Mejoramiento de la resistencia a la cavitación de recubrimientos de WC-Co a través del control de parámetros del proceso proyección térmica por High Velocity Oxy-Fuel (HVOF)

dc.contributor.advisorToro Betancur, Alejandro
dc.contributor.authorRamos Álvarez, Manuel Alejandro
dc.contributor.researchgroupGrupo De Tribología y Superficies GTSspa
dc.date.accessioned2022-03-09T21:56:16Z
dc.date.available2022-03-09T21:56:16Z
dc.date.issued2022-03-09
dc.descriptionIlustracionesspa
dc.description.abstractEn la presente investigación se estudió la relación entre la resistencia a la cavitación de recubrimientos a base de WC-Co y los parámetros de proyección de la técnica de HVOF. Los recubrimientos fueron manufacturados con la pistola DJH-2600 la cual funciona con hidrógeno y oxígeno como gases de combustión. El proceso de proyección fue automatizado. Se obtuvieron tres repeticiones para cada condición de proyección para garantizar la repetibilidad de los experimentos. Se evaluó la resistencia a la cavitación mediante la prueba indirecta de la norma ASTM G-32 así como la rugosidad de los recubrimientos, la morfología superficial y la microestructura mediante SEM y microscopía óptica respectivamente. La porosidad de capa fue medida mediante tratamiento digital de imágenes. El análisis de las fases presentes en el recubrimiento fue llevado a cabo mediante XRD. Posteriormente los datos obtenidos se correlacionaron con los parámetros de proyección para así dar con la mejor receta. Se encontró que el parámetro que mayor efecto tuvo sobre todas las propiedades evaluadas fue el flujo total de combustión (FTC), mientras que la relación de combustión (RC) no tuvo un efecto estadísticamente significativo en los niveles evaluados en el plan experimental. Se logró mejorar la resistencia a la cavitación de los recubrimientos a base de WC-Co usando niveles elevados de FTC y una relación de combustión cercana al punto estequiométrico. (texto tomado de la fuente)spa
dc.description.abstractIn the present work, the relationship between the cavitation resistance of WC-Co based coatings and the thermal spraying parameters of the HVOF process was studied. The coatings were manufactured using DJH-2600 gun, which works with hydrogen and oxygen as combustion gases. The spraying process was automatized. Three repetitions were obtained for each projection condition to verify the experiments’ repeatability. The resistance to cavitation was evaluated by the indirect test of the ASTM G-32 standard. The roughness of the coatings, its surface morphology and microstructure were studied with the aid of contact profilometer, SEM and optical microscopy. The porosity of the coatings was measured by digital image processing and the analysis of the phases present in the coating was carried out by XRD. Subsequently, the data obtained were correlated with the projection parameters to find the best spraying recipe. It was found that the total combustion flux was the parameter that had the strongest effect on every evaluated property, while the combustion ratio (RC) did not have a statistically significant effect on the levels evaluated in the experimental plan. It was possible to improve the cavitation resistance of the WC-Co based coatings using high levels of FTC and a combustion ratio close to the stoichiometric point.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería Materiales y Procesosspa
dc.description.researchareaDesgaste por abrasión, erosión y cavitaciónspa
dc.format.extent111 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81171
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Materiales y Mineralesspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.references[1] R. Koirala, B. Thapa, H. P. Neopane, and B. Zhu, “A review on flow and sediment erosion in guide vanes of Francis turbines,” Renew. Sustain. Energy Rev., vol. 75, no. August, pp. 1054–1065, 2017, doi: 10.1016/j.rser.2016.11.085.spa
dc.relation.references[2] V. Katranidis, “Influence of Spray Kinematic Parameters on High Velocity Oxy-Fuel sprayed WC-Co Coatings’ Properties Applied on Complex Geometries,” University of Surrey, 2018.spa
dc.relation.references[3] J. R. Davis, Handbook of thermal spray technology. 2004.spa
dc.relation.references[4] K. E. Schneider, V. Belashchenko, M. Dratwinski, S. Siegmann, and A. Zagorski, Thermal Spraying for Power Generation Components. 2006.spa
dc.relation.references[5] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings. John Wiley & Sons, Ltd, 2008.spa
dc.relation.references[6] A. kumar, A. Sharma, and S. K. Goel, “Erosion behaviour of WC–10Co–4Cr coating on 23-8-N nitronic steel by HVOF thermal spraying,” Appl. Surf. Sci., vol. 370, pp. 418–426, 2016, doi: 10.1016/j.apsusc.2016.02.163.spa
dc.relation.references[7] J. A. Arboleda, “Efecto de los parametros de aspersión sobre la microestructura de recubrimientos de Al2O3 + 13%TiO2 aplicados mediante aspersión térmica por combustión.,” Universidad Nacional de Colombia Sede Medellín, 2016.spa
dc.relation.references[8] S. M. Nahvi and M. Jafari, “Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings,” Surf. Coatings Technol., vol. 286, pp. 95–102, 2016, doi: 10.1016/j.surfcoat.2015.12.016.spa
dc.relation.references[9] A. S. Kurlov and A. I. Gusev, “Tungsten Carbides: Structure, Properties and Application in Hardmetals,” Springer Ser. Mater. Sci., 2013, doi: 10.1007/978-3-319-00524-9.spa
dc.relation.references[10] X. Ding, X. D. Cheng, J. Shi, C. Li, C. Q. Yuan, and Z. X. Ding, “Influence of WC size and HVOF process on erosion wear performance of WC-10Co4Cr coatings,” Int. J. Adv. Manuf. Technol., vol. 96, no. 5–8, pp. 1615–1624, 2018, doi: 10.1007/s00170-017-0795-y.spa
dc.relation.references[11] X. DING, X. dong CHENG, X. YU, C. LI, C. qing YUAN, and Z. xiong DING, “Structure and cavitation erosion behavior of HVOF sprayed multi-dimensional WC–10Co4Cr coating,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 28, no. 3, pp. 487–494, 2018, doi: 10.1016/S1003-6326(18)64681-3.spa
dc.relation.references[12] S. Kamnis and S. Gu, “Study of in-flight and impact dynamics of nonspherical particles from HVOF guns,” 2010, doi: 10.1007/s11666-009-9382-6.spa
dc.relation.references[13] E. Dongmo, M. Wenzelburger, and R. Gadow, “Analysis and optimization of the HVOF process by combined experimental and numerical approaches,” Surf. Coatings Technol., vol. 202, no. 18, pp. 4470–4478, 2008, doi: 10.1016/j.surfcoat.2008.04.029.spa
dc.relation.references[14] E. Dongmo, R. Gadow, A. Killinger, and M. Wenzelburger, “Modeling of combustion as well as heat, mass, and momentum transfer during thermal spraying by HVOF and HVSFS,” J. Therm. Spray Technol., vol. 18, no. 5–6, pp. 896–908, 2009, doi: 10.1007/s11666-009-9341-2.spa
dc.relation.references[15] Y. Y. Santana et al., “Characterization and residual stresses of WC-Co thermally sprayed coatings,” Surf. Coatings Technol., vol. 202, no. 18, pp. 4560–4565, 2008, doi: 10.1016/j.surfcoat.2008.04.042.spa
dc.relation.references[16] M. Punset, “Desarrollo y optimización de recubrimientos HVOF base WC-CoCr para aplicaciones aeronáuticas,” Universidad Politécnica de Catalunya (UPC), 2018.spa
dc.relation.references[17] S. Al-Mutairi, M. S. J. Hashmi, B. S. Yilbas, and J. Stokes, “Microstructural characterization of HVOF/plasma thermal spray of micro/nano WC-12%Co powders,” Surf. Coatings Technol., vol. 264, pp. 175–186, 2015, doi: 10.1016/j.surfcoat.2014.12.050.spa
dc.relation.references[18] H. Zhang, X. Chen, Y. Gong, Y. Tian, A. McDonald, and H. Li, “In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings,” Ultrason. Sonochem., 2020, doi: 10.1016/j.ultsonch.2019.104760.spa
dc.relation.references[19] R. J. K. Wood, “Tribology of thermal sprayed WC-Co coatings,” Int. J. Refract. Met. Hard Mater., vol. 28, no. 1, pp. 82–94, 2010, doi: 10.1016/j.ijrmhm.2009.07.011.spa
dc.relation.references[20] A. Vackel and S. Sampath, “Fatigue behavior of thermal sprayed WC-CoCr- steel systems: Role of process and deposition parameters,” Surf. Coatings Technol., vol. 315, pp. 408–416, 2017, doi: 10.1016/j.surfcoat.2017.02.062.spa
dc.relation.references[21] B. D. Cullity and S. R. Stock, ELEMENTS OF X-RAY DIFFRACTION - 3 ed. 2014.spa
dc.relation.references[22] V. Katranidis, S. Gu, D. C. Cox, M. J. Whiting, and S. Kamnis, “FIB-SEM Sectioning Study of Decarburization Products in the Microstructure of HVOF-Sprayed WC-Co Coatings,” J. Therm. Spray Technol., vol. 27, no. 5, pp. 898–908, 2018, doi: 10.1007/s11666-018-0721-3.spa
dc.relation.references[23] E. RUDY and S. WINDISCH, “Evidence for Zeta Fe2N‐Type Sublattice Order in W2C at Intermediate Temperatures,” J. Am. Ceram. Soc., 1967, doi: 10.1111/j.1151-2916.1967.tb15105.x.spa
dc.relation.references[24] A. S. Kurlov and A. I. Gusev, “Neutron and x-ray diffraction study and symmetry analysis of phase transformations in lower tungsten carbide W2 C,” Phys. Rev. B - Condens. Matter Mater. Phys., 2007, doi: 10.1103/PhysRevB.76.174115.spa
dc.relation.references[25] A. S. Kurlov, S. V. Rempel, and A. I. Gusev, “Symmetry analysis of ordered phases of the lower tungsten carbide W2C,” Phys. Solid State, 2011, doi: 10.1134/S1063783411010173.spa
dc.relation.references[26] C. Liu, “Low Temperature Synthesis and Characterisation of Novel Complex Carbide- and Boride-Based Materials,” University of Exeter, 2019.spa
dc.relation.references[27] C. J. Li, Y. Y. Wang, G. J. Yang, A. Ohmori, and K. A. Khor, “Effect of solid carbide particle size on deposition behaviour, microstructure and wear performance of HVOF cermet coatings,” Mater. Sci. Technol., 2004, doi: 10.1179/026708304225019722.spa
dc.relation.references[28] B. H. Kear, G. Skandan, and R. K. Sadangi, “Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings,” Scr. Mater., vol. 44, no. 8–9, pp. 1703–1707, 2001, doi: 10.1016/S1359-6462(01)00867-3.spa
dc.relation.references[29] J. Yuan, Q. Zhan, J. Huang, S. Ding, and H. Li, “Decarburization mechanisms of WC-Co during thermal spraying: Insights from controlled carbon loss and microstructure characterization,” Mater. Chem. Phys., 2013, doi: 10.1016/j.matchemphys.2013.06.052.spa
dc.relation.references[30] Q. Zhan, L. Yu, F. Ye, Q. Xue, and H. Li, “Quantitative evaluation of the decarburization and microstructure evolution of WC-Co during plasma spraying,” Surf. Coatings Technol., 2012, doi: 10.1016/j.surfcoat.2012.03.091.spa
dc.relation.references[31] D. A. Stewart, P. H. Shipway, and D. G. McCartney, “Microstructural evolution in thermally sprayed WC-Co coatings: comparison between nanocomposite and conventional starting powders,” Acta Mater., 2000, doi: 10.1016/S1359-6454(99)00440-1.spa
dc.relation.references[32] K. H. Zum Gahr, Microstructure and wear of materials. 1987.spa
dc.relation.references[33] S. Romo Arango, “Evaluación de la resistencia a erosión por cavitación de superficies texturizadas,” Universidad Nacional de Colombia sede Medellin., 2014.spa
dc.relation.references[34] A. Karimi and J. L. Martin, “Cavitation erosion of materials,” Int. Met. Rev., vol. 31, no. 1, pp. 1–26, 1986, doi: https://doi.org/10.1179/imtr.1986.31.1.1.spa
dc.relation.references[35] ASTM International, “ASTM G32-10 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus 1,” ASTM Stand., vol. i, 2010.spa
dc.relation.references[36] R. E. Kumar, M. Kamaraj, S. Seetharamu, and A. K. S., “A pragmatic approach and quantitative assessment of silt erosion characteristics of HVOF and HVAF processed WC-CoCr coatings and 16Cr5Ni steel for hydro turbine applications,” Mater. Des., vol. 132, pp. 79–95, 2017, doi: 10.1016/j.matdes.2017.06.046.spa
dc.relation.references[37] S. M. Nahvi and M. Jafari, “Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings,” Surf. Coatings Technol., vol. 286, pp. 95–102, 2016, doi: 10.1016/j.surfcoat.2015.12.016.spa
dc.relation.references[38] L. ESPITIA SANJUÁN, “Cavitación y erosión por lodos de recubrimientos por aspersión térmica.,” 2007, doi: 10.22517/23447214.5051.spa
dc.relation.references[39] F. H. Moll, D. E. Manuele, M. G. Coussirat, A. Guardo, and A. Fontanals, “CARACTERIZACIÓN DEL TIPO DE CAVITACIÓN MEDIANTE DINÁMICA COMPUTACIONAL DE FLUIDOS PARA POSTERIORES APLICACIONES AL ESTUDIO EXPERIMENTAL DEL DAÑO POR CAVITACIÓN,” Asoc. Argentina Mecánica Comput., 2011.spa
dc.relation.references[40] V. Matikainen et al., “Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes,” Surf. Coatings Technol., 2019, doi: 10.1016/j.surfcoat.2019.04.067.spa
dc.relation.references[41] M. S. Lamana, A. G. M. Pukasiewicz, and S. Sampath, “Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings,” Wear, vol. 398–399, no. May 2017, pp. 209–219, 2018, doi: 10.1016/j.wear.2017.12.009.spa
dc.relation.references[42] A. Kanno, K. Takagi, and M. Arai, “Influence of chemical composition, grain size, and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings,” Surf. Coatings Technol., vol. 394, 2020, doi: 10.1016/j.surfcoat.2020.125881.spa
dc.relation.references[43] F. Tarasi, M. S. Mahdipoor, A. Dolatabadi, M. Medraj, and C. Moreau, “HVOF and HVAF Coatings of Agglomerated Tungsten Carbide-Cobalt Powders for Water Droplet Erosion Application,” J. Therm. Spray Technol., 2016, doi: 10.1007/s11666-016-0465-x.spa
dc.relation.references[44] Y. Wu et al., “Microstructure and cavitation erosion behavior of WC-Co-Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying,” Int. J. Refract. Met. Hard Mater., 2012, doi: 10.1016/j.ijrmhm.2012.01.002.spa
dc.relation.references[45] L. Zhao, M. Maurer, F. Fischer, R. Dicks, and E. Lugscheider, “Influence of spray parameters on the particle in-flight properties and the properties of HVOF coating of WC-CoCr,” Wear, 2004, doi: 10.1016/j.wear.2003.07.002.spa
dc.relation.references[46] T. Varis et al., “Formation mechanisms, structure, and properties of HVOF-sprayed WC-CoCr coatings: An approach toward process maps,” Journal of Thermal Spray Technology. 2014, doi: 10.1007/s11666-014-0110-5.spa
dc.relation.references[47] J. A. Picas, M. Punset, M. T. Baile, E. Martín, and A. Forn, “Effect of oxygen/fuel ratio on the in-flight particle parameters and properties of HVOF WC-CoCr coatings,” Surf. Coatings Technol., vol. 205, no. SUPPL. 2, pp. S364–S368, 2011, doi: 10.1016/j.surfcoat.2011.03.129.spa
dc.relation.references[48] A. S. Praveen, J. Sarangan, S. Suresh, and B. H. Channabasappa, “Optimization and erosion wear response of NiCrSiB/WC-Co HVOF coating using Taguchi method,” Ceram. Int., vol. 42, no. 1, pp. 1094–1104, 2016, doi: 10.1016/j.ceramint.2015.09.036.spa
dc.relation.references[49] M. Sharma, D. K. Goyal, and G. Kaushal, “Erosive behaviour of HVOF Sprayed Coatings : A Review,” An Int. J. Eng. Sci., vol. 6913, no. 63019, pp. 219–243, 2017.spa
dc.relation.references[50] Oerlikon Metco, “Material Product Data Sheet Tungsten Carbide – 10 % Cobalt 4 % Chromium Powders,” 2017.spa
dc.relation.references[51] M. F. Bahbou, P. Nylén, and J. Wigren, “Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating,” J. Therm. Spray Technol., vol. 13, no. 4, pp. 508–514, 2004, doi: 10.1361/10599630421406.spa
dc.relation.references[52] M. Mellali, A. Grimaud, A. C. Leger, P. Fauchais, and J. Lu, “Alumina grit blasting parameters for surface preparation in the plasma spraying operation,” J. Therm. Spray Technol., vol. 6, no. 2, pp. 217–227, 1997, doi: 10.1007/s11666-997-0016-6.spa
dc.relation.references[53] A. Valarezo, W. B. Choi, W. Chi, A. Gouldstone, and S. Sampath, “Process control and characterization of NiCr coatings by HVOF-DJ2700 system: A process map approach,” J. Therm. Spray Technol., vol. 19, no. 5, pp. 852–865, 2010, doi: 10.1007/s11666-010-9492-1.spa
dc.relation.references[54] E. Turunen et al., “On the role of particle state and deposition procedure on mechanical, tribological and dielectric response of high velocity oxy-fuel sprayed alumina coatings,” Mater. Sci. Eng. A, vol. 415, no. 1–2, pp. 1–11, 2006, doi: 10.1016/j.msea.2005.08.226.spa
dc.relation.references[55] C. Thiruvikraman, V. Balasubramanian, and K. Sridhar, “Developing empirical relationships to estimate adhesion bonding strength and lap shear bonding strength of hvof sprayed wc-crc-ni coatings on aisi 304 l stainless steel,” Indian J. Eng. Mater. Sci., vol. 21, no. 6, pp. 609–620, 2014.spa
dc.relation.references[56] S. Bouaricha, A. Ouchene, and J. G. Legoux, “Rietveld analysis for studying the decarburisation in HVOF WC–CO coatings,” Surf. Eng., vol. 34, no. 10, pp. 747–754, 2018, doi: 10.1080/02670844.2017.1415737.spa
dc.relation.references[57] H. Gutiérres Pulido and R. De la Vara Salazar, Análisis y diseño de experimentos. 2008.spa
dc.relation.references[58] ASTM, “ASTM Standard E1920, 2014. Standard Guide for Metallographic Preparation of Thermal Sprayed Coatings,” ASTM Int., 2016.spa
dc.relation.references[59] M. F. Smith, D. T. McGuffin, J. A. Henfling, and W. J. Lenling, “A comparison of techniques for the metallographic preparation of thermal sprayed samples,” Journal of Thermal Spray Technology. 1993, doi: 10.1007/BF02650478.spa
dc.relation.references[60] D. J. Nolan and M. Samandi, “Revealing true porosity in WC-Co thermal spray coatings,” J. Therm. Spray Technol., 1997, doi: 10.1007/s11666-997-0024-6.spa
dc.relation.references[61] S. A. Speakman, “Fundamentals of Rietveld Refinement I - An Introduction to Rietveld Refinement using PANalytical X’Pert HighScore Plus,” Massachusets Inst. Technol., 2010.spa
dc.relation.references[62] C. V. Roa, J. A. Valdes, F. Larrahondo, S. A. Rodríguez, and J. J. Coronado, “Comparison of the Resistance to Cavitation Erosion and Slurry Erosion of Four Kinds of Surface Modification on 13-4 Ca6NM Hydro-Machinery Steel,” J. Mater. Eng. Perform., vol. 30, no. 10, pp. 7195–7212, 2021, doi: 10.1007/s11665-021-05908-9.spa
dc.relation.references[63] M. M. Lima, C. Godoy, P. J. Modenesi, J. C. Avelar-Batista, A. Davison, and A. Matthews, “Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings,” Surf. Coatings Technol., vol. 177–178, pp. 489–496, 2004, doi: 10.1016/S0257-8972(03)00917-4.spa
dc.relation.references[64] X. bin Liu et al., “Cavitation erosion behavior of HVOF sprayed WC-10Co4Cr cermet coatings in simulated sea water,” Ocean Eng., vol. 190, no. September, p. 106449, 2019, doi: 10.1016/j.oceaneng.2019.106449.spa
dc.relation.references[65] Minitab, “¿Qué es el método de la diferencia menos significativa (LSD) de Fisher para comparaciones múltiples?,” 2019. https://support.minitab.com/es-mx/minitab/18/help-and-how-to/modeling-statistics/anova/supporting-topics/multiple-comparisons/what-is-fisher-s-lsd-method/.spa
dc.relation.references[66] C. Verdon, A. Karimi, and J. L. Martin, “A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1: Microstructures,” Mater. Sci. Eng. A, vol. 246, no. 1–2, pp. 11–24, 1998, doi: 10.1016/s0921-5093(97)00759-4.spa
dc.relation.references[67] Q. Wang, Z. Chen, L. Li, and G. Yang, “The parameters optimization and abrasion wear mechanism of liquid fuel HVOF sprayed bimodal WC-12Co coating,” Surf. Coatings Technol., vol. 206, no. 8–9, 2012, doi: 10.1016/j.surfcoat.2011.09.071.spa
dc.relation.references[68] H. Wang, H. Lu, X. Song, X. Yan, X. Liu, and Z. Nie, “Corrosion resistance enhancement of WC cermet coating by carbides alloying,” Corros. Sci., vol. 147, no. November 2018, pp. 372–383, 2019, doi: 10.1016/j.corsci.2018.11.028.spa
dc.relation.references[69] J. Liu, X. Bai, T. Chen, and C. Yuan, “Effects of cobalt content on the microstructure, mechanical properties and cavitation erosion resistance of HVOF sprayed coatings,” Coatings, vol. 9, no. 9, 2019, doi: 10.3390/coatings9090534.spa
dc.relation.references[70] H. Wang, Y. Li, M. Gee, H. Zhang, X. Liu, and X. Song, “Sliding wear resistance enhancement by controlling W2C precipitation in HVOF sprayed WC-based cermet coating,” Surf. Coatings Technol., vol. 387, 2020, doi: 10.1016/j.surfcoat.2020.125533.spa
dc.relation.references[71] D. A. L. Quiros, “Efecto del acabado superficial sobre la resistencia adhesivo de recubrimientos aplicados por aspersion termica,” Universidad Nacional de Colombia Facultad de Minas, 2017.spa
dc.relation.references[72] A. Agüero et al., “HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators,” J. Therm. Spray Technol., vol. 20, no. 6, pp. 1292–1309, 2011, doi: 10.1007/s11666-011-9686-1.spa
dc.relation.references[73] R. K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, and P. Sampathkumaran, “Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings,” J. Therm. Spray Technol., vol. 25, no. 6, pp. 1217–1230, 2016, doi: 10.1007/s11666-016-0427-3.spa
dc.relation.references[74] S. E. Hankey, “Cavitation erosion of WC-Co.,” University of Cape Town ,Faculty of Engineering & the Built Environment, 1987.spa
dc.relation.references[75] C. Correa Hernández, “RELACIÓN ENTRE RESISTENCIA A CAVITACIÓN Y PROPIEDADES FÍSICO-QUÍMICAS Y MECÁNICAS DE RECUBRIMIENTOS POLIMÉRICOS PARA APLICACIONES EN TURBINAS HIDRÁULICAS,” 2009.spa
dc.relation.references[76] M. Szala, D. Chocyk, A. Skic, M. Kamiński, W. Macek, and M. Turek, “Effect of nitrogen ion implantation on the cavitation erosion resistance and cobalt-based solid solution phase transformations of HIPed stellite 6,” Materials (Basel)., vol. 14, no. 9, 2021, doi: 10.3390/ma14092324.spa
dc.relation.references[77] M. Duraiselvam, R. Galun, V. Wesling, B. L. Mordike, R. Reiter, and J. Oligmüller, “Cavitation erosion resistance of AISI 420 martensitic stainless steel laser-clad with nickel aluminide intermetallic composites and matrix composites with TiC reinforcement,” Surface and Coatings Technology, vol. 201, no. 3–4. pp. 1289–1295, 2006, doi: 10.1016/j.surfcoat.2006.01.054.spa
dc.relation.references[78] G. Gao and Z. Zhang, “Cavitation erosion mechanism of 2Cr13 stainless steel,” Wear, vol. 488–489, no. September 2021, p. 204137, 2022, doi: 10.1016/j.wear.2021.204137.spa
dc.relation.references[79] M. Gallego, S. C. Chávez, J. de la Roche, and A. Toro, “Effect of heat treatment on the wet abrasion resistance of WC-10Co4Cr coatings deposited onto stainless steel by HVOF,” Tribol. - Mater. Surfaces Interfaces, 2021, doi: 10.1080/17515831.2021.1938869.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicosspa
dc.subject.lembProtective coatings
dc.subject.lembRevestimiento protectores
dc.subject.lembTribologia
dc.subject.proposalProyección térmica por HVOFspa
dc.subject.proposalRecubrimientos a base de WCCospa
dc.subject.proposalCavitaciónspa
dc.subject.proposalRefinamiento Rietveldspa
dc.subject.proposalPorosidadspa
dc.subject.proposalXRDspa
dc.subject.proposalHVOF thermal sprayingeng
dc.subject.proposalWC-Co based coatingseng
dc.subject.proposalCavitationeng
dc.subject.proposalRietveld refinementeng
dc.subject.proposalPorosityeng
dc.titleMejoramiento de la resistencia a la cavitación de recubrimientos de WC-Co a través del control de parámetros del proceso proyección térmica por High Velocity Oxy-Fuel (HVOF)spa
dc.title.translatedImprovement of the cavitation resistance of WC-Co coatings by the control of parameters of the thermal spray process High Velocity Oxy-Fuel (HVOF)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle203010022338-DESARROLLO E IMPLEMENTACIÓN DE PROCESOS DE REPARACIÓN Y PROTECCIÓN DE COMPONENTES CRÍTICOS SOMETIDOS A DAÑO SUPERFICIAL EN CENTRALES DE GENERACIÓN TÉRMICA E HIDRÁULICA MEDIANTE TECNOLOGÍAS DE ASPERSIÓN TÉRMICA Y SOLDADURA - EPMspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152210894.2022.pdf
Tamaño:
4.73 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: