Extraction, characterization, bioactivity, and bioavailability of peptides derived from Sacha Inchi (Plukenetia volubilis)
dc.contributor.advisor | Gutiérrez Álvarez, Luis Felipe | |
dc.contributor.advisor | Hernández Ledesma, Blanca | |
dc.contributor.author | Torres Sánchez, Erwin Giovanni | |
dc.contributor.cvlac | Torres Sánchez, Erwin Giovanni [0001199498] | |
dc.contributor.googlescholar | Torres Sánchez, Erwin G. [H6aZ-6IAAAAJ] | |
dc.contributor.orcid | Torres Sánchez, Erwin Giovanni [0000000243447991] | |
dc.contributor.researchgroup | Grupo de Investigación en Biomoléculas Alimentarias | spa |
dc.contributor.scopus | Torres Sánchez, Erwin Giovanni [57211477006] | |
dc.date.accessioned | 2025-09-02T15:33:01Z | |
dc.date.available | 2025-09-02T15:33:01Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, fotografías | spa |
dc.description.abstract | Sacha Inchi (SI) (Plukenetia volubilis) is an oilseed plant native to the Amazon rainforest, traditionally utilized by indigenous communities for centuries. Recently, it has gained recognition as a promising crop due to its exceptional oil extraction yield, minimal post-harvest requirements, and market value. Known as a "superfood," SI is rich in polyunsaturated fatty acids, high-quality proteins, essential amino acids, dietary fiber, tocopherols, phytosterols, and phenolic compounds. The growing interest in plant-based protein sources has created opportunities for valorizing agri-food by-products, pushing the food industry toward best sustainable development. Therefore, in this study, a comprehensive review of the physicochemical characteristics, food applications, and biological activities of the main by-product: the Sacha Inchi Oil Press-Cake (SIPC), was conducted, highlighting its potential as a valuable agro-industrial by-product for use in the food, pharmaceutical, and cosmetic industries. Subsequently, the potential of SIPC for obtaining protein concentrates and isolates was explored using three extraction methods, varying pH levels (7.0 and 11.0) and salt concentrations (0% and 5%). This approach yielded seven protein fractions, which were characterized by protein content, electrophoretic profile, secondary structure, and techno-functional properties. Notably, extraction at pH 11.0 without salt resulted in a Sacha Inchi Protein Concentrate (SPC) with the highest values for protein content, extraction yield, and protein recovery. The proteins present in the SPC were analyzed, and their proteome was determined using HPLC-MS/MS, identifying 226 proteins with at least two unique peptides homologous to the Euphorbiaceae family, including several novel proteins not previously reported. Subsequently, the SPC underwent simulated gastrointestinal digestion (SGID) following the harmonized INFOGEST protocol. The gastric digests (GD, collected at 120 min) and intestinal digests (ID, collected at 240 min) were processed through ultrafiltration to obtain peptide fractions: < 3 kDa (labeled as GD1 or ID1), 3-10 kDa (labeled as GD2 or ID2), and > 10 kDa (labeled as GD3 or ID3). Additionally, the peptidome of these peptide fractions was determined. Using the find-pep-seq script, the peptides from the ID were compared with those obtained from the SPC to identify peptides resistant to SGID. This analysis yielded 416 sequences with a high confidence level. To evaluate the bioactivity of these peptides, including their antioxidant, antidiabetic, and immunomodulatory activities, in vitro, ex vivo, and in silico methodologies were employed. The antioxidant potential of the SPC and its digests was assessed, showing that both GD and ID exhibited significantly higher ABTS and ORAC values compared to the initial SPC. Specific fractions (GD1, GD2, GD3) significantly reduced reactive oxygen species (ROS) levels in RAW264.7 macrophages under basal conditions, while GD1 and GD2 also reversed lipopolysaccharide (LPS) induced damage, demonstrating the bioactivity of these peptide fractions. Notable peptides with antioxidant capacity included LQDWYDK and EWGGGGCGGGGGVSSLR. Moreover, the antidiabetic properties of the digested fractions were evaluated through α-amylase inhibition assays, revealing inhibitory activities ranging from 20% to 45%. Key peptides identified for this activity included RHWLPR, RATVSLPR, and QLSNLEQSLSDAEQR, which showed strong potential for inhibiting α-amylase through molecular docking, suggesting their ability to reduce postprandial glucose levels. The mechanism of inhibition was elucidated, revealing that critical amino acid hotspots of α-amylase (Trp58, Trp59, Tyr62, and Asp300) interacted with these peptides through hydrogen bonds, as well as hydrophobic and electrostatic interactions. Finally, gastric and intestinal fractions (<3 kDa) showed significant reductions in nitric oxide (NO) production, and the ID3 fraction significantly reduces TNF-α production in LPS-challenged RAW264.7 cells. Molecular docking between peptides such as PSPSLVWR, RHWLPR, YNLPMLR, and SDTLFFAR and the TLR4/MD-2 complex revealed binding affinities that were linked to immunomodulatory activity. Bioinformatics tools were employed to assess the bioavailability potential of antioxidant and immunomodulatory peptides. Utilizing platforms such as SwissADME and ADMETlab 2.0, the physicochemical properties, absorption, distribution, metabolism, and excretion (ADME) profiles were evaluated. The Bioavailability Score from SwissADME indicated that the antioxidant peptides RHWLPR and ALEETNYELEK, while not meeting all optimal criteria, can effectively bind to cell surface receptors, suggesting beneficial intracellular responses. Additionally, the MLCPP 2.0 tool identified these sequences as potential cell-penetrating peptides (CPPs), which could enhance the transport of larger and polar molecules. The analysis of anti-inflammatory peptides revealed that PSPSLVWR, RHWLPR, and YNLPMLR exhibit promising drug-likeness characteristics, with significant lipophilicity and a high probability of human intestinal absorption (0.92). Their low plasma protein binding values, below 90%, further indicate favorable distribution characteristics. Overall, this PhD thesis titled ‘Extraction, characterization, bioactivity, and bioavailability of peptides derived from Sacha Inchi (Plukenetia volubilis)’ is an original work that highlights the immense potential of Sacha Inchi Protein Concentrate (SPC) as a sustainable source of bioactive peptides with multifunctional applications in the food and pharmaceutical industries. By emphasizing the nutritional and functional benefits of Sacha Inchi, this research contributes to ongoing efforts to valorize agro-industrial by-products, promoting a circular economy through the integration of sustainable practices in food production and related health applications. Future research should focus on the chemical synthesis of the identified bioactive peptides, particularly RHWLPR, as well as the experimental validation of their multifunctionality and bioavailability. | eng |
dc.description.abstract | La Sacha Inchi (SI) (Plukenetia volubilis) es una planta que produce semillas ricas en aceite originaria de la Amazonía, utilizada tradicionalmente por las comunidades indígenas durante siglos. Recientemente, ha ganado reconocimiento como un cultivo promisorio debido a su excepcional rendimiento para la extracción de aceite, escasos requisitos para su post-cosecha, y por su creciente valor en el mercado. Actualmente, la semilla es reconocida como un ‘superalimento’ debido a su composición única de ácidos grasos poliinsaturados, proteínas de alta calidad, aminoácidos esenciales, fibra dietética, tocoferoles, fitoesteroles y compuestos fenólicos. El creciente interés por fuentes de proteína de origen vegetal ha creado oportunidades para valorizar los subproductos de la industria agroalimentaria, impulsando a la industria de alimentos hacia un desarrollo más sostenible. En este sentido, en este trabajo de investigación se realizó una revisión exhaustiva de las características fisicoquímicas, aplicaciones alimentarias y actividad biológica del principal subproducto generado durante la extracción de aceite: la torta prensada del Sacha Inchi (Sacha Inchi Oil Press-Cake (SIPC), por sus siglas en inglés), destacando su potencial como un coproducto para su uso en la industria de alimentos, farmacéutica y cosmética. Posteriormente, se exploró el potencial de este coproducto para obtener concentrados y aislados de proteínas utilizando tres métodos de extracción, variando los niveles de pH (7.0 y 11.0) y concentraciones de sal (0% y 5%). Este enfoque permitió la obtención de siete fracciones proteicas, que se caracterizaron por su contenido de proteína, perfil electroforético, estructura secundaria y sus propiedades tecno-funcionales. Cabe destacar que la extracción a pH 11.0 sin adición de sales resultó en un Concentrado de Proteína de Sacha Inchi (SPC) con los valores altos en su contenido proteico, rendimiento de extracción y recuperación de proteínas. Las proteínas presentes en el SPC fueron analizadas y su proteoma fue determinado mediante HPLC-MS/MS, identificando 226 proteínas con al menos dos péptidos únicos homólogos a la familia Euphorbiaceae, incluyendo un grupo de nuevas proteínas no reportadas previamente. Posteriormente, el SPC fue sometido a digestión gastrointestinal simulada (SGID) siguiendo el protocolo armonizado INFOGEST. Los digeridos gástricos (GD, recolectados a los 120 min) e intestinales (ID, recolectados a los 240 min) fueron procesados mediante ultrafiltración para obtener fracciones peptídicas: < 3 kDa (rotuladas como GD1 o ID1), 3-10 kDa (rotuladas como GD2 o ID2) y > 10 kDa (rotuladas como GD3 o ID3). También, se determinó el peptidoma de estas fracciones peptídicas. Utilizando el script find-pep-seq, se compararon los péptidos del ID con los obtenidos en el SPC, para identificar péptidos resistentes a la SGID. Este análisis arrojó 416 secuencias con un alto nivel de confianza. Para evaluar la bioactividad de estos péptidos, incluyendo sus actividades antioxidantes, antidiabéticas e inmunomoduladoras, se emplearon metodologías in vitro, ex vivo e in silico. Se evaluó el potencial antioxidante del SPC y sus digeridos, evidenciando que tanto el GD como ID presentaron valores significativamente más altos de ABTS y ORAC en comparación con el SPC inicial. Fracciones específicas (GD1, GD2, GD3) redujeron significativamente los niveles de especies reactivas de oxígeno (ROS) en macrófagos RAW264.7 bajo condiciones basales, mientras que GD1 y GD2 también disminuyeron el daño inducido por lipopolisacárido (LPS), demostrando la bioactividad de estas fracciones peptídicas. Los péptidos LQDWYDK y EWGGGGCGGGGGVSSLR exhibieron una notable capacidad antioxidante. También, se evaluaron las propiedades antidiabéticas de las fracciones de digeridos mediante ensayos de inhibición de α-amilasa, mostrando inhibición de su actividad entre el 20% y el 45%. Los péptidos RHWLPR, RATVSLPR y QLSNLEQSLSDAEQR son clave para reducir los niveles de glucosa postprandial, luego de ser identificados como responsables para esta actividad, pues mostraron un fuerte potencial para inhibir la α-amilasa mediante acoplamiento molecular. Se elucidó su mecanismo de inhibición, revelando que los puntos aminoácidos clave (Trp58, Trp59, Tyr62 y Asp300) de la α-amilasa interactuaron con estos péptidos a través de enlaces de hidrógeno, así como interacciones hidrofóbicas y electrostáticas. Finalmente, las fracciones gástricas e intestinales (<3 kDa) demostraron reducciones significativas en la producción de óxido nítrico (NO), y la fracción ID3 reduce significativamente la producción de TNF-α en células RAW264.7 desafiadas con LPS. El acoplamiento molecular entre los péptidos PSPSLVWR, RHWLPR, YNLPMLR y SDTLFFAR con el complejo TLR4/MD-2 reveló afinidades de unión relacionadas con la actividad antinflamatoria. Se emplearon herramientas bioinformáticas para evaluar el potencial bioactivo de péptidos antioxidantes e inmunomoduladores. Utilizando plataformas como SwissADME y ADMETlab 2.0, se evaluaron las propiedades fisicoquímicas, la absorción, la distribución, el metabolismo y los perfiles de excreción (ADME, por sus siglas en inglés). El ‘Bioavailability Score’ de SwissADME indicó que los péptidos antioxidantes RHWLPR y ALEETNYELEK, aunque no cumplieron óptimamente con todos los criterios, pueden unirse eficazmente a los receptores de superficie celular, con posibles respuestas intracelulares beneficiosas. Además, la herramienta MLCPP 2.0 identificó estas secuencias como potenciales péptidos que penetran células (CPPs, por sus siglas en inglés), lo que podría mejorar el transporte de moléculas más grandes y polares. El análisis de péptidos los péptidos antiinflamatorios PSPSLVWR, RHWLPR y YNLPMLR reveló que exhiben características prometedoras de similitud a fármacos, con una lipoficidad significativa y una alta probabilidad de absorción en el intestino humano (0.92). Sus bajos valores de unión a proteínas plasmáticas, por debajo del 90%, indican características de distribución favorables. En general, esta Tesis Doctoral titulada ‘Obtención, caracterización, bioactividad y biodisponibilidad de péptidos derivados del Sacha Inchi (Plukenetia volubilis)’ es una obra original que destaca el inmenso potencial de la SIPC como una fuente sostenible de péptidos bioactivos con aplicaciones multifuncionales en las industrias alimentaria y farmacéutica. Al enfatizar los beneficios nutricionales y funcionales del Sacha Inchi, esta investigación contribuye con los esfuerzos en curso para valorizar subproductos agroindustriales, promoviendo una economía circular a través de la integración de prácticas sostenibles en la producción de alimentos y aplicaciones relacionadas con la salud. La investigación subsecuente debe centrarse en la síntesis química de los péptidos bioactivos identificados, especialmente RHWLPR y la validación experimental de su multifuncionalidad y biodisponibilidad (Texto tomado de la fuente). | spa |
dc.description.curriculararea | Alimentos y Agroindustria.Sede Bogotá | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ciencia y Tecnología de Alimentos | spa |
dc.description.researcharea | Ciencia y Tecnología de Productos Agroalimentarios | spa |
dc.format.extent | xxv, 195 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88535 | |
dc.language.iso | eng | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bogotá - Ciencias Agrarias - Doctorado en Ciencia y Tecnología de Alimentos | spa |
dc.relation.references | (Banco Mundial). (2024). Agricultura, valor agregado (% del PIB). Datos Sobre Las Cuentas Nacionales Del Banco Mundial y Archivos de Datos Sobre Cuentas Nacionales de La OCDE. https://datos.bancomundial.org/indicador/NV.AGR.TOTL.ZS?end=2022&locations=ZJ&start=2022&view=map | |
dc.relation.references | Achek, A., Shah, M., Seo, J. Y., Kwon, H.-K., Gui, X., Shin, H.-J., Cho, E.-Y., Lee, B. S., Kim, D.-J., Lee, S. H., Yoo, T. H., Kim, M. S., & Choi, S. (2019). Linear and Rationally Designed Stapled Peptides Abrogate TLR4 Pathway and Relieve Inflammatory Symptoms in Rheumatoid Arthritis Rat Model. Journal of Medicinal Chemistry, 62(14), 6495–6511. https://doi.org/https://doi.org/10.1021/acs.jmedchem.9b00061 | |
dc.relation.references | Agustika, D. K., Mercuriani, I., Purnomo, C. W., Hartono, S., Triyana, K., Iliescu, D. D., & Leeson, M. S. (2022). Fourier transform infrared spectrum pre-processing technique selection for detecting PYLCV-infected chilli plants. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 278, 121339. https://doi.org/10.1016/j.saa.2022.121339 | |
dc.relation.references | Ahmed, T., Sun, X., & Udenigwe, C. C. (2022). Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends in Food Science and Technology, 120(December 2021), 265–273. https://doi.org/10.1016/j.tifs.2022.01.008 | |
dc.relation.references | Alcívar, J. L., Pérez, M. M., Lezcano, P., Scull, I., & Valverde, A. (2020). Technical note on physical-chemical composition of Sacha inchi (Plukenetia volubilis) cake. Cuban Journal of Agricultural Science, 54(1), 1–5. | |
dc.relation.references | Alonso, R., Pisa, D., Marina, A. I., Morato, E., Rábano, A., Rodal, I., & Carrasco, L. (2015). Evidence for Fungal Infection in Cerebrospinal Fluid and Brain Tissue from Patients with Amyotrophic Lateral Sclerosis. International Journal of Biological Sciences, 11(5), 546–558. https://doi.org/10.7150/ijbs.11084 | |
dc.relation.references | Amigo, L., & Hernández-Ledesma, B. (2020). Current evidence on the bioavailability of food bioactive peptides. Molecules, 25(19). https://doi.org/10.3390/molecules25194479 | |
dc.relation.references | Amigo, L., Martínez-Maqueda, D., & Hernández-Ledesma, B. (2020). In silico and in vitro analysis of multifunctionality of animal food-derived peptides. Foods, 9(8). https://doi.org/10.3390/foods9080991 | |
dc.relation.references | Amorim, F. G., Redureau, D., Crasset, T., Freuville, L., Baiwir, D., Mazzucchelli, G., Menzies, S. K., Casewell, N. R., & Quinton, L. (2023). Next-Generation Sequencing for Venomics: Application of Multi-Enzymatic Limited Digestion for Inventorying the Snake Venom Arsenal. Toxins, 15(6). https://doi.org/10.3390/toxins15060357 | |
dc.relation.references | Ángel, J. G. (2015). Como Producir Aceite de Sacha Inchi. TvAgro-Youtube Channel. https://www.youtube.com/watch?v=ZaSX9Ki2qSs | |
dc.relation.references | AOAC. (2005). Official Methods of Analysis (W. Horwitz (ed.); 18th ed.). J. Association of Official Analytical Chemists (AOAC) International. | |
dc.relation.references | Baraiya, R., Anandan, R., Elavarasan, K., Prakash, P., Rathod, S. K., Rajasree, S. R. R., & Renuka, V. (2024). Potential of fish bioactive peptides for the prevention of global pandemic non-communicable disease: production, purification, identification, and health benefits. Discover Food, 4(1), 34. https://doi.org/10.1007/s44187-024-00097-5 | |
dc.relation.references | Benítez, R., Coronell, C., & Martin, J. (2018). Chemical Characterizaction Sacha Inchi (Plukenetia Volubilis) Seed : Oleaginosa Promising From the Colombian Amazon. International Journal of Current Science Research and Review, 01(01), 1–12. | |
dc.relation.references | Berraquero-García, C., Rivero-Pino, F., Ospina, J. L., Pérez-Gálvez, R., Espejo-Carpio, F. J., Guadix, A., García-Moreno, P. J., & Guadix, E. M. (2023). Activity, structural features and in silico digestion of antidiabetic peptides. Food Bioscience, 55(July). https://doi.org/10.1016/j.fbio.2023.102954 | |
dc.relation.references | BIOVIA. (2024). Discovery Studio (v24.1.0.23298). Dassault Systèmes. https://www.3ds.com/support/ | |
dc.relation.references | Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-lacanal, C., Boutrou, R., & Carrière, F. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(April). | |
dc.relation.references | Bueno-Borges, L. B., Sartim, M. A., Carreño Gil, C., Vilela Sampaio, S., Viegas Rodrigues, P. H., & Regitano-d’Arce, M. A. B. (2018). Sacha inchi seeds from sub-tropical cultivation: effects of roasting on antinutrients , antioxidant capacity and oxidative stability. Journal of Food Science and Technology, 55(October), 4159–4166. https://doi.org/10.1007/s13197-018-3345-1 | |
dc.relation.references | Cao, R., Li, W., Zhang, J., Bao, X., Feng, H., Sun, J., Liu, X., & Sun, L. (2024). Milk casein hydrolysate peptides regulate starch digestion through inhibition of α-glucosidase: An insight into the active oligopeptide screening, enzyme inhibition behaviors, and oligopeptide-enzyme binding interactions. Food Hydrocolloids, 152(November 2023). https://doi.org/10.1016/j.foodhyd.2024.109926 | |
dc.relation.references | Carbonaro, M., Maselli, P., & Nucara, A. (2015). Structural aspects of legume proteins and nutraceutical properties. Food Research International, 76(P1), 19–30. https://doi.org/10.1016/j.foodres.2014.11.007 | |
dc.relation.references | Carvalho, A. V., García, N. H. P., & Amaya-Farfán, J. (2006). Physico-chemical properties of the flour, protein concentrate, and protein isolate of the cupuassu (Theobroma grandiflorum Schum) seed. Journal of Food Science, 71(8). https://doi.org/10.1111/j.1750-3841.2006.00156.x | |
dc.relation.references | Čepková, P. H., Jágr, M., Viehmannová, I., Dvořáček, V., Huansi, D. C., & Mikšík, I. (2019). Diversity in seed storage protein profile of oilseed crop Plukenetia volubilis from Diversity in Seed Storage Protein Profile of Oilseed Crop Plukenetia volubilis from Peruvian Amazon. International Journal of Agriculture & Biology, 21, 679‒688. https://doi.org/10.17957/IJAB/15.0 | |
dc.relation.references | Cerdá, E., & Khalilova, A. (2015). Economía Circular, Estrategia Y Competitividad Empresarial Economía Circular. | |
dc.relation.references | Chaipoot, S., Punfa, W., Ounjaijean, S., Phongphisutthinant, R., Kulprachakarn, K., Parklak, W., Phaworn, L., Rotphet, P., & Boonyapranai, K. (2023). Antioxidant, Anti-Diabetic, Anti-Obesity, and Antihypertensive Properties of Protein Hydrolysate and Peptide Fractions from Black Sesame Cake. Molecules, 28(1). https://doi.org/10.3390/molecules28010211 | |
dc.relation.references | Chang, L., Lan, Y., Bandillo, N., Ohm, J., Chen, B., & Rao, J. (2022). Plant proteins from green pea and chickpea : Extraction , fractionation , structural characterization and functional properties. Food Hydrocolloids, 123(June 2021), 107165. https://doi.org/10.1016/j.foodhyd.2021.107165 | |
dc.relation.references | Chirinos, R., Aquino, M., Pedreschi, R., & Campos, D. (2016). Optimized methodology for alkaline and enzyme- assisted extraction of protein from sacha inchi (Plukenetia volubilis ) kernel cake. Journal of Food Process Engineering, 3, 1–8. https://doi.org/10.1111/jfpe.12412 | |
dc.relation.references | Chirinos, R., Necochea, O., Pedreschi, R., & Campos, D. (2016). Sacha inchi (Plukenetia volubilis L.) shell: An alternative source of phenolic compounds and antioxidants. International Journal of Food Science and Technology, 51(4), 986–993. https://doi.org/10.1111/ijfs.13049 | |
dc.relation.references | Chirinos, R., Pedreschi, R., & Campos, D. (2020). Enzyme-assisted hydrolysates from sacha inchi (Plukenetia volubilis) protein with in vitro antioxidant and antihypertensive properties. Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.14969 | |
dc.relation.references | Cirkovic Velickovic, T. D., & Stanic-Vucinic, D. J. (2018). The Role of Dietary Phenolic Compounds in Protein Digestion and Processing Technologies to Improve Their Antinutritive Properties. Comprehensive Reviews in Food Science and Food Safety, 17(1), 82–103. https://doi.org/10.1111/1541-4337.12320 | |
dc.relation.references | Cochet, F., Facchini, F. A., Zaffaroni, L., Billod, J.-M., Coelho, H., Holgado, A., Braun, H., Beyaert, R., Jerala, R., Jimenez-Barbero, J., Martin-Santamaria, S., & Peri, F. (2019). Novel carboxylate-based glycolipids: TLR4 antagonism, MD-2 binding and self-assembly properties. Scientific Reports, 9(1), 919. https://doi.org/10.1038/s41598-018-37421-w | |
dc.relation.references | Cordero-Clavijo, L. M., Serna-Saldívar, S. O., Lazo-Vélez, M. A., González, J. F. A., Panata-Saquicilí, D., & Briones-Garcia, M. (2021). Characterization, functional and biological value of protein-enriched defatted meals from sacha inchi (Plukenetia volubilis) and chocho (Lupinus mutabilis). Journal of Food Measurement and Characterization, 15(6), 5071–5077. https://doi.org/10.1007/s11694-021-01084-5 | |
dc.relation.references | da Silva Bambirra Alves, F. E., Carpiné, D., Lopes Teixeira, G., Goedert, A. C., de Paula Scheer, A., & Ribani, R. H. (2021). Valorization of an Abundant Slaughterhouse By ‑ product as a Source of Highly Technofunctional and Antioxidant Protein Hydrolysates. Waste and Biomass Valorization, 12(1), 263–279. https://doi.org/10.1007/s12649-020-00985-8 | |
dc.relation.references | Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717 | |
dc.relation.references | DAPR. (2018). Presidente Duque plantea estrategia integral con desarrollo alternativo para enfrentar cultivos ilícitos. Presidencia de La República. | |
dc.relation.references | De los Rios Carvajal, C. (2019). Desarrollo de una bebida funcional de mango y piña adicionada con proteína de sacha inchi (Plukenetia volubilis L.). Repositorio Institucional. | |
dc.relation.references | de Mejia, E. G., & Dia, V. P. (2009). Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-κB pathway in the macrophage. Peptides, 30(12), 2388–2398. https://doi.org/10.1016/j.peptides.2009.08.005 | |
dc.relation.references | de Oliveira, E. C. L., Santana, K., Josino, L., Lima e Lima, A. H., & de Souza de Sales Júnior, C. (2021). Predicting cell-penetrating peptides using machine learning algorithms and navigating in their chemical space. Scientific Reports, 11(1), 7628. https://doi.org/10.1038/s41598-021-87134-w | |
dc.relation.references | Di Lorenzo, G., Verde, A., Scafuri, L., Costabile, F., Caputo, V., Di Trolio, R., Strianese, O., Montanaro, V., Crocetto, F., Del Giudice, F., Baio, R., Tufano, A., Verze, P., Calabrese, A. N., & Buonerba, C. (2024). The Impact of Flavonoid Supplementation on Serum Oxidative Stress Levels Measured via D-ROMs Test in the General Population: The PREVES-FLAVON Retrospective Observational Study. In Nutrients (Vol. 16, Issue 19). https://doi.org/10.3390/nu16193302 | |
dc.relation.references | Diasa, F. F. G., & de Moura Bell, J. M. L. N. (2022). Understanding the impact of enzyme-assisted aqueous extraction on the structural, physicochemical, and functional properties of protein extracts from full-fat almond flour. Food Hydrocolloids, 127, 107534. https://doi.org/10.1016/j.foodhyd.2022.107534 | |
dc.relation.references | Dunwell, J. M., Purvis, A., & Khuri, S. (2004). Cupins: the most functionally diverse protein superfamily? Phytochemistry, 65, 7–17. https://doi.org/10.1016/j.phytochem.2003.08.016 | |
dc.relation.references | E.C. (2024a). Agri-food industrial ecosystem. European Commission. https://single-market-economy.ec.europa.eu/sectors/agri-food-industrial-ecosystem_en | |
dc.relation.references | E.C. (2024b). Food waste measurement. European Commission. https://food.ec.europa.eu/safety/food-waste/eu-actions-against-food-waste/food-waste-measurement_en | |
dc.relation.references | Erdem Büyükkiraz, M., & Kesmen, Z. (2022). Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. Journal of Applied Microbiology, 132(3), 1573–1596. https://doi.org/10.1111/jam.15314 | |
dc.relation.references | Faisal, M., Sarnaik, A. P., Kannoju, N., Hajinajaf, N., Asad, M. J., Davis, R. W., & Varman, A. M. (2024). RuBisCO activity assays: a simplified biochemical redox approach for in vitro quantification and an RNA sensor approach for in vivo monitoring. Microbial Cell Factories, 23(83), 1–13. https://doi.org/10.1186/s12934-024-02357-6 | |
dc.relation.references | FAO/WHO/ONU. (1985). Joint FAO/WHO/ONU Expert Consultation: Energy and Protein Requirements. | |
dc.relation.references | Farias, T. C., Abreu, J. P., Oliveira, J. P. S., Macedo, A. F., Rodríguez-Vega, A., Tonin, A. P., Cardoso, F. S. N., Meurer, E. C., & Koblitz, M. G. B. (2023). Bioactive properties of peptide fractions from Brazilian soy protein hydrolysates: In silico evaluation and experimental evidence. Food Hydrocolloids for Health, 3(December 2022), 100112. https://doi.org/10.1016/j.fhfh.2022.100112 | |
dc.relation.references | Fernández-tomé, S., & Hernández-Ledesma, B. (2019). Current state of art after twenty years of the discovery of bioactive peptide lunasin. Food Research International, 116(August 2018), 71–78. https://doi.org/10.1016/j.foodres.2018.12.029 | |
dc.relation.references | Fernández-Tomé, S., & Hernández-Ledesma, B. (2020). Gastrointestinal Digestion of Food Proteins under the Effects of Released Bioactive Peptides on Digestive Health. Molecular Nutrition and Food Research, 64(21), 1–12. https://doi.org/10.1002/mnfr.202000401 | |
dc.relation.references | Fernández-Tomé, S., Sanchón, J., Recio, I., & Hernández-Ledesma, B. (2018). Transepithelial transport of lunasin and derived peptides: Inhibitory effects on the gastrointestinal cancer cells viability. Journal of Food Composition and Analysis, 68, 101–110. https://doi.org/10.1016/j.jfca.2017.01.011 | |
dc.relation.references | Fidelis, M., de Moura, C., Kabbas Junior, T., Pap, N., Mattila, P., Mäkinen, S., Putnik, P., Bursać Kovačević, D., Tian, Y., Yang, B., & Granato, D. (2019). Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy. In Molecules (Vol. 24, Issue 21). https://doi.org/10.3390/molecules24213854 | |
dc.relation.references | Fosgerau, K., & Hoffmann, T. (2015). Peptide therapeutics: current status and future directions. Drug Discovery Today, 20(1), 122–128. https://doi.org/10.1016/j.drudis.2014.10.003 | |
dc.relation.references | Garcia-Ayala, J., Villa-Lavy, J., & Mori-Pinedo, L. (2012). Efecto de cuatro niveles protéicos provenientes de la harina de Sacha Inchi Plukenetia volubilis (Euphorbiaceae) en el crecimiento de alevinos Banda Negra Myleus schomburgkii (Pisces, Serrasalmidae) criados en cautiverio. Folia Amazónica, 21, 53–62. | |
dc.relation.references | Gençdağ, E., Görgüç, A., & Yılmaz, F. M. (2020). Recovery of Bioactive Peptides from Food Wastes and Their Bioavailability Properties. Turkish Journal of Agriculture - Food Science and Technology, 8(4), 855–863. https://doi.org/10.24925/turjaf.v8i4.855-863.2989 | |
dc.relation.references | Glassford, S. E., Byrne, B., & Kazarian, S. G. (2013). Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochimica et Biophysica Acta, 1834(12), 2849–2858. https://doi.org/10.1016/j.bbapap.2013.07.015 | |
dc.relation.references | Gonzalez-de la Rosa, T., Montserrat-de la Paz, S., & Rivero-Pino, F. (2024). Production, characterisation, and biological properties of Tenebrio molitor-derived oligopeptides. Food Chemistry, 450(April), 139400. https://doi.org/10.1016/j.foodchem.2024.139400 | |
dc.relation.references | González-Linares, J. I., Medina-Vivanco, M. L., Garay-montes, R., & Mendieta-Taboada, O. W. (2017). Desarrollo de Películas Comestibles a partir de Proteínas Extraídas de la Torta de Sacha Inchi (Plukenetia volubilis L.). Información Tecnológica, 28(5), 115–130. https://doi.org/10.4067/S0718-07642017000500013 | |
dc.relation.references | González-Montoya, M., Hernández-Ledesma, B., & Manuel, J. (2018). Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chemistry, 242(July 2017), 75–82. https://doi.org/10.1016/j.foodchem.2017.09.035 | |
dc.relation.references | González-Montoya, M., Hernández-Ledesma, B., Mora-Escobedo, R., & Martínez-Villaluenga, C. (2018). Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. In International Journal of Molecular Sciences (Vol. 19, Issue 10). https://doi.org/10.3390/ijms19102883 | |
dc.relation.references | Götz, S., García-Gómez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talón, M., Dopazo, J., & Conesa, A. (2008). High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420–3435. https://doi.org/10.1093/nar/gkn176 | |
dc.relation.references | Gravel, A., & Doyen, A. (2020). The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science and Emerging Technologies, 59(October 2019), 102272. https://doi.org/10.1016/j.ifset.2019.102272 | |
dc.relation.references | Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of Toxicology, 94(3), 651–715. https://doi.org/https://doi.org/10.1007/s00204-020-02689-3 | |
dc.relation.references | Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Consortium, O. S. D. D., & Raghava, G. P. S. (2013). In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLOS ONE, 8(9), e73957. 10.1371/journal.pone.0073957 | |
dc.relation.references | Gutiérrez, L.-F., Rosada, L.-M., & Jiménez, Á. (2011). Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas y Aceites, 62(1), 76–83. https://doi.org/10.3989/gya044510 | |
dc.relation.references | Gutiérrez, L. F. (2019). Mesa de Trabajo Nacional de Sachaincheros de Colombia. | |
dc.relation.references | Gutiérrez, L. F., Sanchez-Reinoso, Z., & Quiñones-Segura, Y. (2019). Effects of Dehulling Sacha Inchi (Plukenetia volubilis L.) Seeds on the Physicochemical and Sensory Properties of Oils Extracted by Means of Cold Pressing. JAOCS, Journal of the American Oil Chemists’ Society, 96(11), 1187–1195. https://doi.org/10.1002/aocs.12270 | |
dc.relation.references | Gutiérrez, L., Quiñones-segura, Y., Sanchez-Reinoso, Z., Díaz, D. L., & Abril, J. I. (2017). Physicochemical properties of oils extracted from γ-irradiated Sacha Inchi ( Plukenetia volubilis L .) seeds. Food Chemistry, 237, 581–587. https://doi.org/10.1016/j.foodchem.2017.05.148 | |
dc.relation.references | Ha, S., Han, L., Xu, Z., Ma, K., & Li, T. (2022). Effect of Alkaline pH on the Thermal Aggregation Behavior of Mackerel Myosin. Modern Food Science and Technology, 38(4), 114–120 and 61. https://doi.org/10.13982/j.mfst.1673-9078.2022.4.0719 | |
dc.relation.references | Hamaker, B. R., Valles, C., Gilman, R., Hardmeier, R. M., Clark, D., Garcia, H. H., Gonzales, A. E., Kohlstad, I., Castro, M., Valdivia, R., Rodriguez, T., & Lescano, M. (1992). Amino Acid and Fatty Acid Profiles of the Inca Peanut (Plukenetia volubilis). Cereal Chemistry, 69(4), 461–463. https://www.cerealsgrains.org/publications/cc/backissues/1992/documents/69_461.pdf | |
dc.relation.references | Hameed, S., Saleem, F., Özil, M., Baltaş, N., Salar, U., Ashraf, S., Ul-Haq, Z., Taha, M., & Khan, K. M. (2024). Indenoquinoxaline-phenylacrylohydrazide hybrids as promising drug candidates for the treatment of type 2 diabetes: In vitro and in silico evaluation of enzyme inhibition and antioxidant activity. International Journal of Biological Macromolecules, 263(July 2023). https://doi.org/10.1016/j.ijbiomac.2024.129517 | |
dc.relation.references | Han, Y., & Zhang, K. (2005). SPIDER: Software for protein identification from sequence tags with de novo sequencing error. Journal of Bioinformatics and Computational Biology, 3(3), 697–716. https://doi.org/10.1142/S0219720005001247 | |
dc.relation.references | Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17 | |
dc.relation.references | Haque, Z., & Kito, M. (1983). Lipophilization of αs1-Casein. 2. Conformational and Functional Effects. Journal of Agricultural and Food Chemistry, 31(6), 1231–1237. https://doi.org/10.1021/jf00120a022 | |
dc.relation.references | He, Y., Wang, S., & Ding, Y. (2013). Identification of novel glutelin subunits and a comparison of glutelin composition between japonica and indica rice (Oryza sativa L.). Journal of Cereal Science, 57(3), 362–371. https://doi.org/10.1016/j.jcs.2012.12.009 | |
dc.relation.references | He, Z., Lin, J., Peng, D., Zeng, J., Pan, X., Zheng, R., Li, P., & Du, B. (2023). Peptide fractions from Sacha inchi induced apoptosis in HepG2 cells via P53 activation and a mitochondria-mediated pathway. Journal of the Science of Food and Agriculture, July. https://doi.org/10.1002/jsfa.12845 | |
dc.relation.references | Hernádez-Ledesma, B., Hsieh, C., & De Lumen, B. O. (2011). Seed Components in Cancer Prevention. In V. R. Preedy, R. R. Watson, & V. B. Patel (Eds.), Nuts and Seeds in Health and Disease Prevention (pp. 101–109). Academic Press. https://doi.org/10.1016/B978-0-12-375688-6.10011-8 | |
dc.relation.references | Hernández-Ledesma, B., Ramos, M., & Gómez-Ruiz, J. Á. (2011). Bioactive components of ovine and caprine cheese whey. Small Ruminant Research, 101, 196–204. https://doi.org/10.1016/j.smallrumres.2011.09.040 | |
dc.relation.references | Hsieh, C.-C., Hernández-Ledesma, B., & de Lumen, B. O. (2020). Chapter 28 - Cancer Chemopreventive Potential of Seed Proteins and Peptides. In V. R. Preedy & R. R. B. T.-N. and S. in H. and D. P. (Second E. Watson (Eds.), Nuts and Seeds in Health and Disease Prevention Nuts and Seeds in Health and Disease Prevention (Second Edition) (pp. 403–420). Academic Press. https://doi.org/10.1016/B978-0-12-818553-7.00028-0 | |
dc.relation.references | Huang, X., Li, J., Chang, C., Gu, L., Su, Y., & Yang, Y. (2019). Effects of NaOH/NaCl pickling on heat-induced gelation behaviour of egg white. Food Chemistry, 297(June), 124939. https://doi.org/10.1016/j.foodchem.2019.06.006 | |
dc.relation.references | Hughes, J. D., Blagg, J., Price, D. A., Bailey, S., Decrescenzo, G. A., Devraj, R. V, Ellsworth, E., Fobian, Y. M., Gibbs, M. E., Gilles, R. W., Greene, N., Huang, E., Krieger-Burke, T., Loesel, J., Wager, T., Whiteley, L., & Zhang, Y. (2008). Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorganic & Medicinal Chemistry Letters, 18(17), 4872–4875. https://doi.org/10.1016/j.bmcl.2008.07.071 | |
dc.relation.references | Hurtado Ordoñez, Z. A. (2013). Análisis composicional de la torta y aceite de semillas de Sacha inchi (plukenetia volubilis) cultivada en Colombia. Universidad Nacional de Colombia. | |
dc.relation.references | Ibáñez, M. A., de Blas, C., Cámara, L., & Mateos, G. G. (2020). Chemical composition, protein quality and nutritive value of commercial soybean meals produced from beans from different countries: A meta-analytical study. Animal Feed Science and Technology, 267(April), 114531. https://doi.org/10.1016/j.anifeedsci.2020.114531 | |
dc.relation.references | Indiano-Romacho, P., Fernández-Tomé, S., Amigo, L., & Hernández-Ledesma, B. (2019). Multifunctionality of lunasin and peptides released during its simulated gastrointestinal digestion. Food Research International, 125(April), 108513. https://doi.org/10.1016/j.foodres.2019.108513 | |
dc.relation.references | Innocente, N., Corradini, C., Blecker, C., & Paquot, M. (1998). Emulsifying Properties of the Total Fraction and the Hydrophobic Fraction of Bovine Milk Proteose-peptones. International Dairy Journal, 6946(99), 981–985. | |
dc.relation.references | Ishimoto, M., Kuroda, M., Yoza, K., Nishizawa, K., Teraishi, M., Mizutani, N., Ito, K., & Moriya, S. (2012). Heterologous Expression of Corn Cystatin in Soybean and Effect on Growth of the Stink Bug. Bioscience, Biotechnology, and Biochemistry, 76(11), 2142–2145. https://doi.org/10.1271/bbb.120432 | |
dc.relation.references | Jagersberger, J. (2013). Development of novel products on basis of Sacha Inchi-Use of press cakes and hulls. Universität Wien, Vienna, Austria. | |
dc.relation.references | Jayawardhana, H. H. A. C. K., Liyanage, N. M., Nagahawatta, D. P., Lee, H.-G., Jeon, Y.-J., & Kang, S. I. (2024). Pepsin Hydrolysate from Surimi Industry-Related Olive Flounder Head Byproducts Attenuates LPS-Induced Inflammation and Oxidative Stress in RAW 264.7 Macrophages and In Vivo Zebrafish Model. In Marine Drugs (Vol. 22, Issue 1). https://doi.org/10.3390/md22010024 | |
dc.relation.references | Jiapong, S., & Ruttarattanamongkol, K. (2021). Development of direct expanded high protein snack products fortified with Sacha Inchi seed meal. Journal of Microbiology, Biotechnology and Food Science, 10(4), 680–684. https://doi.org/10.15414/jmbfs.2021.10.4.680-684 | |
dc.relation.references | Joshi, S., Shah, S., & Kalantar-Zadeh, K. (2019). Adequacy of Plant-Based Proteins in Chronic Kidney Disease. Journal of Renal Nutrition, 29(2), 112–117. https://doi.org/10.1053/j.jrn.2018.06.006 | |
dc.relation.references | Kannan, A., Hettiarachchy, N., & Marshall, M. (2012). Food Proteins and Peptides as Bioactive Agents. In N. S. Hettiarachchy, K. Sato, M. R. Marshall, & A. Kannan (Eds.), Bioactive Food Progeins and Peptides-Applications in Human Health (p. 348). Taylor & Francis Group, LLC. | |
dc.relation.references | Khatun, M. S., Hasan, M. M., & Kurata, H. (2019). PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features. Frontiers in Genetics, 10, 129. https://doi.org/10.3389/fgene.2019.00129 | |
dc.relation.references | Khuwijitjaru, P., Anantanasuwong, S., & Adachi, S. (2011). Emulsifying and foaming properties of defatted soy meal extracts obtained by subcritical water treatment. International Journal of Food Properties, 14(1), 9–16. https://doi.org/10.1080/10942910903112118 | |
dc.relation.references | Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2017). Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst. Journal of Saudi Chemical Society, 21, S293–S298. https://doi.org/10.1016/j.jscs.2014.03.005 | |
dc.relation.references | Kumar, B., Smita, K., Sánchez, E., Stael, C., & Cumbal, L. (2016). Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as new biosorbents for Pb2+ and Cu2+ ions. Ecological Engineering, 93, 152–158. https://doi.org/10.1016/j.ecoleng.2016.05.034 | |
dc.relation.references | Lammi, C., Aiello, G., Vistoli, G., Zanoni, C., Arnoldi, A., Sambuy, Y., Ferruzza, S., & Ranaldi, G. (2016). A multidisciplinary investigation on the bioavailability and activity of peptides from lupin protein. Journal of Functional Foods, 24, 297–306. https://doi.org/10.1016/j.jff.2016.04.017 | |
dc.relation.references | Larder, C. E., Iskandar, M. M., & Kubow, S. (2021). Assessment of bioavailability after in vitro digestion and first pass metabolism of bioactive peptides from collagen hydrolysates. Current Issues in Molecular Biology, 43(3), 1592–1605. https://doi.org/10.3390/cimb43030113 | |
dc.relation.references | Lau, F. C., Daggy, B., & Fakoukakis, E. P. (2016). Composition Comprising Sacha Inchi Protein in Combination with Other Plant Proteins. | |
dc.relation.references | Law, H.-Y., Choi, S.-M., & Ma, C.-Y. (2008). Study of conformation of vicilin from Dolichos lablab and Phaseolus calcaratus by Fourier-transform infrared spectroscopy and differential scanning calorimetry. Food Research International, 41(7), 720–729. https://doi.org/https://doi.org/10.1016/j.foodres.2008.05.004 | |
dc.relation.references | Lear, S., & Cobb, S. L. (2016). Pep-Calc.com: a set of web utilities for the calculation of peptide and peptoid properties and automatic mass spectral peak assignment. Journal of Computer-Aided Molecular Design, 30(3), 271–277. https://doi.org/10.1007/s10822-016-9902-7 | |
dc.relation.references | LeBel, C. P., Ischiropoulos, H., & Bondy, S. C. (1992). Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research in Toxicology, 5(2), 227–231. https://doi.org/10.1021/tx00026a012 | |
dc.relation.references | Leprince, O., van Aelst, A. C., Pritchard, H. W., & Murphy, D. J. (1998). Oleosins prevent oil-body coalescence during seed imbibition as suggested by a low-temperature scanning electron microscope study of desiccation-tolerant and -sensitive oilseeds. Planta, 204(1), 109–119. https://doi.org/10.1007/s004250050236 | |
dc.relation.references | Li, B., & Han, L. (2013). Distance Weighted Cosine Similarity Measure for Text Classification. In H. Yin, K. Tang, Y. Gao, F. Klawonn, M. Lee, T. Weise, B. Li, & X. Yao (Eds.), Intelligent Data Engineering and Automated Learning – IDEAL 2013 (pp. 611–618). Springer Berlin Heidelberg. | |
dc.relation.references | Li, P., Wen, J., Ma, X., Lin, F., Jiang, Z., & Du, B. (2018). Structural, functional properties and immunomodulatory activity of isolated Inca peanut (Plukenetia volubilis L.) seed albumin fraction. International Journal of Biological Macromolecules, 118, 1931–1941. https://doi.org/10.1016/j.ijbiomac.2018.07.046 | |
dc.relation.references | Lima, B. T. M., Takahashi, N. S., Tabata, Y. A., Hattori, R. S., Ribeiro, C. da S., & Moreira, R. G. (2019). Balanced omega-3 and -6 vegetable oil of Amazonian sacha inchi act as LC-PUFA precursors in rainbow trout juveniles: Effects on growth and fatty acid biosynthesis. Aquaculture, 509(April), 236–245. https://doi.org/10.1016/j.aquaculture.2019.05.004 | |
dc.relation.references | Liu, H., Wang, J., Liu, Y., Bi, H., Zhou, X., Wen, L., & Yang, B. (2024). Characterisation of functional pea protein hydrolysates and their immunomodulatory activity. International Journal of Food Science and Technology, 59(5), 3317–3330. https://doi.org/10.1111/ijfs.17077 | |
dc.relation.references | López-García, G., Dublan-García, O., Arizmendi-Cotero, D., & Gómez Oliván, L. M. (2022). Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules, 27(4), 1343. https://doi.org/10.3390/molecules27041343 | |
dc.relation.references | López, K., Santa Cruz, C., & Gutiérrez, A. (2016). Protein profile of “Sacha Inchi” seeds (Plukenetia volubilis l. and Plukenetia huayllabambana Bussmann, Téllez & Glenn). The Biologist (Lima), 14(1), 11–20. | |
dc.relation.references | Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., & Lajoie, G. (2003). PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 17(20), 2337–2342. https://doi.org/10.1002/rcm.1196 | |
dc.relation.references | Maillet, N. (2020). Rapid Peptides Generator: fast and efficient in silico protein digestion. NAR Genomics and Bioinformatics, 2(1), 1–10. https://doi.org/10.1093/nargab/lqz004 | |
dc.relation.references | Manavalan, B., & Patra, M. C. (2022). MLCPP 2.0: An Updated Cell-penetrating Peptides and Their Uptake Efficiency Predictor. Journal of Molecular Biology, 434(11), 167604. https://doi.org/10.1016/j.jmb.2022.167604 | |
dc.relation.references | Mangena, P. (2020). Phytocystatins and their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). In Protein & Peptide Letters (Vol. 27, Issue 2, pp. 135–144). https://doi.org/10.2174/0929866526666191014125453 | |
dc.relation.references | Manzoor, M., Singh, J., & Gani, A. (2022). Exploration of bioactive peptides from various origin as promising nutraceutical treasures : In vitro , in silico and in vivo studies. Food Chemistry, 373, 131395. https://doi.org/10.1016/j.foodchem.2021.131395 | |
dc.relation.references | Mao, X. Y., & Hua, Y. F. (2014). Chemical composition, molecular weight distribution, secondary structure and effect of NaCl on functional properties of walnut (Juglans regia L) protein isolates and concentrates. Journal of Food Science and Technology, 51(8), 1473–1482. https://doi.org/10.1007/s13197-012-0674-3 | |
dc.relation.references | Mariotti, F. (2019). Animal and Plant Protein Sources and Cardiometabolic Health. Advances in Nutrition, 10, S351–S366. https://doi.org/10.1093/advances/nmy110 | |
dc.relation.references | Martínez-Villaluenga, C., & Hernández-Ledesma, B. (2020). Peptides for Health Benefits 2019. International Journal of Molecular Sciences, 21, 1–6. | |
dc.relation.references | Martini, S., Cattivelli, A., Conte, A., & Tagliazucchi, D. (2022). Application of a Combined Peptidomics and In Silico Approach for the Identification of Novel Dipeptidyl Peptidase-IV- Inhibitory Peptides in In Vitro Digested Pinto Bean Protein Extract. Current Issues in Molecular Biology, 44(1), 139–151. https://doi.org/http://dx.doi.org/10.3390/cimb44010011 | |
dc.relation.references | Mathur, D., Singh, S., Mehta, A., Agrawal, P., & Raghava, G. P. S. (2018). In silico approaches for predicting the half-life of natural and modified peptides in blood. PLoS ONE, 13(6), 1–10. https://doi.org/https://doi.org/10.1371/journal.pone.0196829 | |
dc.relation.references | Mendoza Ordoñez, G., Sánchez Pereyra, G., León Gallardo, Z., & Loyaga Cortéz, B. (2019). Effect of dietary sacha inchi pressed cake as a protein source on guinea pig carcass yield and meat quality. Pakistan Journal of Nutrition, 18, 1021–1027. https://doi.org/10.3923/pjn.2019.1021.1027 | |
dc.relation.references | Mercado R., J. L., Elías P., C. C. A., & Pascual C., G. J. (2015). Obtención de un aislado proteico de torta de Sacha Inchi (Plukenetia volubilis L.) y evaluación de sus propiedades tecno-funcionales. Anales Científicos, 76(1), 160–167. https://doi.org/10.21704/ac.v76i1.777 | |
dc.relation.references | Micanquer-Carlosama, A., Cortés-Rodríguez, M., & Serna-Cock, L. (2020). Formulation of a fermentation substrate from pineapple and sacha inchi wastes to grow Weissella cibaria. Heliyon, 6(4), 0–7. https://doi.org/10.1016/j.heliyon.2020.e03790 | |
dc.relation.references | Millan-Linares, M. C., Rivero-Pino, F., Gonzalez-de la Rosa, T., Villanueva, A., & Montserrat-de la Paz, S. (2024). Identification, characterization, and molecular docking of immunomodulatory oligopeptides from bioavailable hempseed protein hydrolysates. Food Research International, 176, 113712. https://doi.org/10.1016/j.foodres.2023.113712 | |
dc.relation.references | Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., MacIerzanka, A., MacKie, A., … Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food- an international consensus. Food and Function, 5(6), 1113–1124. https://doi.org/10.1039/c3fo60702j | |
dc.relation.references | Miranda-Gelvez, R. A., & Guerrero-Alvarado, C. E. (2015). Efecto de la torta de Sacha Inchi (Plukenetia volubilis) sobre el desempeño productivo de juveniles de tilapia roja (Oreochromis sp.). Respuestas, 20(2), 82–92. | |
dc.relation.references | Mohd Rodhi, A., Yap, P. G., Olalere, O. A., & Gan, C. Y. (2024). Unveiling α-Amylase Inhibition: A Bioinformatics Perspective on Peptide Properties and Amino Acid Contributions. Journal of Molecular Structure, 1305(November 2023), 137768. https://doi.org/10.1016/j.molstruc.2024.137768 | |
dc.relation.references | Mojica, L., & de Mejía, E. G. (2016). Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food & Function, 7(2), 713–727. https://doi.org/10.1039/C5FO01204J | |
dc.relation.references | Mondragón Tarrillo, I. G. (2009). Estudio farmacognóstico y bromatológico de los residuos industriales de la extracción del aceite de Plukenetia volubilis L. (Sacha inchi). In Libro De Resumenes. Universidad Nacional Mayor de San Marcos, Lima, Peru. | |
dc.relation.references | Montoya-Rodríguez, A., de Mejía, E. G., Dia, V. P., Reyes-Moreno, C., & Milán-Carrillo, J. (2014). Extrusion improved the anti-inflammatory effect of amaranth (maranthus hypochondriacus) hydrolysates in LPS-induced human THP-1 macrophage-like and mouse RAW 264.7 macrophages by preventing activation of NF-κB signaling. Molecular Nutrition & Food Research, 58(5), 1028–1041. https://doi.org/10.1002/mnfr.201300764 | |
dc.relation.references | Mooney, C., Haslam, N. J., Pollastri, G., & Shields, D. C. (2012). Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity. PLOS ONE, 7(10), e45012. https://doi.org/10.1371/journal.pone.0045012 | |
dc.relation.references | Moser, P., Freis, O., Gillon, V., & Danoux, L. (2006). Extract of a Plant Belonging to the Genus Plukenetia Volubilis and Its Cosmetic Use. | |
dc.relation.references | Muangrat, R., Veeraphong, P., & Chantee, N. (2018). Screw press extraction of Sacha inchi seeds : Oil yield and its chemical composition and antioxidant properties. Journal of Food Processing and Preservation, July 2017, 1–10. https://doi.org/10.1111/jfpp.13635 | |
dc.relation.references | Nasabi, M., Labbafi, M., Mousavi, M. E., & Madadlou, A. (2017). Effect of salts and nonionic surfactants on thermal characteristics of egg white proteins. International Journal of Biological Macromolecules, 102, 970–976. https://doi.org/10.1016/j.ijbiomac.2017.04.102 | |
dc.relation.references | Nguyen, M. N., Krutz, N. L., Limviphuvadh, V., Lopata, A. L., Gerberick, G. F., & Maurer-Stroh, S. (2022). AllerCatPro 2.0: a web server for predicting protein allergenicity potential. Nucleic Acids Research, 50(W1), W36–W43. https://doi.org/10.1093/nar/gkac446 | |
dc.relation.references | Niu, P., Zhu, J., Wei, L., & Liu, X. (2024). Application of Fluorescent Probes in Reactive Oxygen Species Disease Model. Critical Reviews in Analytical Chemistry, 54(3), 437–472. https://doi.org/10.1080/10408347.2022.2080495 | |
dc.relation.references | Oishi, S., Yoshioka, Y., Dohra, H., & Miyoshi, N. (2024). Chickpea proteins are potential sources of bioactive peptides that induce glucose uptake via AMP-activated protein kinase. Food Bioscience, 59(March), 104029. https://doi.org/10.1016/j.fbio.2024.104029 | |
dc.relation.references | Oliveira, A. R., Emannuele, A., Ribeiro, C., Oliveira, É. R., Garcia, M. C., Soares, M., Júnior, S., & Caliari, M. (2020). Structural and physicochemical properties of freeze-dried açaí pulp ( Euterpe oleracea Mart .). Food Science and Technology, 2061(June), 282–289. | |
dc.relation.references | Olsen, T. H., Yesiltas, B., Marin, F. I., Pertseva, M., García-Moreno, P. J., Gregersen, S., Overgaard, M. T., Jacobsen, C., Lund, O., Hansen, E. B., & Marcatili, P. (2020). AnOxPePred: using deep learning for the prediction of antioxidative properties of peptides. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-78319-w | |
dc.relation.references | Ortiz-Chura, A., Pari-Puma, R. M., Rodríguez Huanca, F. H., Cerón-Cucchi, M. E., & Araníbar Araníbar, M. J. (2018). Apparent digestibility of dry matter, organic matter, protein and energy of native Peruvian feedstuffs in juvenile rainbow trout (Oncorhynchus mykiss). Fisheries and Aquatic Sciences, 21(32), 1–7. | |
dc.relation.references | Osorio, D. C. V., Ramírez, J. D. J., Llanos, G. A. H., & Acosta, L. M. V. (2017). Desarrollo de galletas empleando harina de Sacha Inchi (plukenetia volubilis l.) obtenida de la torta residual. UGCiencia, 23(0 SE-Artículos Resultado de Investigación). https://doi.org/10.18634/ugcj.23v.0i.781 | |
dc.relation.references | Palacio, C. (2017). Sacha Colombia. El Mundo del Campo. https://sumasacha.com/?lang=es | |
dc.relation.references | Parra, P. P., & Aime, M. C. (2019). New species of Bannoa described from the tropics and the first report of the genus in South America. Mycologia, 111(6), 953–964. https://doi.org/10.1080/00275514.2019.1647397 | |
dc.relation.references | Paterson, S., Fernández-Tomé, S., Galvez, A., & Hernández-Ledesma, B. (2023). Evaluation of the Multifunctionality of Soybean Proteins and Peptides in Immune Cell Models. In Nutrients (Vol. 15, Issue 5). https://doi.org/10.3390/nu15051220 | |
dc.relation.references | Pereira de Souza, A. H., Gohara, A. K., Rodrigues, Â. C., de Souza, N. E., Visentainer, J. V., & Matsushita, M. (2013). Sacha inchi as potential source of essential fatty acids and tocopherols: multivariate study of nut and shell. Acta Scientiarum - Technology, 35(4), 757–763. https://doi.org/10.4025/actascitechnol.v35i4.19193 | |
dc.relation.references | Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D. J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., Walzer, M., Wang, S., Brazma, A., & Vizcaíno, J. A. (2022). The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Research, 50(D1), D543–D552. https://doi.org/10.1093/nar/gkab1038 | |
dc.relation.references | Petit, N., Dyer, J. M., Richena, M., Domigan, L. J., Gerrard, J. A., & Clerens, S. (2024). Self-assembling bioactive peptides for gastrointestinal delivery—Bioinformatics-driven discovery and in vitro assessment. International Journal of Food Science and Technology, 59(5), 2927–2942. https://doi.org/10.1111/ijfs.17002 | |
dc.relation.references | Pezo Cuñaña, C. M. (2018). Obtención y caracterización de un aislado proteico a partir de la torta desengrasada de sacha inchi (Plukenetia volubilis L.). Universidad Nacional de San Martín - Tarapoto. | |
dc.relation.references | Piovesana, S., Capriotti, A. L., Cavaliere, C., La Barbera, G., Montone, C. M., Zenezini Chiozzi, R., & Laganà, A. (2018). Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Analytical and Bioanalytical Chemistry, 410(15), 3425–3444. https://doi.org/10.1007/s00216-018-0852-x | |
dc.relation.references | PNUD. (2020). Objetivos de Desarrollo Sostenible. Naciones Unidas-Programa de Las Naciones Unidas Para El Desarrollo. https://www.undp.org/content/undp/es/home/sustainable-development-goals.html | |
dc.relation.references | Pojić, M., Mišan, A., Sakač, M., Dapčević Hadnađev, T., Šarić, B., Milovanović, I., & Hadnađev, M. (2014). Characterization of Byproducts Originating from Hemp Oil Processing. Journal of Agricultural and Food Chemistry, 62(51), 12436–12442. https://doi.org/10.1021/jf5044426 | |
dc.relation.references | Pojić, M., Mišan, A., & Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends in Food Science & Technology, 75(October 2017), 93–104. https://doi.org/10.1016/j.tifs.2018.03.010 | |
dc.relation.references | Przybylski, R., Bazinet, L., Kouach, M., Goossens, J. F., Dhulster, P., Firdaous, L., & Nedjar-Arroume, N. (2020). Slaughterhouse By-Product Valorization: Hydrolysis Degree Modification for Higher Antimicrobial Recovery by Electroseparation. Waste and Biomass Valorization, 0123456789. https://doi.org/10.1007/s12649-020-01154-7 | |
dc.relation.references | Qin, D., Jiao, L., Wang, R., Zhao, Y., Hao, Y., & Liang, G. (2023). Prediction of antioxidant peptides using a quantitative structure−activity relationship predictor (AnOxPP) based on bidirectional long short-term memory neural network and interpretable amino acid descriptors. Computers in Biology and Medicine, 154. https://doi.org/10.1016/j.compbiomed.2023.106591 | |
dc.relation.references | Quinteros, M., Vilcacundo, R., Carpio, C., & Carrillo, W. (2016a). Digestibility and anti-inflammatory activity in vitro of sacha inchi (Plukenetia volubilis l.) proteins. Asian Journal of Pharmaceutical and Clinical Research, 9(3), 20–23. | |
dc.relation.references | Quinteros, M., Vilcacundo, R., Carpio, C., & Carrillo, W. (2016b). Isolation of proteins from sacha inchi (Plukenetia volubilis l.) in presence of water and salt. Asian Journal of Pharmaceutical and Clinical Research, 9(3), 193–196. https://journals.innovareacademics.in/index.php/ajpcr/article/view/11007 | |
dc.relation.references | Rahman, M., Guo, Q., Baten, A., Mauleon, R., Khatun, A., Liu, L., & Barkla, B. J. (2021). Shotgun proteomics of Brassica rapa seed proteins identifies vicilin as a major seed storage protein in the mature seed. PLOS ONE, 16(7), e0253384. https://doi.org/10.1371/journal.pone.0253384 | |
dc.relation.references | Rahman, M., Liu, L., & Barkla, B. J. (2021). A Single Seed Protein Extraction Protocol for Characterizing Brassica Seed Storage Proteins. In Agronomy (Vol. 11, Issue 1). https://doi.org/10.3390/agronomy11010107 | |
dc.relation.references | Rahmi, A., & Arcot, J. (2023). In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review. Foods, 12(631). https://doi.org/10.3390/foods12030631 | |
dc.relation.references | Ramzan, A., Shah, M., Ullah, N., Sheheryar, Nascimento, J. R. S., Campos, F. A. P., Domont, G. B., Nogueira, F. C. S., & Abdellattif, M. H. (2022). Proteomic Analysis of Embryo Isolated From Mature Jatropha curcas L. Seeds. Frontiers in Plant Science, 13(March), 1–14. https://doi.org/10.3389/fpls.2022.843764 | |
dc.relation.references | Rashid, M. H. U., Yi, E. K. J., Amin, N. D. M., & Ismail, M. N. (2023). An Empirical Analysis of Sacha Inchi (Plantae: Plukenetia volubilis L.) Seed Proteins and Their Applications in the Food and Biopharmaceutical Industries. Applied Biochemistry and Biotechnology, 0123456789. https://doi.org/10.1007/s12010-023-04783-5 | |
dc.relation.references | Rațu, R. N., Veleșcu, I. D., Stoica, F., Usturoi, A., Arsenoaia, V. N., Crivei, I. C., Postolache, A. N., Lipșa, F. D., Filipov, F., Florea, A. M., Chițea, M. A., & Brumă, I. S. (2023). Application of Agri-Food By-Products in the Food Industry. In Agriculture (Vol. 13, Issue 8). https://doi.org/10.3390/agriculture13081559 | |
dc.relation.references | Rawdkuen, S., D’Amico, S., & Schoenlechner, R. (2022). Physicochemical, Functional, and In Vitro Digestibility of Protein Isolates from Thai and Peru Sacha Inchi (Plukenetia volubilis L.) Oil Press-Cakes. Foods, 11(13), 1869. https://doi.org/10.3390/foods11131869 | |
dc.relation.references | Rawdkuen, S., & Ketnawa, S. (2019). Extraction, Characterization, and Application of Agricultural and Food Processing By-Products. In S. A. Socaci, A. C. Fărcaş, T. Aussenac, & J.-C. Laguerre (Eds.), Food Preservation and Waste Exploitation (pp. 1–32). IntechOpen. https://doi.org/10.1016/j.colsurfa.2011.12.014 | |
dc.relation.references | Rawdkuen, S., Murdayanti, D., Ketnawa, S., & Phongthai, S. (2016). Chemical properties and nutritional factors of pressed-cake from tea and sacha inchi seeds. Food Bioscience, 15, 64–71. https://doi.org/http://dx.doi.org/10.1016/j.fbio.2016.05.004 | |
dc.relation.references | Rawdkuen, S., Rodzi, N., & Pinijsuwan, S. (2018). Characterization of sacha inchi protein hydrolysates produced by crude papain and Calotropis proteases. LWT - Food Science and Technology, 98(July 2017), 18–24. https://doi.org/10.1016/j.lwt.2018.08.008 | |
dc.relation.references | Rayan, A. M., Swailam, H. M., & Hamed, Y. S. (2023). Composition, Structure, and Techno-Functional Characteristics of the Flour, Protein Concentrate, and Protein Isolate from Purslane (Portulaca oleracea L.) Seeds. Plant Foods for Human Nutrition, 78(1), 117–123. https://doi.org/10.1007/s11130-022-01028-4 | |
dc.relation.references | Ren, G., Zhu, Y., Shi, Z., & Li, J. (2017). Detection of lunasin in quinoa (Chenopodium quinoa Willd.) and the in vitro evaluation of its antioxidant and anti-inflammatory activities. Journal of the Science of Food and Agriculture, 97(12), 4110–4116. https://doi.org/10.1002/jsfa.8278 | |
dc.relation.references | REPSOL. (2024). Economía circular. https://www.repsol.com/es/sostenibilidad/ejes-sostenibilidad/medio-ambiente/economia-circular/index.cshtml?gclid=CjwKCAjwkNOpBhBEEiwAb3MvvYXllU8rMLKjyNOev9eKu1HOyndMVvES3TbV6LCEsn8eySi61h_vkRoC2d8QAvD_BwE | |
dc.relation.references | Richter, C. K., Skulas-Ray, A. C., Champagne, C. M., & Kris-Etherton, P. M. (2015). Plant Protein and Animal Proteins: Do They Differentially Affect Cardiovascular Disease Risk? Advances in Nutrition, 6(6), 712–728. https://doi.org/10.3945/an.115.009654.712 | |
dc.relation.references | Rodeiro, I., Remirez, D., & Flores, D. (2018). Sacha Inchi (Plukenetia volubilis L.) powder : acute toxicity, 90 days oral toxicity study and micronucleus assay in rodents. Journal of Pharmacy & Pharmacognosy Research, 6(1), 17–26. | |
dc.relation.references | Rodríguez, G., Avellaneda, S., Pardo, R., Villanueva, E., & Aguirre, E. (2018). Bread leaf enriched with extruded cake from sacha inchi (Plukenetia volubilis L.): Chemistry, rheology, texture and acceptability. Scientia Agropecuaria, 9(2), 199–208. https://doi.org/10.17268/sci.agropecu.2018.02.04 | |
dc.relation.references | Rozza, A. L., de Mello Moraes, T., Kushima, H., Nunes, D. S., Hiruma-Lima, C. A., & Pellizzon, C. H. (2011). Involvement of Glutathione, Sulfhydryl Compounds, Nitric Oxide, Vasoactive Intestinal Peptide, and Heat-Shock Protein-70 in the Gastroprotective Mechanism of Croton cajucara Benth. (Euphorbiaceae) Essential Oil. Journal of Medicinal Food, 14(9), 1011–1017. https://doi.org/10.1089/jmf.2010.0173 | |
dc.relation.references | Ruiz, C., Díaz, C., Anaya, J., & Rojas, R. (2013). Análisis proximal, antinutrientes, perfil de ácidos grasos y de aminoácidos de semillas y tortas de 2 especies de sacha inchi (Plukenetia volubilis y Plukenetia huayllabambana). Rev Soc Quím Perú, 79(1), 29–36. | |
dc.relation.references | Rungrot, K., Hudthagosol, C., & Sanporkha, P. (2021). Effect of Sacha Inchi Pressed-Cake (Plukenetia volubilis L.) on the Physical, Chemical and Sensory Properties of Tuiles. Chiang Mai University Journal of Natural Sciences, 20(2), 1–10. | |
dc.relation.references | Sá Almeida, A. G., Franco Moreno, Y. M., & Mattar Carciofi, B. A. (2020). Plant proteins as high-quality nutritional source for human diet. Trends in Food Science and Technology, 97(January), 170–184. https://doi.org/10.1016/j.tifs.2020.01.011 | |
dc.relation.references | Sadat, A., & Joye, I. J. (2020). Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Applied Sciences, 10(17). https://doi.org/10.3390/app10175918 | |
dc.relation.references | Sánchez-Camargo, A. del P., Gutiérrez, L. F., Vargas, S. M., Martinez-Correa, H. A., Parada-Alfonso, F., & Narváez-Cuenca, C. E. (2019). Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. Journal of Supercritical Fluids, 152, 104574. https://doi.org/10.1016/j.supflu.2019.104574 | |
dc.relation.references | Sanchez-Reinoso, Z., & Gutiérrez, L. F. (2017). Effects of the Emulsion Composition on the Physical Properties and Oxidative Stability of Sacha Inchi (Plukenetia volubilis L.) Oil Microcapsules Produced by Spray Drying. Food and Bioprocess Technology, 10(7), 1354–1366. https://doi.org/10.1007/s11947-017-1906-3 | |
dc.relation.references | Sanchez-Reinoso, Z., Mora-Adames, W. I., Fuenmayor, C. A., Darghan-Contreras, A. E., Gardana, C., & Gutiérrez, L. F. (2020). Microwave-assisted extraction of phenolic compounds from Sacha Inchi shell: Optimization, physicochemical properties and evaluation of their antioxidant activity. Chemical Engineering and Processing - Process Intensification, 153(April), 107922. https://doi.org/10.1016/j.cep.2020.107922 | |
dc.relation.references | Sari, Y. W., Mulder, W. J., Sanders, J. P. M., & Bruins, M. E. (2015). Towards plant protein refinery: Review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal, 10(8), 1138–1157. https://doi.org/https://doi.org/10.1002/biot.201400569 | |
dc.relation.references | Sathe, S. K., Desphande, S. S., & Salunkhe, D. K. (1982). Functional properties of winged bean proteins. Journal of Food Science, 42, 503–509. | |
dc.relation.references | Sathe, S. K., Hamaker, B. R., Sze-Tao, K. W. C., & Venkatachalam, M. (2002). Isolation, Purification, and Biochemical Characterization of a Novel Water Soluble Protein from Inca Peanut (Plukenetia volubilis L.). Journal of Agricultural and Food Chemistry, 50, 4906–4908. https://doi.org/10.1021/jf020126a | |
dc.relation.references | Sathe, S. K., Kshirsagar, H. H., & Sharma, G. M. (2012). Solubilization, Fractionation, and Electrophoretic Characterization of Inca Peanut (Plukenetia volubilis L.) Proteins. Plant Foods Hum Nutr, 67, 247–255. https://doi.org/10.1007/s11130-012-0301-5 | |
dc.relation.references | Schobert, C., Großmann, P., Gottschalk, M., Komor, E., Pecsvaradi, A., & Mieden, U. zur. (1995). Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones. Planta, 196(2), 205–210. https://doi.org/10.1007/BF00201375 | |
dc.relation.references | Sestito, S. E., Facchini, F. A., Morbioli, I., Billod, J.-M., Martin-Santamaria, S., Casnati, A., Sansone, F., & Peri, F. (2017). Amphiphilic Guanidinocalixarenes Inhibit Lipopolysaccharide (LPS)- and Lectin-Stimulated Toll-like Receptor 4 (TLR4) Signaling. Journal of Medicinal Chemistry, 60(12), 4882–4892. https://doi.org/10.1021/acs.jmedchem.7b00095 | |
dc.relation.references | Shevchenko, A., Tomas, H., Havli, J., Olsen, J. V, & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856–2860. https://doi.org/10.1038/nprot.2006.468 | |
dc.relation.references | Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels. Analytical Chemistry, 68(5), 850–858. https://doi.org/10.1021/ac950914h | |
dc.relation.references | Shevkani, K., Singh, N., Chen, Y., Kaur, A., & Yu, L. (2019). Pulse proteins: secondary structure, functionality and applications. Journal of Food Science and Technology, 56(6), 2787–2798. https://doi.org/10.1007/s13197-019-03723-8 | |
dc.relation.references | Shu, T., Wang, K., & Zhang, X. (2023). Antioxidant and Hypoglycemic Activity of Sacha Inchi Meal Protein Hydrolysate. Applied Sciences (Switzerland), 13(11). https://doi.org/10.3390/app13116528 | |
dc.relation.references | Singh, B. P., Vij, S., & Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides, 54, 171–179. https://doi.org/10.1016/j.peptides.2014.01.022 | |
dc.relation.references | Singh, B., Velázquez, D., Terry, J., & Linford, M. R. (2014). The equivalent width as a figure of merit for XPS narrow scans. Journal of Electron Spectroscopy and Related Phenomena, 197, 56–63. https://doi.org/10.1016/j.elspec.2014.06.008 | |
dc.relation.references | Sławińska, N., & Olas, B. (2023). Selected Seeds as Sources of Bioactive Compounds with Diverse Biological Activities. Nutrients, 15(1). https://doi.org/10.3390/nu15010187 | |
dc.relation.references | Song, M., Fung, T. T., Hu, F. B., Willett, W. C., Longo, V. D., Chan, A. T., & Giovannucci, E. L. (2016). Association of Animal and Plant Protein Intake With All-Cause and Cause-Specific Mortality. JAMA Internal Medicine, 176(10), 1453–1463. https://doi.org/10.1001/jamainternmed.2016.4182 | |
dc.relation.references | Song, X., Si, L., Sun, X., Zhu, X., Li, Z., Li, Y., Wang, Y., & Hou, H. (2022). Rheological properties, thermal stability and conformational changes of collagen from sea cucumber (Apostichopus japonicas). Food Chemistry, 389. https://doi.org/10.1016/j.foodchem.2022.133033 | |
dc.relation.references | Srichamnong, W., Ting, P., Pitchakarn, P., Nuchuchua, O., & Temviriyanukul, P. (2018). Safety assessment of Plukenetia volubilis (Inca peanut) seeds, leaves, and their products. Food Science and Nutrition, 6(February), 962–969. https://doi.org/10.1002/fsn3.633 | |
dc.relation.references | Su, N., Yi, L., He, J., Ming, L., Jambal, T., Mijiddorj, B., Maizul, B., Enkhtuul, T., & Ji, R. (2024). Identification and molecular docking of a novel antidiabetic peptide from protamex-camel milk protein hydrolysates against α-amylase and DPP-IV. International Dairy Journal, 152. https://doi.org/10.1016/j.idairyj.2024.105884 | |
dc.relation.references | Suwanangul, S., Alashi, M. A., Aluko, R. E., Tochampa, W., & Ruttarattanamongkol, K. (2021). Inhibition of α-amylase, α-glucosidase and pancreatic lipase activities in vitro by sacha inchi (Plukenetia volubilis l.) protein hydrolysates and their fractionated peptides. Maejo International Journal of Science and Technology, 15(1), 13–26. | |
dc.relation.references | Suwanangul, S., Sangsawad, P., Alashi, M. A., Aluko, R. E., Tochampa, W., Chittrakorn, S., & Ruttarattanamongkol, K. (2021). Antioxidant activities of sacha inchi (Plukenetia volubilis l.) protein isolate and its hydrolysates produced with different proteases. Maejo International Journal of Science and Technology, 15(1), 48–60. | |
dc.relation.references | Tehrani, S. S., Hosseini, H. M., & Mirhosseini, S. A. (2024). Evaluation of Anti-endotoxin Activity, Hemolytic Activity, and Cytotoxicity of a Novel Designed Peptide: An In Silico and In Vitro Study. International Journal of Peptide Research and Therapeutics, 30(2), 16. https://doi.org/10.1007/s10989-024-10591-0 | |
dc.relation.references | Thaha, A., Wang, B.-S., Chang, Y.-W., Hsia, S.-M., Huang, T.-C., Shiau, C.-Y., Hwang, D.-F., & Chen, T.-Y. (2021). Food-Derived Bioactive Peptides with Antioxidative Capacity, Xanthine Oxidase and Tyrosinase Inhibitory Activity. In Processes (Vol. 9, Issue 5). https://doi.org/10.3390/pr9050747 | |
dc.relation.references | Tielemans, S. M. A. J., Altorf-Van Der Kuil, W., Engberink, M. F., Brink, E. J., Van Baak, M. A., Bakker, S. J. L., & Geleijnse, J. M. (2013). Intake of total protein, plant protein and animal protein in relation to blood pressure: A meta-analysis of observational and intervention studies. Journal of Human Hypertension, 27(9), 564–571. https://doi.org/10.1038/jhh.2013.16 | |
dc.relation.references | Toralva Aylas, A. D., Rodas Pingus, M., & Guerrero Alva, D. M. (2019). EFECTO DE LA SUSTITUCIÓN PARCIAL DE LA HARINA DE TRIGO POR TORTA DE SACHA INCHI (Plukenetia volubilis L.) EN LAS PROPIEDADES REOLÓGICAS DE LA MASA DE PAN DULCE. Ciencia & Desarrollo, 0(20 SE-Artículos), 16–21. https://doi.org/10.33326/26176033.2015.20.505 | |
dc.relation.references | Torres-Sánchez, E., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2023). Isolation and Characterization of Protein Fractions for Valorization of Sacha Inchi Oil Press-Cake. In Foods (Vol. 12, Issue 12). https://doi.org/10.3390/foods12122401 | |
dc.relation.references | Torres-Sánchez, E., Lorca-Alonso, I., González-de la Fuente, S., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2024). Antioxidant Peptides from Sacha Inchi Meal: An In Vitro, Ex Vivo, and In Silico Approach. In Foods (Vol. 13, Issue 23). https://doi.org/10.3390/foods13233924 | |
dc.relation.references | Torres-Sánchez, E., Morato, E., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2024). Proteomic Analysis of the Major Alkali-Soluble Inca Peanut (Plukenetia volubilis) Proteins. In Foods (Vol. 13, Issue 20). https://doi.org/10.3390/foods13203275 | |
dc.relation.references | Torres Sánchez, E. G., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2023). Sacha Inchi Oil Press-cake: Physicochemical Characteristics, Food-related Applications and Biological Activity. Food Reviews International, 39(1), 148–159. https://doi.org/10.1080/87559129.2021.1900231 | |
dc.relation.references | Tran, N. H., Qiao, R., Xin, L., Chen, X., Liu, C., Zhang, X., Shan, B., Ghodsi, A., & Li, M. (2019). Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nature Methods, 16(1), 63–66. https://doi.org/10.1038/s41592-018-0260-3 | |
dc.relation.references | Tran, N. H., Zhang, X., Xin, L., Shan, B., & Li, M. (2017). De novo peptide sequencing by deep learning. Proceedings of the National Academy of Sciences of the United States of America, 114(31), 8247–8252. https://doi.org/10.1073/pnas.1705691114 | |
dc.relation.references | Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/https://doi.org/10.1002/jcc.21334 | |
dc.relation.references | Tsomele, G. F., Meiring, B., Anyasi, T. A., Mlambo, V., Amonsou, E., Lepule, S. P., Siwela, M., & Wokadala, O. C. (2023). Influence of amino acid profile and secondary structure on nutritional and functional properties of Trichilia emetica and Trichilia dregeana protein concentrates. International Journal of Food Science and Technology, 1–12. https://doi.org/10.1111/ijfs.16425 | |
dc.relation.references | Vanegas-Azuero, A. M., & Gutiérrez, L. F. (2018). Physicochemical and sensory properties of yogurts containing sacha inchi (Plukenetia volubilis L.) seeds and β-glucans from Ganoderma lucidum. Journal of Dairy Science, 101(2), 1020–1033. https://doi.org/10.3168/jds.2017-13235 | |
dc.relation.references | Vásquez-Osorio, D., Hincapié Llanos, G. A., Cardona, M., Jaramillo, D. I., & Vélez Acosta, L. (2017). Formulación de una colada empleando harina de sacha inchi (Plukenetia volubilis L.) proveniente de obtención de aceite. Perspectivas En Nutrición Humana, 19(2), 167–179. https://doi.org/10.17533/udea.penh.v19n2a04 | |
dc.relation.references | Vélez-Pérez, S. (2013). Exploración de la Sacha Inchi (Plukenetia volubilis) como fuente de proteína para uso en nutrición animal en Colombia. | |
dc.relation.references | Vilcacundo, R., Martínez-Villaluenga, C., & Hernández-Ledesma, B. (2017). Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods, 35, 531–539. https://doi.org/10.1016/j.jff.2017.06.024 | |
dc.relation.references | Vilcacundo, R., Martínez-Villaluenga, C., Miralles, B., & Hernández-Ledesma, B. (2019). Release of multifunctional peptides from kiwicha (Amaranthus caudatus) protein under in vitro gastrointestinal digestion. Journal of the Science of Food and Agriculture, 99(3), 1225–1232. https://doi.org/10.1002/jsfa.9294 | |
dc.relation.references | Vilcacundo, R., Miralles, B., Carrillo, W., & Hernández-Ledesma, B. (2018). In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International, 105(November 2017), 403–411. https://doi.org/10.1016/j.foodres.2017.11.036 | |
dc.relation.references | Walsh, I., Seno, F., Tosatto, S. C. E., & Trovato, A. (2014). PASTA 2.0: An improved server for protein aggregation prediction. Nucleic Acids Research, 42(W1), 301–307. https://doi.org/10.1093/nar/gku399 | |
dc.relation.references | Wang, K., Liu, X., & Zhang, X. (2023). Isolation and Identification of Lipid-Lowering Peptides from Sacha Inchi Meal. International Journal of Molecular Sciences, 24(2). https://doi.org/10.3390/ijms24021529 | |
dc.relation.references | Wang, L., Wang, N., Zhang, W., Cheng, X., Yan, Z., Shao, G., Wang, X., Wang, R., & Fu, C. (2022). Therapeutic peptides: current applications and future directions. Signal Transduction and Targeted Therapy, 7(1). https://doi.org/10.1038/s41392-022-00904-4 | |
dc.relation.references | Wang, R., Zhao, Y., Xue, W., Xia, Y., & Liang, G. (2024). Novel antioxidant peptides from soybean protein by employing computational and experimental methods and their mechanisms of oxidative stress resistance. Journal of Molecular Structure, 1318, 139284. https://doi.org/https://doi.org/10.1016/j.molstruc.2024.139284 | |
dc.relation.references | Wang, S., Zhu, F., & Kakuda, Y. (2018). Sacha inchi (Plukenetia volubilis L.): Nutritional composition, biological activity, and uses. Food Chemistry, 265(April), 316–328. https://doi.org/10.1016/j.foodchem.2018.05.055 | |
dc.relation.references | Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244–252. https://doi.org/10.1016/j.tplants.2004.03.006 | |
dc.relation.references | Wang, Y., Su, L., Morin, M. D., Jones, B. T., Whitby, L. R., Surakattula, M. M. R. P., Huang, H., Shi, H., Choi, J. H., Wang, K. W., Moresco, E. M. Y., Berger, M., Zhan, X., Zhang, H., Boger, D. L., & Beutler, B. (2016). TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS. Proceedings of the National Academy of Sciences of the United States of America, 113(7), E884–E893. https://doi.org/10.1073/pnas.1525639113 | |
dc.relation.references | Wang, Y., Tian, Y., Shao, J., Shu, X., Jia, J., & Ren, X. (2018). Macrophage immunomodulatory activity of the polysaccharide isolated from Collybia radicata mushroom. International Journal of Biological Macromolecules, 108, 300–306. https://doi.org/10.1016/j.ijbiomac.2017.12.025 | |
dc.relation.references | Widodo, H. S., Murti, T. W., Agus, A., & Pertiwiningrum, A. (2023). The Exploration of Bioactive Peptides that Docked to SARS-CoV-2 Spike Protein from Goats’ Milk Beta-Casein by In Silico. Molekul, 18(3), 378–385. https://doi.org/10.20884/1.jm.2023.18.3.7297 | |
dc.relation.references | Withana-Gamage, T. S., Wanasundara, J. P., Pietrasik, Z., & Shand, P. J. (2011). Physicochemical, thermal and functional characterisation of protein isolates from Kabuli and Desi chickpea (Cicer arietinum L.): A comparative study with soy (Glycine max) and pea (Pisum sativum L.). Journal of the Science of Food and Agriculture, 91(6), 1022–1031. https://doi.org/10.1002/jsfa.4277 | |
dc.relation.references | Wu, L., Li, J., Wu, W., Wang, L., Qin, F., & Xie, W. (2021). Effect of extraction pH on functional properties, structural properties, and in vitro gastrointestinal digestion of tartary buckwheat protein isolates. Journal of Cereal Science, 101, 103314. https://doi.org/https://doi.org/10.1016/j.jcs.2021.103314 | |
dc.relation.references | Wu, W., Zhang, M., Sun, C., Brennan, M., Li, H., Wang, G., Lai, F., & Wu, H. (2016). Enzymatic preparation of immunomodulatory hydrolysates from defatted wheat germ (Triticum Vulgare) globulin. International Journal of Food Science and Technology, 51(12), 2556–2566. https://doi.org/10.1111/ijfs.13238 | |
dc.relation.references | Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255 | |
dc.relation.references | Yang, H., Yang, S., Kong, J., Dong, A., & Yu, S. (2015). Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nature Protocols, 10(3), 382–396. https://doi.org/10.1038/nprot.2015.024 | |
dc.relation.references | Yang, J., Kornet, R., Diedericks, C. F., Yang, Q., Berton-Carabin, C. C., Nikiforidis, C. V., Venema, P., van der Linden, E., & Sagis, L. M. C. (2022). Rethinking plant protein extraction: Albumin—From side stream to an excellent foaming ingredient. Food Structure, 31(October 2021), 100254. https://doi.org/10.1016/j.foostr.2022.100254 | |
dc.relation.references | Yang, J. S., Dias, F. F. G., Pham, T. T. K., Barile, D., & de Moura Bell, J. M. L. N. (2024). A sequential fractionation approach to understanding the physicochemical and functional properties of aqueous and enzyme-assisted aqueous extracted black bean proteins. Food Hydrocolloids, 146, 109250. https://doi.org/10.1016/j.foodhyd.2023.109250 | |
dc.relation.references | Zhan, Q., Wang, Q., Liu, Q., Guo, Y., Gong, F., Hao, L., & Wu, H. (2021). The antioxidant activity of protein fractions from Sacha inchi seeds after a simulated gastrointestinal digestion. LWT, 145(February), 111356. https://doi.org/10.1016/j.lwt.2021.111356 | |
dc.relation.references | Zhang, A., Wang, K., Liu, X., & Zhang, X. (2023). Isolation and identification of dipeptidyl peptidase-IV inhibitory peptides from Sacha inchi meal. Journal of the Science of Food and Agriculture, 103(6), 2926–2938. https://doi.org/10.1002/jsfa.12464 | |
dc.relation.references | Zhang, Q., Yu, Z., & Zhao, W. (2023). Identification and action mechanism of novel antioxidative peptides from copra meal protein. LWT, 188, 115425. https://doi.org/https://doi.org/10.1016/j.lwt.2023.115425 | |
dc.relation.references | Zhang, X., Cui, F., Chen, H., Zhang, T., Yang, K., Wang, Y., Jiang, Z., Rice, K. C., Watkins, L. R., Hutchinson, M. R., Li, Y., Peng, Y., & Wang, X. (2018). Dissecting the Innate Immune Recognition of Opioid Inactive Isomer (+)-Naltrexone Derived Toll-like Receptor 4 (TLR4) Antagonists. Journal of Chemical Information and Modeling, 58(4), 816–825. https://doi.org/10.1021/acs.jcim.7b00717 | |
dc.relation.references | Zhang, Y., Liang, X., Bao, X., Xiao, W., & Chen, G. (2022). Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective. European Journal of Medicinal Chemistry, 235, 114291. https://doi.org/10.1016/j.ejmech.2022.114291 | |
dc.relation.references | Zheng, H., Yang, X., Tang, C., Li, L., & Ahmad, I. (2008). Preparation of soluble soybean protein aggregates (SSPA) from insoluble soybean protein concentrates (SPC) and its functional properties. Food Research International, 41, 154–164. https://doi.org/10.1016/j.foodres.2007.10.013 | |
dc.relation.references | Zheng, Y., Wang, X., Zhuang, Y., Li, Y., Tian, H., Shi, P., & Li, G. (2019). Isolation of Novel ACE-Inhibitory and Antioxidant Peptides from Quinoa Bran Albumin Assisted with an In Silico Approach: Characterization, In Vivo Antihypertension, and Molecular Docking. In Molecules (Vol. 24, Issue 24). https://doi.org/10.3390/molecules24244562 | |
dc.relation.references | Zhu, Z., Xu, Z., Li, Y., Fan, Y., Zhou, Y., Song, K., & Meng, L. (2024). Antioxidant Function and Application of Plant-Derived Peptides. In Antioxidants (Vol. 13, Issue 10). https://doi.org/10.3390/antiox13101203 | |
dc.relation.references | Zhuang, H., Tang, N., & Yuan, Y. (2013). Purification and identification of antioxidant peptides from corn gluten meal. Journal of Functional Foods, 5(4), 1810–1821. https://doi.org/https://doi.org/10.1016/j.jff.2013.08.013 | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.lemb | Aceite de sacha inchi | spa |
dc.subject.lemb | Wheat germ oil | eng |
dc.subject.lemb | Extracción (Aceites y grasas) | spa |
dc.subject.lemb | Extraction (Oils and fats) | eng |
dc.subject.lemb | Proteínas vegetales | spa |
dc.subject.lemb | Plant proteins | eng |
dc.subject.proposal | Antioxidante | spa |
dc.subject.proposal | Antidiabético | spa |
dc.subject.proposal | Antiinflamatorio | spa |
dc.subject.proposal | Péptidos bioactivos | spa |
dc.subject.proposal | Biodisponibilidad | spa |
dc.subject.proposal | Bioinformática | spa |
dc.subject.proposal | Coproducto | spa |
dc.subject.proposal | Economía circular | spa |
dc.subject.proposal | Digestión gastrointestinal | spa |
dc.subject.proposal | INFOGEST | |
dc.subject.proposal | Inmunomodulador | spa |
dc.subject.proposal | Semilla oleaginosa | spa |
dc.subject.proposal | Peptidómica | spa |
dc.subject.proposal | Proteómica | spa |
dc.subject.proposal | Antioxidant | eng |
dc.subject.proposal | Antidiabetic | eng |
dc.subject.proposal | Anti-inflammatory | eng |
dc.subject.proposal | Bioactive peptides | eng |
dc.subject.proposal | Bioavailability | eng |
dc.subject.proposal | Bioinformatic | eng |
dc.subject.proposal | By-product | eng |
dc.subject.proposal | Circular economy | eng |
dc.subject.proposal | Gastrointestinal digestion | eng |
dc.subject.proposal | INFOGEST | eng |
dc.subject.proposal | Immunomodulatory | eng |
dc.subject.proposal | Oilseed | eng |
dc.subject.proposal | Peptidomic | eng |
dc.subject.proposal | Proteomic | eng |
dc.title | Extraction, characterization, bioactivity, and bioavailability of peptides derived from Sacha Inchi (Plukenetia volubilis) | eng |
dc.title.translated | Obtención, caracterización, bioactividad y biodisponibilidad de péptidos derivados del Sacha Inchi (Plukenetia volubilis) | spa |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.awardtitle | Investigación, desarrollo, innovación y transferencia tecnológica para el procesamiento de la semilla de Sacha Inchi (Plukenetia volubilis) en productos de valor agregado, como una estrategia para fortalecer y mejorar la productividad de sector agroindustrial de la Región de Cundinamarca y contribuir al desarrollo sostenible de sus comunidades, Referencia: 2020000100169 | spa |
oaire.fundername | Sistema General del Regalías de la Región Centro Oriente: Bogotá D.C., Cundinamarca, Boyacá, Santander, y Norte de Santander | spa |