spa
dc.relation.referencesEl Hammoumi, A., Chtita, S., Motahhir, S. & El Ghzizal, A. Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Reports 8, 11992–12010. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722017784 (Nov. 2022).spa
dc.relation.referencesTifidat, K., Maouhoub, N., Askar, S. & Abouhawwash, M. Numerical procedure for accurate simulation of photovoltaic modules performance based on the identification of the single-diode model parameters. Energy Reports 9, 5532–5544. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723007412 (Dec. 2023).spa
dc.relation.referencesLidaighbi, S. et al. A new hybrid method to estimate the single-diode model parameters of solar photovoltaic panel. Energy Conversion and Management: X 15, 100234. issn: 25901745. https://linkinghub.elsevier.com/retrieve/pii/S2590174522000575 (Aug. 2022).spa
dc.relation.referencesSchweighofer, B., Buchroithner, A., Felsberger, R. & Wegleiter, H. Optimized selection of component models for photovoltaic and energy storage system simulations. Solar Energy 249, 559–568. issn:0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X22008787 (Jan. 2023).spa
dc.relation.referencesRehman, N., Mufti, M. u. d. & Gupta, N. Analytical index-based allocation and sizing of Lambert-W modeled PV in an active distribution network. Energy Conversion and Management: X 17. issn: 25901745 (Jan. 2023).spa
dc.relation.referencesSeapan, M., Hishikawa, Y., Yoshita, M. & Okajima, K. Temperature and irradiance dependences of the current and voltage at maximum power of crystalline silicon PV devices. Solar Energy 204, 459–465. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X20305089 (July 2020).spa
dc.relation.referencesGil-González, W., Garces, A., Montoya, O. D. & Hernández, J. C. A Mixed-Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks. Applied Sciences 11, 627. issn: 2076-3417. https://www.mdpi.com/2076-3417/11/2/627 (Jan. 2021).spa
dc.relation.referencesMendoza Osorio, D. & Rosero Garcia, J. Convex Stochastic Approaches for the Optimal Allocation of Distributed Energy Resources in AC Distribution Networks with Measurements Fitted to a Continuous Probability Distribution Function. Energies 16, 5566. issn: 1996-1073. https://www.mdpi.com/1996-1073/16/14/5566 (July 2023).spa
dc.relation.referencesBouhorma, N., Martín, H., de la Hoz, J. & Coronas, S. A Comprehensive Methodology for the Statistical Characterization of Solar Irradiation: Application to the Case of Morocco. Applied Sciences 13, 3365. issn: 2076-3417. https://www.mdpi.com/2076-3417/13/5/3365 (Mar. 2023).spa
dc.relation.referencesSingh, N., Jena, S. & Panigrahi, C. K. A novel application of Decision Tree classifier in solar irradiance prediction. Materials Today: Proceedings 58, 316–323. issn: 22147853. https://linkinghub.elsevier.com/retrieve/pii/S2214785322008124 (Jan. 2022).spa
dc.relation.referencesHou, X., Ju, C. & Wang, B. Prediction of solar irradiance using convolutional neural network and attention mechanism-based long short-term memory network based on similar day analysis and an attention mechanism. Heliyon 9, e21484. issn: 24058440. https://linkinghub.elsevier.com/retrieve/pii/S2405844023086929 (Nov. 2023).spa
dc.relation.referencesJeon, B.-K. & Kim, E.-J. Solar irradiance prediction using reinforcement learning pre-trained with limited historical data. Energy Reports 10, 2513–2524. issn: 23524847. https : / / linkinghub .elsevier.com/retrieve/pii/S2352484723012866 (Nov. 2023).spa
dc.relation.referencesGao, Y., Li, P., Yang, H. & Wang, J. A solar radiation intelligent forecasting framework based on feature selection and multivariable fuzzy time series. Engineering Applications of Artificial Intelligence 126, 106986. issn: 09521976. https://linkinghub.elsevier.com/retrieve/pii/S0952197623011703 (Nov. 2023).spa
dc.relation.referencesHaro-Larrode, M. & Bayod-Rújula, Á. A. A coordinated control hybrid MPPT algorithm for a grid-tied PV system considering a VDCIQ control structure. Electric Power Systems Research 221, 109426. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779623003152 (Aug.2023).spa
dc.relation.referencesLefevre, B., Herteleer, B., Breucker, S. D. & Driesen, J. Bayesian inference based MPPT for dynamic irradiance conditions. Solar Energy 174, 1153–1162. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X18308636 (Nov. 2018).spa
dc.relation.referencesÇırak, C. R. & Çalık, H. Hotspots in maximum power point tracking algorithms for photovoltaic systems – A comprehensive and comparative review. Engineering Science and Technology, an International Journal 43, 101436. issn: 22150986. https://linkinghub.elsevier.com/retrieve/pii/S2215098623001143 (July 2023).spa
dc.relation.referencesChandra Mahato, G., Ranjan Biswal, S., Roy Choudhury, T., Nayak, B. & Bikash Santra, S. Review of active power control techniques considering the impact of MPPT and FPPT during high PV penetration. Solar Energy 251, 404–419. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X23000415 (Feb. 2023).spa
dc.relation.referencesBaşoğlu, M. E. Comprehensive review on distributed maximum power point tracking: Submodule level and module level MPPT strategies. Solar Energy 241, 85–108. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X2200370X (July 2022).spa
dc.relation.referencesMishra, V. L., Chauhan, Y. K. & Verma, K. A critical review on advanced reconfigured models and metaheuristics-based MPPT to address complex shadings of solar array. Energy Conversion and Management 269, 116099. issn: 01968904. https://linkinghub.elsevier.com/retrieve/pii/S0196890422008858 (Oct. 2022).spa
dc.relation.referencesKumar, B. R. & Malarvizhi, D. M. An improved three phase cascaded multilevel inverter for maximum power point tracking application. Microprocessors and Microsystems 98, 104736. issn: 01419331. https://linkinghub.elsevier.com/retrieve/pii/S0141933122002654 (Apr. 2023).spa
dc.relation.referencesMathew, D. & Naidu, R. C. A review on single-phase boost inverter technology for low power grid integrated solar PV applications. Ain Shams Engineering Journal, 102365. issn: 20904479. https://linkinghub.elsevier.com/retrieve/pii/S209044792300254X (June 2023).spa
dc.relation.referencesMehta, S. & Puri, V. A review of different multi-level inverter topologies for grid integration of solar photovoltaic system. Renewable Energy Focus 43, 263–276. issn: 17550084. https://linkinghub.elsevier.com/retrieve/pii/S1755008422000825 (Dec. 2022).spa
dc.relation.referencesC., D., Sanjeevikumar, P. & Muyeen, S. A structural overview on transformer and transformer-less multi level inverters for renewable energy applications. Energy Reports 8, 10299–10333. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722014317 (Nov. 2022).spa
dc.relation.referencesEzhilarasan, G. et al. An empirical survey of topologies, evolution, and current developments in multilevel inverters. Alexandria Engineering Journal 83, 148–194. issn: 11100168. https://linkinghub.elsevier.com/retrieve/pii/S1110016823009511 (Nov. 2023).spa
dc.relation.referencesMemarzadeh, G. & Keynia, F. A new hybrid CBSA-GA optimization method and MRMI-LSTM forecasting algorithm for PV-ESS planning in distribution networks. Journal of Energy Storage 72, 108582. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X23019795 (Nov. 2023).spa
dc.relation.referencesDavid, M., Boland, J., Cirocco, L., Lauret, P. & Voyant, C. Value of deterministic day-ahead forecasts of PV generation in PV + Storage operation for the Australian electricity market. Solar Energy 224, 672–684. issn: 0038092X. https://linkinghub.elsevier.com/retrieve/pii/S0038092X21004862 (Aug. 2021).spa
dc.relation.referencesAdewuyi, O. B., Shigenobu, R., Senjyu, T., Lotfy, M. E. & Howlader, A. M. Multiobjective mix generation planning considering utility-scale solar PV system and voltage stability: Nigerian case study. Electric Power Systems Research 168, 269–282. issn: 03787796 (Mar. 2019).spa
dc.relation.referencesYang, J. et al. A spatio-temporality-enabled parallel multi-agent-based real-time dynamic dispatch for hydro-PV-PHS integrated power system. Energy 278, 127915. issn: 03605442. https://linkinghub.elsevier.com/retrieve/pii/S0360544223013099 (Sept. 2023).spa
dc.relation.referencesMichael, N. E., Hasan, S., Al-Durra, A. & Mishra, M. Economic scheduling of virtual power plant in dayahead and real-time markets considering uncertainties in electrical parameters. Energy Reports 9, 3837–3850. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723002378 (Dec. 2023).spa
dc.relation.referencesMendoza Osorio, D. Revisión de la optimización de Bess en sistemas de potencia. TecnoLógicas 26, e2426. issn: 2256-5337. https://revistas.itm.edu.co/index.php/tecnologicas/article/view/ 2426 (Dec. 2022).spa
dc.relation.referencesZecchino, A., Yuan, Z., Sossan, F., Cherkaoui, R. & Paolone, M. Optimal provision of concurrent primary frequency and local voltage control from a BESS considering variable capability curves: Modelling and experimental assessment. Electric Power Systems Research 190, 106643. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779620304466 (Jan. 2021).spa
dc.relation.referencesStecca, M., Ramirez Elizondo, L., Batista Soeiro, T., Bauer, P. & Palensky, P. A Comprehensive Review of the Integration of Battery Energy Storage Systems into Distribution Networks. IEEE Open Journal of the Industrial Electronics Society 1, 1–1. issn: 2644-1284. https://ieeexplore.ieee.org/document/9040552/ (2020).spa
dc.relation.referencesHadjipaschalis, I., Poullikkas, A. & Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renewable and Sustainable Energy Reviews 13, 1513–1522. issn: 13640321. https://linkinghub.elsevier.com/retrieve/pii/S1364032108001664 (Aug.2009).spa
dc.relation.referencesAneke, M. & Wang, M. Energy storage technologies and real life applications – A state of the art review. Applied Energy 179, 350–377. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261916308728 (Oct. 2016).spa
dc.relation.referencesZubi, G., Dufo-López, R., Carvalho, M. & Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews 89, 292–308. issn: 13640321. https://linkinghub.elsevier.com/retrieve/pii/S1364032118300728 (June 2018).spa
dc.relation.referencesMaeyaert, L., Vandevelde, L. & Döring, T. Battery Storage for Ancillary Services in Smart Distribution Grids. Journal of Energy Storage 30, 101524. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X19310898 (Aug. 2020).spa
dc.relation.referencesSakipour, R. & Abdi, H. Voltage stability improvement of wind farms by self-correcting static volt-ampere reactive compensator and energy storage. International Journal of Electrical Power & Energy Systems 140, 108082. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061522001247 (Sept. 2022).spa
dc.relation.referencesMohamed Amine, H., Mouaz, A. K., Messaoud, H., Othmane, A. & Saad, M. Contribution to strengthening Bus voltage stability and power exchange balance of a decentralized DC-multi-microgrids: Performance assessment of classical, optimal, and nonlinear controllers for hybridized energy storage systems control. Sustainable Cities and Society 96, 104647. issn: 22106707. https://linkinghub.elsevier.com/retrieve/pii/S2210670723002585 (Sept. 2023).spa
dc.relation.referencesKhalid, H. A., Al-Emadi, N. A., Ben-Brahim, L., Gastli, A. & Cecati, C. A novel model predictive control with an integrated SOC and floating DC-link voltage balancing for 3-phase 7-level PUC converter-based MV BESS. International Journal of Electrical Power & Energy Systems 130, 106895. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061521001356 (Sept.2021).spa
dc.relation.referencesN., R. B., M., V. G. R. & R., S. R. Battery energy integrated active power filter for harmonic compensation and active power injection. Sustainable Computing: Informatics and Systems 35, 100664. issn: 22105379. https://linkinghub.elsevier.com/retrieve/pii/S2210537922000087 (Sept.2022).spa
dc.relation.referencesFahad, S., Goudarzi, A., Li, Y. & Xiang, J. A coordination control strategy for power quality enhancement of an active distribution network. Energy Reports 8, 5455–5471. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722007776 (Nov. 2022).spa
dc.relation.referencesLi, Y., Zhang, L., Lai, K. & Zhang, X. Dynamic state estimation method for multiple battery energy storage systems with droop-based consensus control. International Journal of Electrical Power & Energy Systems 134, 107328. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061521005676 (Jan. 2022).spa
dc.relation.referencesBizon, N. Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system. Applied Energy 229, 459–473. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261918311681 (Nov. 2018).spa
dc.relation.referencesAbianeh, A. J. & Ferdowsi, F. Sliding Mode Control Enabled Hybrid Energy Storage System for Islanded DC Microgrids with Pulsing Loads. Sustainable Cities and Society 73, 103117. issn: 22106707. https://linkinghub.elsevier.com/retrieve/pii/S2210670721003991 (Oct. 2021).spa
dc.relation.referencesLiu, J. et al. PV-based virtual synchronous generator with variable inertia to enhance power system transient stability utilizing the energy storage system. Protection and Control of Modern Power Systems 2, 39. issn: 2367-2617. https://pcmp.springeropen.com/articles/10.1186/s41601-017-0070-0 (Dec. 2017).spa
dc.relation.referencesOkafor, C. E. & Folly, K. A. Optimal placement of BESS in a power system network for frequency support during contingency. Energy Reports 10, 3681–3695. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723014506 (Nov. 2023).spa
dc.relation.referencesLiang, L. & Lin, L. A resilience enhanced hierarchical strategy of battery energy storage for frequency regulation. Energy Reports 9, 625–636. issn: 23524847. https : / / linkinghub.elsevier. com/retrieve/pii/S2352484723004699 (Sept. 2023).spa
dc.relation.referencesAkpinar, K. N., Gundogdu, B., Ozgonenel, O. & Gezegin, C. An intelligent power management controller for grid-connected battery energy storage systems for frequency response service: A battery cycle life approach. Electric Power Systems Research 216, 109040. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622010896 (Mar. 2023).spa
dc.relation.referencesXing, W. et al. An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids. Energy 233, 121155. issn: 03605442. https://linkinghub.elsevier.com/ retrieve/pii/S0360544221014031 (Oct. 2021).spa
dc.relation.referencesSati, S. E., Al-Durra, A., Zeineldin, H., EL-Fouly, T. H. & El-Saadany, E. F. A novel virtual inertiabased damping stabilizer for frequency control enhancement for islanded microgrid. International Journal of Electrical Power & Energy Systems 155, 109580. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061523006373 (Jan. 2024).spa
dc.relation.referencesAlonso Sørensen, D., Vázquez Pombo, D. & Torres Iglesias, E. Energy storage sizing for virtual inertia contribution based on ROCOF and local frequency dynamics. Energy Strategy Reviews 47, 101094. issn: 2211467X. https://linkinghub.elsevier.com/retrieve/pii/S2211467X23000445 (May.2023).spa
dc.relation.referencesRancilio, G., Bovera, F. & Merlo, M. Revenue Stacking for BESS: Fast Frequency Regulation and Balancing Market Participation in Italy. International Transactions on Electrical Energy Systems 2022 (ed Gao, C. W.) 1–18. issn: 2050-7038. https://www.hindawi.com/journals/itees/2022/1894003/ (June 2022).spa
dc.relation.referencesZhang, S., Liu, H., Wang, F., Yan, T. & Wang, K. Secondary frequency control strategy for BESS considering their degree of participation. Energy Reports 6, 594–602. issn: 23524847. https:// linkinghub.elsevier.com/retrieve/pii/S2352484720316085 (Dec. 2020).spa
dc.relation.referencesZhao, Y. et al. Energy storage for black start services: A review. International Journal of Minerals, Metallurgy and Materials 29, 691–704. issn: 1674-4799. https://link.springer.com/10.1007/s12613-022-2445-0 (Apr. 2022).spa
dc.relation.referencesIzadkhast, S., Cossent, R., Frías, P., García-González, P. & Rodríguez-Calvo, A. Performance Evaluation of a BESS Unit for Black Start and Seamless Islanding Operation. Energies 15, 1736. issn: 1996-1073. https://www.mdpi.com/1996-1073/15/5/1736 (Feb. 2022).spa
dc.relation.referencesMarchgraber, J. & Gawlik, W. Investigation of Black-Starting and Islanding Capabilities of a Battery Energy Storage System Supplying a Microgrid Consisting of Wind Turbines, Impedance- and Motor-Loads. Energies 13, 5170. issn: 1996-1073. https://www.mdpi.com/1996-1073/13/19/5170 (Oct.2020).spa
dc.relation.referencesHassanzadeh, M. E., Nayeripour, M., Hasanvand, S. & Waffenschmidt, E. Decentralized control strategy to improve dynamic performance of micro-grid and reduce regional interactions using BESS in the presence of renewable energy resources. Journal of Energy Storage 31, 101520. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X19311454 (Oct. 2020).spa
dc.relation.referencesAziz, T., Masood, N.-A., Deeba, S. R., Tushar, W. & Yuen, C. A methodology to prevent cascading contingencies using BESS in a renewable integrated microgrid. International Journal of Electrical Power & Energy Systems 110, 737–746. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061518329685 (Sept. 2019).spa
dc.relation.referencesKhunkitti, S., Boonluk, P. & Siritaratiwat, A. Optimal Location and Sizing of BESS for Performance Improvement of Distribution Systems with High DG Penetration. International Transactions on Electrical Energy Systems 2022 (ed Rizzo, S. A.) 1–16. issn: 2050-7038. https://www.hindawi.com/journals/itees/2022/6361243/ (June 2022).spa
dc.relation.referencesAdewuyi, O. B., Shigenobu, R., Ooya, K., Senjyu, T. & Howlader, A. M. Static voltage stability improvement with battery energy storage considering optimal control of active and reactive power injection. Electric Power Systems Research 172, 303–312. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779619301312 (July 2019).spa
dc.relation.referencesKhan, H. A., Zuhaib, M. & Rihan, M. Voltage fluctuation mitigation with coordinated OLTC and energy storage control in high PV penetrating distribution network. Electric Power Systems Research 208, 107924. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622001547 (July 2022).spa
dc.relation.referencesAhmadi, B., Ceylan, O. & Ozdemir, A. Voltage Profile Improving And Peak Shaving Using Multi-type Distributed Generators And Battery Energy Storage Systems In Distribution Networks in 2020 55th International Universities Power Engineering Conference (UPEC) (IEEE, Sept. 2020), 1–6. isbn: 978-1-7281-1078-3. https://ieeexplore.ieee.org/document/9209880/.spa
dc.relation.referencesShakrina, Y., Al Sobbahi, R. & Margossian, H. Optimal BESS Sizing for Industrial Facilities Participating in RTP DR. International Transactions on Electrical Energy Systems 2023 (ed Sun, Q.) 1–12. issn: 2050-7038. https://www.hindawi.com/journals/itees/2023/8857061/ (Oct. 2023).spa
dc.relation.referencesGupta, S. K., Ghose, T. & Chatterjee, K. Coordinated control of Incentive-Based Demand Response Program and BESS for frequency regulation in low inertia isolated grid. Electric Power Systems Research 209, 108037. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622002620 (Aug. 2022).spa
dc.relation.referencesSharma, S., Niazi, K., Verma, K. & Rawat, T. Coordination of different DGs, BESS and demand response for multi-objective optimization of distribution network with special reference to Indian power sector. International Journal of Electrical Power & Energy Systems 121, 106074. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061519327322 (Oct. 2020).spa
dc.relation.referencesPusceddu, E., Zakeri, B. & Castagneto Gissey, G. Synergies between energy arbitrage and fast frequency response for battery energy storage systems. Applied Energy 283, 116274. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261920316640 (Feb. 2021).spa
dc.relation.referencesMustafa, M. B. et al. Evaluation of a battery energy storage system in hospitals for arbitrage and ancillary services. Journal of Energy Storage 43, 103183. issn: 2352152X. https://linkinghub. elsevier.com/retrieve/pii/S2352152X21008835 (Nov. 2021).spa
dc.relation.referencesGarcía-Miguel, P. L. C., Asensio, A. P., Merino, J. L. & Plaza, M. G. Analysis of cost of use modelling impact on a battery energy storage system providing arbitrage service. Journal of Energy Storage 50, 104203. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X22002341 (June 2022).spa
dc.relation.referencesBai, Y., Wang, J. & He, W. Energy arbitrage optimization of lithium-ion battery considering shortterm revenue and long-term battery life loss. Energy Reports 8, 364–371. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S235248472202145X (Dec. 2022).spa
dc.relation.referencesFeng, L. et al. Optimization analysis of energy storage application based on electricity price arbitrage and ancillary services. Journal of Energy Storage 55, 105508. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X22015006 (Nov. 2022).spa
dc.relation.referencesXie, R. et al. BESS frequency regulation strategy on the constraints of planned energy arbitrage using chance-constrained programming. Energy Reports 8, 73–80. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722009751 (Nov. 2022).spa
dc.relation.referencesZhang, R. et al. A new starting capability assessment method for induction motors in an industrial islanded microgrid with diesel generators and energy storage systems. Electric Power Systems Research 210, 108099. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622003236 (Sept. 2022).spa
dc.relation.referencesSanjareh, M. B., Nazari, M. H., Gharehpetian, G. B., Ahmadiahangar, R. & Rosin, A. Optimal scheduling of HVACs in islanded residential microgrids to reduce BESS size considering effect of discharge duration on voltage and capacity of battery cells. Sustainable Energy, Grids and Networks 25, 100424. issn: 23524677. https://linkinghub.elsevier.com/retrieve/pii/S2352467720303556 (Mar. 2021).spa
dc.relation.referencesRana, M. M., Romlie, M. F., Abdullah, M. F., Uddin, M. & Sarkar, M. R. A novel peak load shaving algorithm for isolated microgrid using hybrid PV-BESS system. Energy 234, 121157. issn: 03605442. https://linkinghub.elsevier.com/retrieve/pii/S0360544221014055 (Nov. 2021).spa
dc.relation.referencesMendoza, D. & Rosero Garcia, J. Multi-Objective Optimization of a Microgrid Considering MBESS Efficiencies, the Initial State of Charge, and Storage Capacity. International Review of Electrical Engineering (IREE) 17, 273. issn: 2533-2244. https://www.praiseworthyprize.org/jsm/index.php?journal=iree&page=article&op=view&path%5B%5D=26585 (June 2022).spa
dc.relation.referencesCortés-Caicedo, B., Grisales-Noreña, L. F., Montoya, O. D. & Bolaños, R. I. Optimization of BESS placement, technology selection, and operation in microgrids for minimizing energy losses and CO2 emissions: A hybrid approach. Journal of Energy Storage 73. issn: 2352152X (Dec. 2023).spa
dc.relation.referencesAhlawat, A. & Das, D. Optimal sizing and scheduling of battery energy storage system with solar and wind DG under seasonal load variations considering uncertainties. Journal of Energy Storage 74, 109377. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X23027755 (Dec. 2023).spa
dc.relation.referencesGonzález-Moreno, A., Marcos, J., de la Parra, I. & Marroyo, L. Control method to coordinate inverters and batteries for power ramp-rate control in large PV plants: Minimizing energy losses and battery charging stress. Journal of Energy Storage 72, 108621. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X23020182 (Nov. 2023).spa
dc.relation.referencesHazra, J., Padmanaban, M., Zaini, F. & De Silva, L. C. Congestion relief using grid scale batteries in 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) 2 (IEEE,Feb. 2015), 1–5. isbn: 978-1-4799-1785-3. http://ieeexplore.ieee.org/document/7131789/.spa
dc.relation.referencesRanamuka, D., Muttaqi, K. M. & Sutanto, D. Flexible AC Power Flow Control in Distribution Systems by Coordinated Control of Distributed Solar-PV and Battery Energy Storage Units. IEEE Transactions on Sustainable Energy 11, 2054–2062. issn: 1949-3029. https://ieeexplore.ieee.org/document/8801919/ (Oct. 2020).spa
dc.relation.referencesPaladin, A. et al. Micro market based optimisation framework for decentralised management of distributed flexibility assets. Renewable Energy 163, 1595–1611. issn: 09601481. https://linkinghub.elsevier.com/retrieve/pii/S096014812031569X (Jan. 2021).spa
dc.relation.referencesMehrjerdi, H., Rakhshani, E. & Iqbal, A. Substation expansion deferral by multi-objective battery storage scheduling ensuring minimum cost. Journal of Energy Storage 27, 101119. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X19312034 (Feb. 2020).spa
dc.relation.referencesLi, C., Zhou, H., Li, J. & Dong, Z. Economic dispatching strategy of distributed energy storage for deferring substation expansion in the distribution network with distributed generation and electric vehicle. Journal of Cleaner Production 253, 119862. issn: 09596526. https://linkinghub.elsevier.com/retrieve/pii/S0959652619347328 (Apr. 2020).spa
dc.relation.referencesSaboori, H. & Jadid, S. Mobile and self-powered battery energy storage system in distribution networks–Modeling, operation optimization, and comparison with stationary counterpart. Journal of Energy Storage 42, 103068. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X21007763 (Oct. 2021).spa
dc.relation.referencesSaboori, H. & Jadid, S. Optimal scheduling of mobile utility-scale battery energy storage systems in electric power distribution networks. Journal of Energy Storage 31, 101615. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X20314523 (Oct. 2020).spa
dc.relation.referencesRajabzadeh, M. & Kalantar, M. Improving the resilience of distribution network in coming across seismic damage using mobile battery energy storage system. Journal of Energy Storage 52, 104891. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X22008982 (Aug.2022).spa
dc.relation.referencesMossaddek, M. et al. Nonlinear modeling of lithium-ion battery. Materials Today: Proceedings 66, 80–84. issn: 22147853. https://linkinghub.elsevier.com/retrieve/pii/S2214785322016418 (2022).spa
dc.relation.referencesKamruzzaman, M., Zhang, X., Abdelmalak, M., Shi, D. & Benidris, M. A data-driven accurate battery model to use in probabilistic analyses of power systems. Journal of Energy Storage 44, 103292. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X21009841 (Dec. 2021).spa
dc.relation.referencesKrieger, E. M. & Arnold, C. B. Effects of undercharge and internal loss on the rate dependence of battery charge storage efficiency. Journal of Power Sources 210, 286–291. issn: 03787753. https://linkinghub.elsevier.com/retrieve/pii/S0378775312006283 (July 2012).spa
dc.relation.referencesAllahham, A., Greenwood, D., Patsios, C. & Taylor, P. Adaptive receding horizon control for battery energy storage management with age-and-operation-dependent efficiency and degradation. Electric Power Systems Research 209, 107936. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622001663 (Aug. 2022).spa
dc.relation.referencesEskandarnia, E., Al-Ammal, H. M. & Ksantini, R. An embedded deep-clustering-based load profiling framework. Sustainable Cities and Society 78, 103618. issn: 22106707. https://linkinghub.elsevier.com/retrieve/pii/S2210670721008829 (Mar. 2022).spa
dc.relation.referencesYi Wang et al. Load profiling and its application to demand response: A review. Tsinghua Science and Technology 20, 117–129. issn: 1007-0214. http://ieeexplore.ieee.org/document/7085625/ (Apr. 2015).spa
dc.relation.referencesDuarte, O. G., Rosero, J. A. & Pegalajar, M. d. C. Data Preparation and Visualization of Electricity Consumption for Load Profiling. Energies 15, 7557. issn: 1996-1073. https://www.mdpi.com/1996-1073/15/20/7557 (Oct. 2022).spa
dc.relation.referencesXiao, W. & Hu, J. A Survey of Parallel Clustering Algorithms Based on Spark. Scientific Programming 2020, 1–12. issn: 1058-9244. https://www.hindawi.com/journals/sp/2020/8884926/ (Sept. 2020).spa
dc.relation.referencesWeber, C., Ray, D., Valverde, A., Clark, J. & Sharma, K. Gaussian mixture model clustering algorithms for the analysis of high-precision mass measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1027, 166299. issn: 01689002. https://linkinghub.elsevier.com/retrieve/pii/S0168900221011190 (Mar. 2022).spa
dc.relation.referencesJiao, L., Denoeux, T., Liu, Z.-g. & Pan, Q. EGMM: An evidential version of the Gaussian mixture model for clustering. Applied Soft Computing 129, 109619. issn: 15684946. https://linkinghub.elsevier.com/retrieve/pii/S1568494622006688 (Nov. 2022).spa
dc.relation.referencesWills, A. G., Hendriks, J., Renton, C. & Ninness, B. A Numerically Robust Bayesian Filtering Algorithm for Gaussian Mixture Models. IFAC-PapersOnLine 56, 67–72. issn: 24058963. https: //linkinghub.elsevier.com/retrieve/pii/S2405896323002008 (Jan. 2023).spa
dc.relation.referencesPark, J., Park, K. V., Yoo, S., Choi, S. O. & Han, S. W. Development of the WEEE grouping system in South Korea using the hierarchical and non-hierarchical clustering algorithms. Resources, Conservation and Recycling 161, 104884. issn: 09213449. https://linkinghub.elsevier.com/retrieve/pii/S0921344920302020 (Oct. 2020).spa
dc.relation.referencesTso, W. W., Demirhan, C. D., Heuberger, C. F., Powell, J. B. & Pistikopoulos, E. N. A hierarchical clustering decomposition algorithm for optimizing renewable power systems with storage. Applied Energy 270, 115190. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261920307029 (July 2020).spa
dc.relation.referencesLiang, K. et al. Characteristic analysis of 10 kV bus load based on integrated clustering technology. Energy Reports 8, 413–419. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/ S2352484722022296 (Nov. 2022).spa
dc.relation.referencesPang, Y., Zhou, X., Zhang, J., Sun, Q. & Zheng, J. Hierarchical electricity time series prediction with cluster analysis and sparse penalty. Pattern Recognition 126, 108555. issn: 00313203. https://linkinghub.elsevier.com/retrieve/pii/S003132032200036X (June 2022).spa
dc.relation.referencesBustos-Brinez, O. A., Duarte, J. E., Zambrano-Pinto, A., González, F. A. & Rosero-Garcia, J. A Method for the Characterization of the Energy Demand Aggregate Based on Electricity Data Provided by AMI Systems and Metering in Substations. Energies 17, 87. issn: 1996-1073. https://www.mdpi.com/1996-1073/17/1/87 (Dec. 2023).spa
dc.relation.referencesAtif, M. et al. Monitoring Changes in Clustering Solutions: A Review of Models and Applications. Journal of Probability and Statistics 2023 (ed Ahsan, M.) 1–15. issn: 1687-9538. https://www.hindawi.com/journals/jps/2023/7493623/ (Nov. 2023).spa
dc.relation.referencesCook, E. et al. Density-based clustering algorithm for associating transformers with smart meters via GPS-AMI data. International Journal of Electrical Power & Energy Systems 142, 108291. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061522003118 (Nov. 2022).spa
dc.relation.referencesAmjad, F., Agyekum, E. B., Shah, L. A. & Abbas, A. Site location and allocation decision for onshore wind farms, using spatial multi-criteria analysis and density-based clustering. A techno-economicenvironmental assessment, Ghana. Sustainable Energy Technologies and Assessments 47, 101503. issn: 22131388. https://linkinghub.elsevier.com/retrieve/pii/S2213138821005142 (Oct. 2021).spa
dc.relation.referencesChen, Y., Huang, M. & Tao, Y. Density-based clustering multiple linear regression model of energy consumption for electric vehicles. Sustainable Energy Technologies and Assessments 53, 102614. issn: 22131388. https://linkinghub.elsevier.com/retrieve/pii/S2213138822006646 (Oct. 2022).spa
dc.relation.referencesNikseresht, A. & Amindavar, H. Energy demand forecasting using adaptive ARFIMA based on a novel dynamic structural break detection framework. Applied Energy 353, 122069. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261923014332 (Jan. 2024).spa
dc.relation.referencesLizhen, W., Yifan, Z., Gang, W. & Xiaohong, H. A novel short-term load forecasting method based on mini-batch stochastic gradient descent regression model. Electric Power Systems Research 211, 108226. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622004345 (Oct. 2022).spa
dc.relation.referencesChang, C.-H., Chen, Z.-B. & Huang, S.-F. Forecasting of high-resolution electricity consumption with stochastic climatic covariates via a functional time series approach. Applied Energy 309, 118418. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261921016500 (Mar. 2022).spa
dc.relation.referencesMunkhammar, J., van der Meer, D. & Widén, J. Very short term load forecasting of residential electricity consumption using the Markov-chain mixture distribution (MCM) model. Applied Energy 282, 116180. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261920315816 (Jan. 2021).spa
dc.relation.referencesLuo, J., Hong, T., Gao, Z. & Fang, S.-C. A robust support vector regression model for electric load forecasting. International Journal of Forecasting 39, 1005–1020. issn: 01692070. https:// linkinghub.elsevier.com/retrieve/pii/S0169207022000528 (Apr. 2023).spa
dc.relation.referencesBashiri Behmiri, N., Fezzi, C. & Ravazzolo, F. Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks. Energy 278, 127831. issn: 03605442. https://linkinghub.elsevier.com/retrieve/pii/S0360544223012252 (Sept. 2023).spa
dc.relation.referencesEmami Javanmard, M. & Ghaderi, S. Energy demand forecasting in seven sectors by an optimization model based on machine learning algorithms. Sustainable Cities and Society 95, 104623. issn: 22106707. https://linkinghub.elsevier.com/retrieve/pii/S2210670723002342 (Aug. 2023).spa
dc.relation.referencesWang, J., Wang, K., Li, Z., Lu, H. & Jiang, H. Short-term power load forecasting system based on rough set, information granule and multi-objective optimization. Applied Soft Computing 146, 110692. issn: 15684946. https://linkinghub.elsevier.com/retrieve/pii/S156849462300710X (Oct. 2023).spa
dc.relation.referencesZulfiqar, M., Kamran, M., Rasheed, M., Alquthami, T. & Milyani, A. A hybrid framework for short term load forecasting with a navel feature engineering and adaptive grasshopper optimization in smart grid. Applied Energy 338, 120829. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261923001939 (May 2023).spa
dc.relation.referencesLi, S. et al. Short-term electrical load forecasting using hybrid model of manta ray foraging optimization and support vector regression. Journal of Cleaner Production 388, 135856. issn: 09596526. https://linkinghub.elsevier.com/retrieve/pii/S0959652623000148 (Feb. 2023).spa
dc.relation.referencesLu, C., Liang, J., Jiang, W., Teng, J. & Wu, C. High-resolution probabilistic load forecasting: A learning ensemble approach. Journal of the Franklin Institute 360, 4272–4296. issn: 00160032. https://linkinghub.elsevier.com/retrieve/pii/S0016003223000911 (Apr. 2023).spa
dc.relation.referencesGilbert, C., Browell, J. & Stephen, B. Probabilistic load forecasting for the low voltage network: Forecast fusion and daily peaks. Sustainable Energy, Grids and Networks 34, 100998. issn: 23524677. https://linkinghub.elsevier.com/retrieve/pii/S2352467723000061 (June 2023).spa
dc.relation.referencesQiu, Y., He, Z., Zhang, W., Yin, X. & Ni, C. MSGCN-ISTL: A multi-scaled self-attention-enhanced graph convolutional network with improved STL decomposition for probabilistic load forecasting. Expert Systems with Applications 238, 121737. issn: 09574174. https://linkinghub.elsevier.com/retrieve/pii/S095741742302239X (Mar. 2024).spa
dc.relation.referencesWang, H. et al. Comprehensive review of load forecasting with emphasis on intelligent computing approaches. Energy Reports 8, 13189–13198. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722019540 (Nov. 2022).spa
dc.relation.referencesMahdi Noori R.A., S., Scott, P., Mahmoodi, M. & Attarha, A. Data-driven adjustable robust solution to voltage-regulation problem in PV-rich distribution systems. International Journal of Electrical Power & Energy Systems 141, 108118. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061522001600 (Oct. 2022).spa
dc.relation.referencesChen, C., Shen, X., Guo, Q. & Sun, H. Robust planning-operation co-optimization of energy hub considering precise model of batteries’ economic efficiency. Energy Procedia 158, 6496–6501. issn: 18766102. https://linkinghub.elsevier.com/retrieve/pii/S1876610219301213 (Feb. 2019).spa
dc.relation.referencesMahmood, D., Javaid, N., Ahmed, G., Khan, S. & Monteiro, V. A review on optimization strategies integrating renewable energy sources focusing uncertainty factor – Paving path to eco-friendly smart cities. Sustainable Computing: Informatics and Systems 30, 100559. issn: 22105379. https : / /linkinghub.elsevier.com/retrieve/pii/S2210537921000500 (June 2021).spa
dc.relation.referencesLiao, X. et al. Extended affine arithmetic-based global sensitivity analysis for power flow with uncertainties. International Journal of Electrical Power & Energy Systems 115, 105440. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S0142061519306775 (Feb. 2020).spa
dc.relation.referencesYu, X., Dong, X., Pang, S., Zhou, L. & Zang, H. Energy Storage Sizing Optimization and Sensitivity Analysis Based on Wind Power Forecast Error Compensation. Energies 12, 4755. issn: 1996-1073. https://www.mdpi.com/1996-1073/12/24/4755 (Dec. 2019).spa
dc.relation.referencesYi, Y. & Verbič, G. Fair operating envelopes under uncertainty using chance constrained optimal power flow. Electric Power Systems Research 213, 108465. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779622005995 (Dec. 2022).spa
dc.relation.referencesEngels, J., Claessens, B. & Deconinck, G. Combined Stochastic Optimization of Frequency Control and Self-Consumption With a Battery. IEEE Transactions on Smart Grid 10, 1971–1981. issn: 1949-3053. https://ieeexplore.ieee.org/document/8226863/ (Mar. 2019).spa
dc.relation.referencesWang, Y., Rousis, A. O., Qiu, D. & Strbac, G. A stochastic distributed control approach for load restoration of networked microgrids with mobile energy storage systems. International Journal of Electrical Power & Energy Systems 148, 108999. issn: 01420615. https://linkinghub.elsevier.com/retrieve/pii/S014206152300056X (June 2023).spa
dc.relation.referencesVahid-Ghavidel, M. et al. Hybrid IGDT-stochastic self-scheduling of a distributed energy resources aggregator in a multi-energy system. Energy 265, 126289. issn: 03605442. https://linkinghub.elsevier.com/retrieve/pii/S0360544222031759 (Feb. 2023).spa
dc.relation.referencesMoradi, S., Zizzo, G., Favuzza, S. & Massaro, F. A stochastic approach for self-healing capability evaluation in active islanded AC/DC hybrid microgrids. Sustainable Energy, Grids and Networks 33, 100982. issn: 23524677. https://linkinghub.elsevier.com/retrieve/pii/S2352467722002272 (Mar. 2023).spa
dc.relation.referencesSingh, V., Moger, T. & Jena, D. Uncertainty handling techniques in power systems: A critical review. Electric Power Systems Research 203, 107633. issn: 03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779621006143 (Feb. 2022).spa
dc.relation.referencesKim, H.-Y., Kim, M.-K. & Kim, S. Multi-Objective Scheduling Optimization Based on a Modified Non-Dominated Sorting Genetic Algorithm-II in Voltage Source ConverterMulti-Terminal High Voltage DC Grid-Connected Offshore Wind Farms with Battery Energy Storage Systems. Energies 10, 986. issn: 1996-1073. http://www.mdpi.com/1996-1073/10/7/986 (July 2017).spa
dc.relation.referencesKorjani, S., Mureddu, M., Facchini, A. & Damiano, A. Aging Cost Optimization for Planning and Management of Energy Storage Systems. Energies 10, 1916. issn: 1996-1073. http://www.mdpi.com/1996-1073/10/11/1916 (Nov. 2017).spa
dc.relation.referencesXu, B., Oudalov, A., Ulbig, A., Andersson, G. & Kirschen, D. S. Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Transactions on Smart Grid 9, 1131–1140. issn: 1949-3053. http://ieeexplore.ieee.org/document/7488267/ (Mar. 2018).spa
dc.relation.referencesRadosavljević, J., Ktena, A., Gajić, M., Milovanović, M. & Živić, J. Dynamic Optimal Power Dispatch in Unbalanced Distribution Networks with Single-Phase Solar PV Units and BESS. Energies 16, 4356. issn: 1996-1073. https://www.mdpi.com/1996-1073/16/11/4356 (May 2023).spa
dc.relation.referencesMontoya, O. D., Gil-González, W., Serra, F. M., Hernández, J. C. & Molina-Cabrera, A. A Second-Order Cone Programming Reformulation of the Economic Dispatch Problem of BESS for Apparent Power Compensation in AC Distribution Networks. Electronics 9, 1677. issn: 2079-9292. https://www.mdpi.com/2079-9292/9/10/1677 (Oct. 2020).spa
dc.relation.referencesMansuwan, K., Jirapong, P. & Thararak, P. Optimal battery energy storage planning and control strategy for grid modernization using improved genetic algorithm. Energy Reports 9, 236–241. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723012532 (Oct. 2023).spa
dc.relation.referencesBoyd, S. & Vandenberghe, L. Convex Optimization isbn: 978-0521833783 (Cambridge University Press, 2004).spa
dc.relation.referencesChankong, S., Phaochoo, P., Charongrattanasakul, P. & Thongpool, N. A class of derivative free three-term descent Hestenes-Stiefel conjugate gradient algorithms for constrained nonlinear problems. Results in Control and Optimization, 100372. issn: 26667207. https://linkinghub.elsevier.com/retrieve/pii/S266672072400002X (Jan. 2024).spa
dc.relation.referencesYousif, O. O., Mohammed, M. A., Saleh, M. A. & Elbashir, M. K. A criterion for the global convergence of conjugate gradient methods under strong Wolfe line search. Journal of King Saud University - Science 34, 102281. issn: 10183647. https://linkinghub.elsevier.com/retrieve/pii/S1018364722004621 (Nov. 2022).spa
dc.relation.referencesAbubakar, A. B. et al. A Liu-Storey-type conjugate gradient method for unconstrained minimization problem with application in motion control. Journal of King Saud University - Science 34, 101923. issn: 10183647. https://linkinghub.elsevier.com/retrieve/pii/S1018364722001045 (June 2022).spa
dc.relation.referencesYi, X. et al. Iterative quantum algorithm for combinatorial optimization based on quantum gradient descent. Results in Physics 56, 107204. issn: 22113797. https://linkinghub.elsevier.com/ retrieve/pii/S221137972300997X (Jan. 2024).spa
dc.relation.referencesQu, Z. et al. Two-step proximal gradient descent algorithm for photoacoustic signal unmixing. Photoacoustics 27, 100379. issn: 22135979. https://linkinghub.elsevier.com/retrieve/pii/ S2213597922000441 (Sept. 2022).spa
dc.relation.referencesNamsak, S., Petrot, N. & Nimana, N. A distributed proximal gradient method with time-varying delays for solving additive convex optimizations. Results in Applied Mathematics 18, 100370. issn: 25900374. https://linkinghub.elsevier.com/retrieve/pii/S259003742300016X (May 2023).spa
dc.relation.referencesWang, Y. et al. Estimated position correction algorithm of surface-mounted permanent-magnet synchronous motor based on variable gain steepest gradient descent method. Energy Reports 9, 1154–1162. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484723009289 (Oct. 2023).spa
dc.relation.referencesDvurechensky, P., Shtern, S. & Staudigl, M. First-Order Methods for Convex Optimization. EURO Journal on Computational Optimization 9, 100015. issn: 21924406. https://linkinghub.elsevier.com/retrieve/pii/S2192440621001428 (Jan. 2021).spa
dc.relation.referencesFiacco, A. V., McCormick, G. P. & Danskin, J. M. The Sequential Unconstrained Minimization Technique (SUMT) without Parameters. Operations Research 15, 820–829. issn: 0030364X, 15265463. http://www.jstor.org/stable/168637 (1967).spa
dc.relation.referencesKennedy, J. in Encyclopedia of Machine Learning 760–766 (Springer US, Boston, MA, 2011). https://link.springer.com/10.1007/978-0-387-30164-8_630.spa
dc.relation.referencesChen, B., Zhang, R., Chen, L. & Long, S. Adaptive Particle Swarm Optimization with Gaussian Perturbation and Mutation. Scientific Programming 2021 (ed Li, W.) 1–14. issn: 1875-919X. https://www.hindawi.com/journals/sp/2021/6676449/ (Feb. 2021).spa
dc.relation.referencesBangyal, W. H., Hameed, A., Alosaimi, W. & Alyami, H. A New Initialization Approach in Particle Swarm Optimization for Global Optimization Problems. Computational Intelligence and Neuroscience 2021 (ed Dourado, A.) 1–17. issn: 1687-5273. https://www.hindawi.com/journals/cin/2021/6628889/ (May 2021).spa
dc.relation.referencesWang, S., Liu, Y., Zou, K., Li, N. & Wu, Y. Multiobjective Particle Swarm Optimization Based on Ideal Distance. Discrete Dynamics in Nature and Society 2022 (ed Do, T. V.) 1–16. issn: 1607-887X. https://www.hindawi.com/journals/ddns/2022/3515566/ (Apr. 2022).spa
dc.relation.referencesGoldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning 1st. isbn: 978-0201157673 (Addison-Wesley Longman Publishing Co., Inc., USA, 1989).spa
dc.relation.referencesChen, Q. & Hu, X. Design of intelligent control system for agricultural greenhouses based on adaptive improved genetic algorithm for multi-energy supply system. Energy Reports 8, 12126–12138. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722017413 (Nov. 2022).spa
dc.relation.referencesKirchner-Bossi, N. & Porté-Agel, F. Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm. Renewable Energy 220, 119524. issn: 09601481. https://linkinghub.elsevier.com/retrieve/pii/S0960148123014398 (Jan. 2024).spa
dc.relation.referencesManna, A., Roy, A., Maity, S., Mondal, S. & Nielsen, I. E. A multi-parent genetic algorithm for solving longitude–latitude-based 4D traveling salesman problems under uncertainty. Decision Analytics Journal 8, 100287. issn: 27726622. https://linkinghub.elsevier.com/retrieve/pii/S2772662223001273 (Sept. 2023).spa
dc.relation.referencesDeb, K. & Jain, H. An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation 18, 577–601. issn: 1089-778X. http://ieeexplore.ieee.org/document/6600851/ (Aug. 2014).spa
dc.relation.referencesWu, P., Zou, D., Yu, N., Zhang, G. & Kong, L. An improved NSGA-III for the dynamic economic emission dispatch considering reliability. Energy Reports 8, 14304–14317. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722022740 (Nov. 2022).spa
dc.relation.referencesZhou, W. et al. An intelligent optimization method for the HCSB blanket based on an improved multi-objective NSGA-III algorithm and an adaptive BP neural network. Nuclear Engineering and Technology 55, 3150–3163. issn: 17385733. https://linkinghub.elsevier.com/retrieve/pii/S1738573323002504 (Sept. 2023).spa
dc.relation.referencesMirjalili, S., Mirjalili, S. M. & Lewis, A. Grey Wolf Optimizer. Advances in Engineering Software 69, 46–61. issn: 09659978. https://linkinghub.elsevier.com/retrieve/pii/S0965997813001853 (Mar. 2014).spa
dc.relation.referencesPawan & Dhiman, R. Motor imagery signal classification using Wavelet packet decomposition and modified binary grey wolf optimization. Measurement: Sensors 24. issn: 26659174 (Dec. 2022).spa
dc.relation.referencesChandran, V. & Mohapatra, P. Enhanced opposition-based grey wolf optimizer for global optimization and engineering design problems. Alexandria Engineering Journal 76, 429–467. issn: 11100168. https://linkinghub.elsevier.com/retrieve/pii/S1110016823005173 (Aug. 2023).spa
dc.relation.referencesAbdulhasan Salim, J., Albaker, B. M., Shyaa Alwan, M. & Hasanuzzaman, M. Hybrid MPPT approach using Cuckoo Search and Grey Wolf Optimizer for PV systems under variant operating conditions. Global Energy Interconnection 5, 627–644. issn: 20965117. https://linkinghub.elsevier.com/retrieve/pii/S2096511722001141 (Dec. 2022).spa
dc.relation.referencesSoliman, M. A., Hasanien, H. M., Turky, R. A. & Muyeen, S. Hybrid African vultures–grey wolf optimizer approach for electrical parameters extraction of solar panel models. Energy Reports 8, 14888–14900. issn: 23524847. https://linkinghub.elsevier.com/retrieve/pii/S2352484722023368 (Nov. 2022).spa
dc.relation.referencesHoballah, A. & Azmy, A. M. Constrained economic dispatch following generation outage for hot spinning reserve allocation using hybrid grey wolf optimizer. Alexandria Engineering Journal 62, 169–180. issn: 11100168. https://linkinghub.elsevier.com/retrieve/pii/S1110016822004902 (Jan. 2023).spa
dc.relation.referencesMirjalili, S. & Lewis, A. The Whale Optimization Algorithm. Advances in Engineering Software 95, 51–67. issn: 09659978. https://linkinghub.elsevier.com/retrieve/pii/S0965997816300163 (May 2016).spa
dc.relation.referencesMostafa Bozorgi, S. & Yazdani, S. IWOA: An improved whale optimization algorithm for optimization problems. Journal of Computational Design and Engineering 6, 243–259. issn: 2288-5048. https://academic.oup.com/jcde/article/6/3/243/5732340 (July 2019).spa
dc.relation.referencesSyama, S., Ramprabhakar, J., Anand, R. & Guerrero, J. M. A hybrid Extreme Learning Machine model with Lévy flight Chaotic Whale Optimization Algorithm for Wind Speed Forecasting. Results in Engineering 19, 101274. issn: 25901230. https://linkinghub.elsevier.com/retrieve/pii/S2590123023004012 (Sept. 2023).spa
dc.relation.referencesHeidari, A. A. et al. Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems 97, 849–872. issn: 0167739X. https://linkinghub.elsevier.com/retrieve/ pii/S0167739X18313530 (Aug. 2019).spa
dc.relation.referencesYang, X.-S. Nature-inspired metaheuristic algorithms: Second edition 2nd ed. isbn: 1905986289 (Luniver Press, Frome, England, 2010).spa
dc.relation.referencesAyinla, S. L. et al. Optimal Control of DC Motor using Leader-based Harris Hawks Optimization Algorithm. Franklin Open, 100058. issn: 27731863. https://linkinghub.elsevier.com/retrieve/ pii/S277318632300052X (Nov. 2023).spa
dc.relation.referencesHussien, A. G. et al. Recent Advances in Harris Hawks Optimization: A Comparative Study and Applications. Electronics 11, 1919. issn: 2079-9292. https://www.mdpi.com/2079-9292/11/12/1919 (June 2022).spa
dc.relation.referencesLow, S. H. Convex Relaxation of Optimal Power Flow—Part I: Formulations and Equivalence. IEEE Transactions on Control of Network Systems 1, 15–27. issn: 2325-5870. http://ieeexplore.ieee. org/document/6756976/ (Mar. 2014).spa
dc.relation.referencesMontoya, O. D., Garces, A. & Gil-González, W. Three-Phase Power Flow Tool for Electric Distribution Grids: A Julia Implementation for Electrical Engineering Students. Ingeniería 28. https://doi.org/10.14483/23448393.21419 (2023).spa
dc.relation.referencesBaran, M. & Wu, F. Optimal capacitor placement on radial distribution systems. IEEE Transactions on Power Delivery 4, 725–734. issn: 08858977. http://ieeexplore.ieee.org/document/19265/ (Dec. 1989).spa
dc.relation.referencesZohrizadeh, F. et al. A survey on conic relaxations of optimal power flow problem. European Journal of Operational Research 287, 391–409. issn: 03772217. https://linkinghub.elsevier.com/retrieve/pii/S0377221720300552 (Dec. 2020).spa
dc.relation.referencesBose, S., Low, S. H., Teeraratkul, T. & Hassibi, B. Equivalent Relaxations of Optimal Power Flow. IEEE Transactions on Automatic Control 60, 729–742. issn: 0018-9286. http://ieeexplore.ieee.org/document/6897933/ (Mar. 2015).spa
dc.relation.referencesSagnol, G. A class of semidefinite programs with rank-one solutions. Linear Algebra and its Applications 435, 1446–1463. issn: 00243795. https://linkinghub.elsevier.com/retrieve/pii/ S0024379511002515 (Sept. 2011).spa
dc.relation.referencesJabr, R. Radial Distribution Load Flow Using Conic Programming. IEEE Transactions on Power Systems 21, 1458–1459. issn: 0885-8950. http://ieeexplore.ieee.org/document/1664986/ (Aug. 2006).spa
dc.relation.referencesMontoya, O. D., Gil-González, W. & Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Engineering Journal 11, 409–418. issn: 20904479. https://linkinghub.elsevier.com/retrieve/pii/S2090447919301200 (June 2020).spa
dc.relation.referencesKhodr, H., Olsina, F., Jesus, P. D. O.-D. & Yusta, J. Maximum savings approach for location and sizing of capacitors in distribution systems. Electric Power Systems Research 78, 1192–1203. issn:03787796. https://linkinghub.elsevier.com/retrieve/pii/S0378779607002143 (July 2008).spa
dc.relation.referencesDiamond, S. & Boyd, S. CVXPY: A Python-Embedded Modeling Language for Convex Optimization tech. rep. (2016), 1–5. http://www.cvxpy.org/.spa
dc.relation.referencesGurobi Optimization, L. Gurobi Optimizer Reference Manual 2024. https://www.gurobi.com.spa
dc.relation.referencesPostek, K., Zocca, A., Gromicho, J. & Kantor, J. Hands-On Mathematical Optimization with AMPL in Python https://ampl.com/mo-book (Online, 2024).spa
dc.relation.referencesMOSEK ApS. MOSEK Optimizer API for Python manual. Version 10.1 2024. https://docs.mosek.com/latest/pythonapi/index.html.spa
dc.relation.referencesWächter, A. & Biegler, L. T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 25–57. issn: 0025-5610. http://link.springer.com/10.1007/s10107-004-0559-y (Mar. 2006).spa
dc.relation.referencesAchterberg, T., Berthold, T., Koch, T. & Wolter, K. in Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems 6–20 (Springer Berlin Heidelberg, Berlin, Heidelberg). http://link.springer.com/10.1007/978-3-540-68155-7_4.spa
dc.relation.referencesBonami, P. et al. An Algorithmic Framework for Convex Mixed Integer Nonlinear Programs tech. rep. (IBM Research Division, Nov. 2005). http://egon.cheme.cmu.edu/ibm/files/IBMReseReprc23771. pdf.spa
dc.relation.referencesZimmerman, R. D., Murillo-Sanchez, C. E. & Thomas, R. J. MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems 26, 12–19. issn: 0885-8950. http://ieeexplore.ieee.org/document/5491276/ (Feb. 2011).spa
dc.relation.referencesThe MathWorks Inc. MATLAB Natick, Massachusetts, 2023. https://www.mathworks.com.spa
dc.relation.referencesMirjalili, S. Grey Wolf Optimizer (GWO) 2024. https://www.mathworks.com/matlabcentral/fileexchange/44974-grey-wolf-optimizer-gwo.spa
dc.relation.referencesMirjalili, S. The Whale Optimization Algorithm 2024. https://www.mathworks.com/matlabcentral/fileexchange/55667-the-whale-optimization-algorithm.spa
dc.relation.referencesWali, S. B. et al. Battery storage systems integrated renewable energy sources: A biblio metric analysis towards future directions. Journal of Energy Storage 35, 102296. issn: 2352152X. https://linkinghub.elsevier.com/retrieve/pii/S2352152X21000608 (Mar. 2021).spa
dc.relation.referencesFischer, D., Chen, X., Handschuch, I., Zhang, D. & Zhang, H. Enhancing China’s ETS for Carbon Neutrality: Focus on Power Sector Co-ordinating climate and renewable energy policy tech. rep. (Institute of Energy, Environment and Economy, 2022). www.iea.org/t&c/.spa
dc.relation.referencesDuman, A. C., Erden, H. S., Gönül, Ö. & Güler, Ö. Optimal sizing of PV-BESS units for home energy management system-equipped households considering day-ahead load scheduling for demand response and self-consumption. Energy and Buildings 267, 112164. issn: 03787788. https://linkinghub.elsevier.com/retrieve/pii/S0378778822003358 (July 2022).spa
dc.relation.referencesWagner, L. P., Reinpold, L. M., Kilthau, M. & Fay, A. A systematic review of modeling approaches for flexible energy resources. Renewable and Sustainable Energy Reviews 184, 113541. issn: 13640321. https://linkinghub.elsevier.com/retrieve/pii/S1364032123003982 (Sept. 2023).spa
dc.relation.referencesToledo-Cortés, S., Lara, J. S., Zambrano, A., González Osorio, F. A. & Rosero Garcia, J. Characterization of electricity demand based on energy consumption data from Colombia. International Journal of Electrical and Computer Engineering (IJECE) 13, 4798. issn: 2722-2578. https://ijece.iaescore.com/index.php/IJECE/article/view/30681 (Oct. 2023).spa
dc.relation.referencesClimate-Data.org. Climate Data: Colombia https://en.climate- data.org/south- america/colombia-133/.spa
dc.relation.referencesTaskesen, E. Distfit is a python library for probability density fitting. Jan. 2020. https://erdogant.github.io/distfit.spa
dc.relation.referencesNadeem, T. B., Siddiqui, M., Khalid, M. & Asif, M. Distributed energy systems: A review of classification, technologies, applications, and policies. Energy Strategy Reviews 48, 101096. issn: 2211467X. https://linkinghub.elsevier.com/retrieve/pii/S2211467X23000469 (July 2023).spa
dc.relation.referencesSingh, P., Meena, N. K., Yang, J., Vega-Fuentes, E. & Bishnoi, S. K. Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks. Applied Energy 278, 115723. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261920312149 (Nov. 2020).spa
dc.relation.referencesSuresh, M. & Shatheesh Sam, I. Optimized interesting region identification for video steganography using Fractional Grey Wolf Optimization along with multi-objective cost function. Journal of King Saud University - Computer and Information Sciences 34, 3489–3496. issn: 13191578. https://linkinghub.elsevier.com/retrieve/pii/S1319157820304456 (June 2022).spa
dc.relation.referencesSu, Y., Li, Y. & Xuan, S. Prediction of complex public opinion evolution based on improved multiobjective grey wolf optimizer. Egyptian Informatics Journal 24, 149–160. issn: 11108665. https://linkinghub.elsevier.com/retrieve/pii/S1110866523000117 (July 2023).spa
dc.relation.referencesVinod Kumar, T. & Kumar Injeti, S. Probabilistic optimal planning of dispatchable distributed generator units in distribution systems using a multi-objective velocity-based butterfly optimization algorithm. Renewable Energy Focus 43, 191–209. issn: 17550084. https://linkinghub.elsevier.com/retrieve/pii/S1755008422000813 (Dec. 2022).spa
dc.relation.referencesLi, T., Han, X., Wu, W. & Sun, H. Robust expansion planning and hardening strategy of meshed multi-energy distribution networks for resilience enhancement. Applied Energy 341, 121066. issn: 03062619. https://linkinghub.elsevier.com/retrieve/pii/S0306261923004300 (July 2023).spa
dc.relation.referencesBai, C. et al. Weighted matrix based distributed optimization method for economic dispatch of microgrids via multi-step gradient descent. Energy Reports 8, 177–187. issn: 23524847. https ://linkinghub.elsevier.com/retrieve/pii/S2352484722020248 (Nov. 2022).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc621.3192spa
dc.subject.lembABASTECIMIENTO DE ENERGIAspa
dc.subject.lembEnergy supplyeng
dc.subject.lembREDES ELECTRICASspa
dc.subject.lembElectric networkseng
dc.subject.lembDISTRIBUCION DE ENERGIA ELECTRICAspa
dc.subject.lembElectric power distributioneng
dc.subject.lembSISTEMAS DE INTERCONEXION ELECTRICA-AUTOMATIZACIONspa
dc.subject.lembInterconnected electric utility systems -- Automationeng
dc.subject.proposalBattery energy storage systems (BESS)eng
dc.subject.proposalActive distribution networkseng
dc.subject.proposalProbability density functions (PDF)eng
dc.subject.proposalUncertaintyeng
dc.subject.proposalPower flow analysis (PF)eng
dc.subject.proposalMetaheuristicseng
dc.subject.proposalNon convex optimizationeng
dc.subject.proposalConvex optimizationeng
dc.subject.proposalRedes activas de distribuciónspa
dc.subject.proposalFunciones de densidad de probabilidad (PDF)spa
dc.subject.proposalIncertidumbrespa
dc.subject.proposalAnálisis de flujo de potencia (PF)spa
dc.subject.proposalMetaheuristicasspa
dc.subject.proposalOptimización no convexaspa
dc.subject.proposalOptimización convexaspa
dc.subject.proposalEnergía solar fotovoltaica (PV)spa
dc.subject.proposalSistemas de almacenamiento de energía con baterías (BESS)spa
dc.subject.proposalPhotovoltaics (PV)eng
dc.titleMethodology for the formulation and solution of optimization problems regarding the operation of distribution networks with battery storage systemseng
dc.title.translatedMetodología para la formulación y solución de problemas de optimización sobre la operación de redes de distribución con sistemas de almacenamiento por bateríasspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBecas del bicentenario, Corte 1: Formación de capital humano de alto nivel Universidad Nacional de Colombiaspa
oaire.fundernameMinisterio de Ciencia y Tecnologíaspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032419833_2025.pdf
Tamaño:
12.38 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Ingeniería Eléctrica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: